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Abstract 

 

In the area of statistics, bootstrapping is a general modern approach to resampling 

methods. Bootstrapping is a way of estimating an estimator such as a variance 

when sampling from a certain distribution. The approximating distribution is 

based on the observed data. A set of observations is a population of independent 

and observed data identically distributed by resampling; the set is random with 

replacement equal in size to that of the observed data. The study starts with an 

introduction to bootstrap and its procedure and resampling. In this study, we look 

at the basic usage of bootstrap in statistics by employing R. The study discusses 

the bootstrap mean and median. Then there will follow a discussion of the 

comparison between normal and non-normal data in bootstrap. The study ends 

with a discussion and presents the advantages and disadvantages of bootstraps. 
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1 Introduction 
 

Bootstrap is well known as a resampling procedure. Resampling starts with 

drawing a sample from the population. For example, x = (x1, x2,…xn) is a sample. 

Then from the sample another sample, X*= (X1*, X2*,…Xn*), is drawn 

randomly with replacement. This technique is called resampling. Resampling, in 

other words, draws repeated samples from the given data. Bootstrapping and 

permutation are mostly used in statistics. Resampling is now widely used for 

confidence limits, hypothesis tests and other inferential problems. Resampling lets 

us analyse the sorts of data, even data with complex structures, for example 

regression models. However, which residuals should be resampled? This is one of 

the most confusing questions that arise in terms of regression prospects. Therefore, 

raw residuals leave one option and another one is studentized residuals, which are 

mostly involved in linear regressions. By using the studentized residual, it will 

make it easy for us to compare and run the results and it will not give us a major 

difference in actual practice. 

 

 

2 Bootstrap Methods 
 

Let us consider a certain situation with a common data, where a random sample           

x = (x1,x2,…xn) from an unknown distribution F has been observed. Then we try 

to estimate the parameter of interest, = t(F), which is on the basis of x. Then 

we calculate the estimate,  = t(x), for x. Therefore, in order to know how 

accurate  is we may need to use bootstrap. The bootstrap method is a 

computer based nonparametric technique for assigning measures of accuracy to 

sample estimates [2]. The technique allows the estimation of the sample 

distribution by using any simple method. Therefore, the main goal of bootstrap is 

to make an inference about the population parameter based on the sample statistic. 

Bootstrap belongs to frequentist statistics and not to Bayesian statistics. 

Bootstrapping is mostly used for estimating variance when sampling from an 

empirical distribution of the observed data. Mostly, the observations are from an 

independent and identically distributed population and can be implemented by 

constructing random sampling with replacement on the observed data set equal in 

size to the observed data set. Figure 1 gives an example of a bootstrap. “B” 

bootstrap samples are generated from the original data set. Each bootstrap sample 

has n elements, generated by sampling with replacement n times from the original 

data set. Bootstrap replicates, s(x*
1
), s(x*

2
),…s(x*

B
), are obtained by calculating 

the value of the statistic s(x) on each bootstrap sample. Finally, the standard 

deviation of the values s(x*
1
), s(x*

2
),…s(x*

B
) is our estimate of the standard error 

of s(x) [1]. The resampling can be carried out on a computer using a random 

number generator; in this case we use R [5]. Bootstrap is, therefore, a Monte 

Carlo technique, which is a numerical technique as opposed to an analytic  

http://en.wikipedia.org/wiki/Independent_and_identically_distributed
http://en.wikipedia.org/w/index.php?title=Random_sampling_with_replacement&action=edit&redlink=1
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technique, such as the t-test and F-test.  

 
 

Fig. 1. Schematic of the bootstrap process for estimating the standard error of a 

statistic [1]. 

 

 

3 Comparison of Resampling Methods 
 

Table 1 shows a comparison of the methods for testing the equality means of two 

populations [4]. 

 

Table 1: Comparison of resampling methods. 
Permutation Rank (Wilcoxon) Nonparametric 

Bootstrap 

Parametric (t-test) 

Choose test statistic Choose test statistic Choose test statistic Choose the test statistic whose 

distribution can be derived 

analytically 

(e.g., sum of 

observations in first 

sample) 

(e.g., sum of rank in 

first sample) 

(e.g., difference between 

means of samples) 

 

(e.g., Student’s t) 

Calculate statistic Convert to ranks 

Calculate statistic 

Calculate statistic Calculate statistic 

Are observations 

exchangeable?  

