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Abstract. In this paper, we investigate the security of the KATAN fam-
ily of block ciphers against differential fault attacks. KATAN consists
of three variants with 32, 48 and 64-bit block sizes, called KATAN32,
KATAN48 and KATAN64, respectively. All three variants have the same
key length of 80 bits. We assume a single-bit fault injection model where
the adversary is supposed to be able to corrupt a single random bit of
the internal state of the cipher and this fault injection process can be
repeated (by resetting the cipher); i.e., the faults are transient rather
than permanent. First, we determine suitable rounds for effective fault
injections by analyzing distributions of low-degree (mainly, linear and
quadratic) polynomial equations obtainable using the cube and extended
cube attack techniques. Then, we show how to identify the exact position
of faulty bits within the internal state by precomputing difference char-
acteristics for each bit position at a given round and comparing these
characteristics with ciphertext differences (XOR of faulty and non-faulty
ciphertexts) during the online phase of the attack. The complexity of our
attack on KATAN32 is 259 computations and about 115 fault injections.
For KATAN48 and KATAN64, the attack requires 255 computations (for
both variants), while the required number of fault injections is 211 and
278, respectively.

Keyword: Block ciphers, cube attack, differential fault analysis, KATAN.

1 Introduction

Fault analysis as a type of side channel attack (or implementation attack) was
originally introduced by Boneh et al. [6] by an attack against implementations
of public key algorithms. The method was then adapted and extended by Biham
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and Shamir [5] to differential fault analysis, making it applicable to implemen-
tations of symmetric key algorithms as well [9, 10]. Several models for fault
attacks have been introduced in the literature, among which we adopt a popular
model, called transient single-bit fault model, as used for example in [10, 9]. In
this model it is assumed that the adversary can inject one bit of error into the
internal state of a cipher during its execution (e.g. using a laser beam) without
damaging the bit position permanently; that is, the cipher can be reset to resume
its normal (unfaulty) operation and this fault injection can be repeated as many
times as required. For some interesting practical settings for carrying out these
attacks we refer to [15].

In this paper we present fault attacks on the KATAN family of block ciphers
[7]. KATAN consists of three variants with 32, 48 and 64-bit block sizes, named
KATAN32, KATAN48 and KATAN64, respectively. All three variants have the
same key length of 80 bits. KATAN aims at meeting the needs of an extremely
resource-limited environment such as RFID tags. Assuming the transient single-
bit fault attack model as used for example in [10, 9], we present a differential
fault attack empowered by the algebraic techniques of the cube attack [8] and
its extended variants [1].

The cube attack, put forth by Dinur and Shamir at EUROCRYPT 2009 [8], is
a generic type of algebraic attack that may be applied against any cryptosystem,
provided that the attacker has access to a bit of information that can be rep-
resented by a low-degree multivariate polynomial over GF(2) of the secret and
public variables of the target cryptosytem. Dinur and Shamir in [8] compared
the cube attack to some of the previously known similar techniques [14, 16].
Recently, we have presented an extended variant of the cube attack in [1] to
extract low-degree (mainly quadratic) sparse system of equations in addition to
the linear equations obtainable from the original cube attack. In this paper, we
employ these techniques together with fault analysis to build a hybrid attack
against KATAN.

Previous Work. Cryptanalytical results on the KATAN family have been
presented in [13, 3]. Recall that all three members of the KATAN family (i.e.
KATAN32, KATAN48, and KATAN64) have 254 rounds. Knellwolf et al. [13]
presented partial key recovery attacks (called “conditional differential crypt-
analysis”) against 78 rounds of KATAN32, 70 rounds of KATAN48, and 68
rounds of KATAN64 and concluded that the full versions of these ciphers seem
to have sufficiently large number of rounds (254 rounds) to provide a confident
security margin against their proposed attack. Bard et al. [3] presented cube
attacks against 60, 40, and 30 rounds, and algebraic attacks against 79, 64, 60
rounds of KATAN32, KATAN48 and KATAN64, respectively. They also showed
a side channel attack against the full 254 rounds of KATAN32, which has been
the only attack against a full-round member of the KATAN family, so far. Bard
et al.’s attack against the full-round KATAN32 combines the cube attack tech-
nique with a side channel attack model; namely, it assumes that adversary can
obtain one bit of information from the internal state of the cipher and this one-bit
information leakage must be error free. Bard et al. stated that such information
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is supposed to be captured by some side channels; for example, power or timing
analysis or electromagnetic emanation, but we note that such measurements are
not error (noise) free in practice and it is not clear whether Bard et al’s attack
can be adapted to handle such errors. Another way to capture such information
leakage (albeit again hardly error free) is to use intrusive probing techniques
which are expensive and usually are destructive to the underlying device. We
also note that the Bard et al.’s attack is not a fault attack. The idea behind a
fault attack, as introduced by Boneh et al. [6], is that if a wrong (faulty) result
is released from a cryptosystem (as well as the normal unfaulty results) then
adversary can use that information to break the cryptosystem. (Bard et al. do
not assume and do not use any faulty computations in their side channel model).