Are observations 

exchangeable? 

Are observations 

independent? With 

identical parameters of 

interest? 

Are observations independent? Do 

they follow a specified 

distribution? 

Derive permutation 

distribution from the 

combined sample 

Use table of 

permutation 

distribution of rank 

Derive bootstrap 

distribution: resample 

separately from each 

sample 

Use tabulated distribution 

Compare statistic 

with percentiles of 

distribution 

Compare statistic 

with percentiles of 

distribution 

Compare statistic with 

percentiles of distribution 

Compare statistic with percentiles 

of distribution 

 

Bootstrap is a relatively recent introduction, primarily because bootstrap is 

computationally intensive. Bootstrap, like the permutation test, requires a minimal 

number of assumptions and derives its critical values from the data at hand 0. 
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4 Mean Bootstrap 
 

There are several methods for a single parameter and in our case we are 

considering the mean bootstrap. The methods are the percentile method, 

Lunneborg’s method, traditional confidence limits and bootstrapped t intervals. 

The mean bootstrap is the simplest out of the bootstrapping procedures and the 

result will appear straightforward. In fact, it produces very nice confidence 

intervals on the mean and it is more sensible if we understand the mean in terms 

of statistics. Based on [1] along with a number of other researchers, he has come 

up with better limits. We develop an example for this case in order to explain this 

better. Firstly, we construct a set of data consisting of 50 random normal data and 

apply it to a simple linear regression [3]. Then we calculate the confidence 

interval for the data. The result is shown in Table 2. 

 

Table 2: (a) Results from the example and (b) 90 % confidence interval for the 

mean statistic. 

(a) 
Mean Original 

Sample 

Mean Bootstrap 

Sample 

Bootstrap Bias Bootstrap Standard 

Error 

50.5 50.1766 -0.3234 2.802816 

 

(b) 
Lower Bound Upper Bound 

45.3755 54.704 

 

Figure 2 shows the results of generating 95% confidence limits on the mean. The 

lower limit is 45.3755 units below the mean, while the upper is 54.704 units 

above the mean. We can also see that the distribution of the means is 

approximately normal, and the standard error of this bootstrapped distribution 

with its standard error is 2.802816. 

 

 

 

 

 

 

 

 

Fig. 2. Histogram for the example. 

 

 

5 Median Bootstrap 
 

The same thing goes for the median bootstrap; it uses the same method as the 

mean bootstrap, which is the percentile method, Lunneborg’s method, traditional  
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confidence limits or bootstrapped t intervals. We will not repeat this here; the 

result should be as straightforward as that for the mean bootstrap. We develop our 

own example for the case in order to better explain how to involve the median in 

bootstrapping. Firstly, we generate random data (for example, normal) and we use 

it as our raw data for the simple bootstrap and in this case we use 10 normal 

random data entries as our original data. Then we find the mean and the standard 

deviation of the original data. From the original data, we generate bootstrap 

samples by taking a certain amount (such as 20 in this example) of observations 

with 100 replications for each bootstrap sample with the mean and standard 

deviation. The mean of the data is considered to be the normal mean because it 

comes from a normal distribution of the data set. Then we calculate the median 

and standard error for each bootstrap and compare the original data with the 

resampling. As mentioned, we create a set of data consisting of 10 normal random 

data entries as shown in the table below. With a further calculation, we obtain a 

normal mean of 4.6 and the standard deviation is 2.875181 (Table 3). 

 

 

 

 

Table 3: (a) Result from the set of normal random data and (b) mean and standard 

deviation. 

(a) 

 

Random 

Data 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

(b) 

Mean Standard Deviation 

4.6 2.875181 

 

 

 

The studies continue by constructing the bootstrap method in the data set. In order 

to obtain 20 bootstrap samples, the procedure should be based on the above data 

set, mean and standard deviation. By taking 100 replications for each bootstrap 

sample, we set up the mean above as a normal mean and the standard deviation as 

a normal standard error in order to construct the bootstrap method. The table 

below shows the first bootstrap sample of the 20 samples with 100 replications. 

These methods are called resampling.  
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Table 4: 100 replications for the first bootstrap sample out of 20 bootstrap 

samples. 
5 6 4 2 6 6 4 4 5 4 

-1 6 5 1 6 3 0 3 7 6 

0 5 2 7 2 8 5 5 6 7 

6 0 10 1 6 0 4 8 5 4 

4 7 7 3 4 5 6 3 2 0 

4 4 7 4 6 2 5 5 0 7 

8 1 5 5 7 3 6 4 2 5 

7 5 11 6 6 4 5 3 3 4 

7 5 2 1 8 6 5 6 4 4 

8 0 4 8 6 1 6 1 6 5 

 

Then we calculate the median for each bootstrap sample as shown in Table 5. 

Once we obtain the median for each bootstrap sample, we continue with the next 

procedure, which is calculating the standard deviation of the bootstrap distribution. 

Based on the resample median, we can find the standard deviation. 

 

Table 5: (a) Median for all the 20 bootstrap samples that we generate and (b) the 

standard deviation. 

(a) 
1 2 3 4 5 6 7 8 9 10 

4 4.5 4 5 4 5 5 5 5 4 

11 12 13 14 15 16 17 18 19 20 

5 5 5 5 5 4 5 5 6 5 

 
(b) 

Standard Deviation 0.2236068 

 

In order to see the bootstrap median, we construct a histogram for the distribution 

of the medians (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Distribution bootstrap median based on the study. 

 

From the histogram, we can see that most of the median lies on the value of 5  
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rather than the value of 4. Furthermore, the standard deviation of the bootstrap 

sample is 0.2236068. For further studies, we can put all these steps into a single 

function where all we would need to do is to specify the data set and how many 

times we want to resample in order to obtain the adjusted standard error of the 

median. 

 

 

6 Monte Carlo Looping With Bootstrap In A Simple Linear Case 

For Normal And Non-Normal Data 
 

An exploratory analysis of the summary statistics for the response variables and 

explanatory variables is carried out to calculate the simple regression case for the 

normal and non-normal data in bootstrap. To make the interpretation easy, a few 

graphical representations using a histogram are also carried out at the end of each 

result. Before going for statistical modelling, the correlations between response 

and explanatory variables are examined by illustrating a few scatter plots. The 

data given is already in a linear relationship between the response and explanatory 

variables. An exploratory analysis of the data is carried out using the R statistical 

tool. We are dealing with a simple linear regression. For a simple regression the 

statistical model can be expressed as follows: 

 

yi = β0 + β1xi + ei,   ei ~ N(0,σ
2
e)         (1) 

 

where yi is the response of interest, β0 is the overall mean, xi is the independent 

variable and ei is the normally distributed residual term. For the estimation 

coverage of the bootstrap and classical methods, we perform the correlation model 

in the simple linear regression to obtain the property of beta-one (β1), where β1 is 

the slope. However, we are using Monte Carlo looping 100 times. The result will 

indicate the true value of the parameter in the classical method and bootstrap 

method. Then we calculate the estimation coverage of the confidence interval and 

the general formula is shown below: 

 

m

1
Estimation Coverage of CI I

M

 
  
 

        (2) 

 

M = number of times there is Monte Carlo looping  

 

mI  = the sum of times when the fixed value of β1 lies within the lower and 

upper bounds or, in other words, it contains a true parameter.The estimation 

coverage is carried out for the normal and non-normal data and from there we 

compare the differences between the two distributions, using the bootstrap and 

classical methods. In this example, firstly, we fix up the value of beta-one (β1) 

with a certain value. Then we used 100 random data entries (for example, normal  
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or non-normal, such as gamma) with a mean of 100 and a standard deviation of 50 

as our original data for independent variables (x) and another 100 normal random 

data entries with a normal mean of 0 and a standard deviation of 50 for dependent 

variables (y). In this example, y is the dependent variable and x is the independent 

variable. We set the calculation by generating 200 bootstrap samples where each 

sample is observed with 100 replications. From there we find the 95% confidence 

interval for the mean statistics for the classical method and the bootstrap method. 

Then we calculate the estimation coverage by checking whether the fixed value of 

β1 lies within the lower and upper bounds for the bootstrap and classical methods. 

As mentioned earlier, we give the value of 1 when it lies and 0 otherwise 

 

 

6.1 Normal Data 

 

Firstly, we fixed the value of beta-one (β1) as 0.3 from the population. Therefore, 

the equation is as follows: 

 

yi = β0 + 0.3xi + ei,   ei ~ N(0,σ
2
e)          (3) 

 

Secondly, we set up a sample data set, which is the independent variable (x) with 

normal random data. The sample set consists of 100 data entries for x and we 

want to use the mean top to describe the centre of the data. We run Monte Carlo 

looping 200 times; so there are 200 sample sets with a different data set for every 

loop. The data in Table 6 is one of the sample sets out of 200 sets.  

 

Table 6: One of the examples of the data set for x. 

 
-0.278   0.058 0.987 -0.765 7.998 12.974 -5.998 -0.35   0.157 -0.833   

1.011 -0.900   1.907 7.998 3.908 1.873 10.243 1.211   0.603 -0.912   

1.196   1.067 0.759 56.986 12.908 -32.861 12.098 -0.659 -0.076   1.247 

-1.009 -0.265 -0.876 12.765 87.095 -67.982 0.145 -0.573 0.711 -0.103   

0.879 1.309 -1.765 0.784 -27.872 44.321 74.213 67.987 1.364 12.098 

1.564 -1.112 2.875 65.543 -9.087 -0.673 98.028 17.884 89.442 54.008 

-0.345 0.788 5.981 35.932 5.975 -99.023 59.763 -1.009 -35.098 19.078 

-0.654 0.429 4.100 -16.936 3.865 56.985 47.328 16.429 -56.998 0.987 

0.167 -0.797 -5.231 78.338 -6.981 -17.843 49.467 83.002 0.364 34.587 

0.050 -1.20 0.756 -1.763 0.976 -63.209 0.764 -0.286 -0.891 -0.466 

 

Thirdly, we set up a sample data set, which is the dependent variable (y) with 

normal random data. The sample set consists of 200 data entries for y and we 

want to use the mean top to describe the centre of the data. We run Monte Carlo 

looping 200 times; so there will be 200 samples set with a different data set with 

every loop. The data in Table 7 is for one of the sample sets out of 200 sets.  
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Table 7: One of the examples of the set of data for y. 
73.586 105.603   66.304 114.935   20.785 196.067 215.079 157.364 13.353 213.675 

201.366 37.3447   57.017 171.174   125.463   125.616 133.205 194.818 173.922 247.951 

92.717 112.443 152.764   72.760   66.644 219.722   186.013 8.291 209.785 192.843 

79.576 185.700   94.843 93.094 171.878 70.877 141.636 45.366 173.922 117.795 

15.268 -14.105   135.989 218.542    70.877 70.877 72.959 284.018 53.288 142.644 

15.268 91.355   111.646 129.773 4.120  195.769   45.535 -25.517 53.288 142.644 

26.449 76.382 215.630 156.986 106.170 65.775 99.969 4.955 -19.497 127.430 

-59.724 192.107 50.378 74.778   106.170 168.468   167.576   153.017 113.437 287.776 

90.200 104.754 112.492 64.250 239.187 23.818 131.103 109.365 -34.964 -18.050 

-49.795 120.135   -10.081 -53.994 321.957 214.047 201.541 117.073 247.951 174.954 

 

From the data above, as mentioned earlier, we determine that x is an independent 

variable and y is a dependent variable. The study continues by generating 200 

bootstrap samples for both x and y and each bootstrap sample has 100 replications, 

with a significant level of 5%. In this section, we perform the correlation model in 

the simple linear regression and obtain the property of β1, where β1 is the slope. 

However, we are using Monte Carlo looping 200 times. The results are indicated 

using the classical method and bootstrap methods. The results below show an 

example of the lower and upper bounds of β1 for the first set out of the 200 sets. 

Table 8 shows that, by using the classical method, we set up a calculation to 

indicate whether the fixed value of β1 lies between the lower and upper bounds for 

the classical method and bootstrap methods.  

 

 

Table 8: One of the examples of the lower and upper bounds for the 95% 

confidence interval using (a) the classical method and (b) the bootstrap method. 

(a) 
 β1 

Lower Bound -0.4854653 

Upper Bound 0.7736806 

 

(b) 

 β1 

Lower Bound -0.1497580 

Upper Bound 0.7855656 

 

 

We have run the Monte Carlo looping 200 times and from the simulation, in 198 

out of 200 times, the fixed value of β1 lies between the lower and upper bounds 

for the classical method and, in 187 out of 200 times, the fixed value of β1 lies 

between the lower and upper bounds for the bootstrap method. |Therefore, from 

the information, the calculation is as follows: 
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For the classical method,  

 

m

1 1
Estimation Coverage of CI I *198 0.96

M 200

   
     
   

    (4) 

 

For the bootstrap method, 

 

m

1 1
Estimation Coverage of CI I *187 0.935

M 200

   
     
   

    (5) 

 

From the results, if we fix the value of the β1, which is 0.3, we can see that the 

classical method covers 96% of the fixed value within it lower and upper bounds 

and the bootstrap method covers 93.5% of the fixed value within its lower and 

upper bounds. It seems that, for normal cases, both the classical method and the 

bootstrap method have a value for the estimation coverage that is nearly the same 

as that for the 95% confidence interval. This is true if we base this on the rules 

below (for example, the Poisson distribution): 

 

α = 0.05           n = 200        nα = λ = 10  x ≈ Poisson (λ)10 

 

P (Poisson (λ )  ≤ 10) = 
r

e
r!

  
 
 

     and    

P (Poisson (λ )  ≥ 10) = 1 -      

 

Based on the rule, the value of the estimation coverage should be close to the 

value of the percentage of the confidence interval. Then a further study is carried 

out by changing the value of the fixed β1 (Table 9). 

 

Table 9: Future test of the estimation coverage by changing β1 value. 
 Estimation Coverage 

Classical Method 

Estimation Coverage 

Bootstrap Method 

Normal (β1 = 0.1) 0.96 0.935 

Normal (β1 = 0.15) 0.98 0.945 

Normal (β1 = 0.2) 0.96 0.93 

Normal (β1 = 0.25) 0.955 0.92 

Normal (β1 = 0.35) 0.965 0.9 

 

The table above shows that, even though we change the value of β1, the answer 

for both methods is still close to the percentage of the confidence interval. It 

proves that the studies are correct and reliable. 
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6.2 Non-Normal Data (Gamma-Distribution) 

 

Firstly, we fix the value of β1 at 0.3 for the population. Therefore, the equation is 

as follows: 

 

yi = β0 + 0.3xi + ei     X~Gamma (k,θ)        (6) 

 

As we know, the pdf for the gamma distribution is: 

 

  

x

a 1 S

a

1
f x e

S a




 
 
 
 

           (7) 

 

where a is the shape and s is the scale. Therefore, the mean and variance for the 

gamma distribution are E(X) = a*s and Var(X) = a*s
2
. In this study we set the 

value of the mean as 10 and the value of variance as 20. Secondly, we set up 

sample data set with the independent variable (x) and non-normal random data. 

The sample set consists of 100 data entries for x and we want to use the mean top 

to describe the centre of the data. We run Monte Carlo looping 200 times, so there 

will be 200 sample sets with a data set with every loop. The data in Table 10 is for 

one of the sample sets out of 200 sets.  

 

 

Table 10: One of the examples of the data sets for x. 

 
11 4 6 15 21 23 16 9 18 5 

2 21 4 5 19 5 11 8 17 7 

12 14 24 1 3 14 25 25 16 15 

22 9 7 11 12 20 13 3 10 8 

18 3 13 11 16 19 7 23 8 1 

4 5 24 10 1 6 10 6 14 1 

23 23 24 22 4 7 12 22 10 21 

18 18 9 1 22 3 1 8 18 19 

4 14 21 9 11 9 25 17 1 20 

23 6 3 9 19 13 16 19 18 17 

 

 

Thirdly, we set up sample data set with the dependent variable (y) and non-normal 

random data. The sample set consists of 100 data entries for y and we want to use 

the mean top to describe the centre of the data. We run Monte Carlo looping 200 

times, so there will be 200 sample sets with a different data set for every loop. The  

data in Table 11 is one of the sample sets out of 200 sets.  
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Table 11: One of the examples of the set of data for y. 
19 6 20 19 2 6 5 15 17 21 

16 24 4 16 15 5 1 5 4 12 

4 6 13 18 18 20 21 6 20 3 

9 11 23 15 20 9 1 19 3 15 

16 14 24 6 17 20 17 9 3 1 

8 11 18 17 22 12 4 25 9 5 

11 23 24 25 5 1 19 9 17 5 

2 20 15 13 4 12 5 19 20 12 

4 10 23 22 3 4 4 15 3 14 

9 15 4 20 2 7 17 20 10 17 

 

 

From the data above, as mentioned earlier, we determine that x is an independent 

variable and y is a dependent variable. The study continues by generating 200 

bootstrap samples for both x and y and each bootstrap sample has 100 replications, 

with a significance level of 5%. In this section, we perform the correlation model 

in a simple linear regression and obtain the property of β1, where β1 is the slope. 

However, we are using Monte Carlo looping 200 times. The results are indicated 

for the classical method and bootstrap methods. The results in Table 12 shows an 

example of the lower and upper bounds of β1 for the first set out of 200 sets. 

 

 

Table 12: One of the examples of the lower and upper bounds for the 95% 

confidence interval using (a) the classical method and (b) the bootstrap method. 

(a) 
 β1 

Lower Bound -0.491317 

Upper Bound 0.3697785 

 

 (b) 

 β1 

Lower Bound -0.4927856 

Upper Bound 0.4019495 

 

Based on the table above, we set up a calculation to indicate whether the fixed 

value of β1 lies between the lower and upper bounds for the classical method and 

bootstrap method. We run the Monte Carlo looping 200 times and from the 

simulation, in 189 out of the 200 times, the fixed value of β1 lies between the 

lower and upper bounds for the classical method and, in 181 out of 200 times, the 

fixed value of β1 lies between the lower and upper bounds for the bootstrap 

method. Therefore, from the information, the calculation is as follows. 
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For the classical method,  

 

m

1 1
Estimation Coverage of CI I *189 0.945

M 200

   
     
   

    (8) 

 
For the bootstrap method, 

 

m

1 1
Estimation Coverage of CI I *181 0.905

M 200

   
     
   

    (9) 

 

From the results, if we fix the value of the β1, which is 0.3, we can see that the 

classical method covers 94.5% of the fixed value in it lower and upper bounds. 

However, the bootstrap method covers 90.5% of the fixed value in its lower and 

upper bounds. It seems that, for non-normal cases, the classical method has a high 

range of lower and upper bounds when compared to the bootstrap method. It 

seems that, for normal cases, both the classical method and bootstrap method have 

a value for the estimation coverage that is nearly the same as that for 95% of the 

confidence interval even though we are dealing with non-normal data, which is 

the gamma distribution. This is true if we base this on the rules below, which is 

the same as for our discussion of the earlier results (for example, the Poisson 

distribution), which is the same as we discussed earlier in the normal data section. 

Based on the rule, the value of the estimation coverage should be close to the 

value of the percentage of the confidence interval. Then we carry out a further 

study by changing the value of the scale (s) and shape (a) in order to see the 

estimation coverage for each method (Table 13). 

 

 

Table 13: Future test of the estimation coverage by changing the value of the 

shape (a) and scale (s). 
 

Value of 

(a) 

Value of 

(s) 

Mean 

a*s 

Variance 

a*s
2
 

Estimation 

Coverage 

Classical 

Method 

Estimation 

Coverage 

Bootstrap 

Method 

1 5 5 25 0.95 0.895 

2 4 8 32 0.92 0.94 

3 3 9 27 0.95 0.915 

4 2 8 16 0.96 0.895 

5 1 5 5 0.92 0.905 

 

The table above shows that, even though we change the value of the shape (a) and 

scale (s), the answer for each method is still close to the percentage of the 

confidence interval. It proves that the studies are correct and reliable. 
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7 Conclusion and Discussion 
 

Based on the study, a general explanation has been given regarding the 

background to bootstrap. All the procedures of bootstrap have been discussed to 

provide further understanding of the application of bootstrap as well as a simple 

calculation for bootstrapping using R. An analysis of the data has been conducted 

in order to find the mean and median for bootstrap. From the results we can see 

that bootstrap gives a better result than the original value if we compare both 

results. Furthermore, the authors are using the Monte Carlo technique and looping. 

From there we say can that, whether we are using normal or non-normal data, 

both the estimation coverage for bootstrap and the estimation coverage for the 

classical method are close to the value of the confidence interval. Furthermore, if 

we use non-normal data, at the end of bootstrapping we can see that the 

distribution appears to be nearly normal. In the future, we should consider using 

bootstrapping in the Monte Carlo technique and looping in the Bayesian 

diagnostic or time series. From there we can see the pattern of the distribution and 

the implementation of the results. The study should be conducted on both normal 

and non-normal data. The advantage of bootstrapping is that the result is simple 

and straightforward even when it involves a complex parameter. However, the 

disadvantage is that it does not provide a sample guarantee and has a tendency to 

make certain important assumptions, such as the independence of a sample. 
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