Our Contribution. We combine the cube attack [8] and its extended variant
(as presented in our previous work) [1] with fault analysis to form successful
hybrid attacks against the full-round versions of all three members of the KATAN
family. To the best of our knowledge, this is the first time that the cube attack
and its extended variants are combined with “fault analysis” to form a successful
hybrid attack against a block cipher. We assume a single-bit transient fault
injection model as our side channel model, where the adversary is supposed to
be able to corrupt a single random bit of the internal state of the cipher and this
fault induction process can be repeated (by resetting the cipher); i.e., the faults
are transient rather than permanent.

First, we determine effective rounds for fault inductions by analyzing distri-
butions of low-degree polynomial equations obtainable using the cube and ex-
tended cube attack methods. Then, we show how to identify the exact position
of faulty bits within the internal state by precomputing difference characteristics
for each bit position at a given round and comparing these characteristics with
ciphertext differences during the online phase of the attack. Finally, we show
how to recover a low-degree (linear and quadratic) system of multivariate poly-
nomial equations in the internal state and subkey bits that are easily solvable.
The complexity of our attack on KATAN32 is 259 and it requires about 115 fault
injections. For KATAN48 and KATAN64, the attack requires 255 computations
(for both variants), while the required number of fault injections is 211 and 278,
respectively.

Our fault attack on KATAN32 turns out to need about 28 times more (off-
line) operations compared to the previous side channel attack by Bard et al.
[3] which requires 251 computations; nevertheless, our attack model (namely,
the transient fault injection at random bit positions in the internal state) is
essentially different from the (noise free) information leakage assumption by
Bard et al. in [3], and is arguably more practical as supported by previously
known results such as [15]. Furthermore, our attack is directly adapted to the
cases of KATAN48 and KATAN64 (both requiring 255 computations) and, so
far, is the only attack against the latter variants of KATAN in the side channel
attack model.
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2 A Brief Description of KATAN

KATAN is a family of block ciphers [7] consisting of three variants, namely:
KATAN32, KATAN48 and KATAN64. Each variant accepts an 80-bit secret
key and performs 254 rounds to produce a ciphertext. All variants also share
the same key schedule as well as the same nonlinear functions. KATAN ciphers
aim at constrained environments such as hardware implementations with limited
resources (power consumption, clock frequency and gate counts). KATAN32 with
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Fig. 1. The Outline of the KATAN Family of Block Ciphers

block size of 32 bits is the lightest variant in the family. A 32-bit plaintext
block is loaded into two registers L1 and L2, respectively, of length 13 and 19
bits. The bits are indexed in the right-to-left order, from 0 to 12 for L1 (i.e.
L1 = (L1[12], · · · , L1[0])) and from 0 to 18 for L2 (i.e. L2 = (L2[18], · · ·L2[0])).
The least significant bit (LSB) of the plaintext block is loaded to bit 0 of register
L2 followed by the other bits until the 18-th bit, and then remaining bits are
loaded into register L1 until the most significant bit (MSB) of the plaintext is
loaded into bit 12 of register L1. One round of KATAN32 consists of shifting the
register L1 and L2 one bit to the left, and computing two new bit values using
nonlinear functions fa and fb, respectively. These new bits are then loaded into
the LSB bits of registers L2 and L1, respectively. The nonlinear functions fa and
fb are defined as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka (1)
fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb (2)

where IR specifies an irregular update rule (i.e. L1[x5] is used only when IR = 1),
and ka and kb are two subkey bits. We refer to [7] for the details on the irregular
update rules (IRs) for each round.
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The key schedule for all variants of KATAN expands an 80-bit secret key K
to 508 subkey bits using the following linear mapping

ki =
{

Ki, for 0 ≤ i ≤ 79, (3)
ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13, otherwise (3′)

Given the precomputed subkey values, the values of ka and kb for a particular
round t are defined as k2t and k2t+1, respectively. Thus the subkey for round t is
defined as ka||kb = k2t||k2t+1. The selection for tap positions, xis (1 ≤ i ≤ 5) and
yjs (1 ≤ j ≤ 6), and the length of registers L1 and L2 are defined independently
for each variant as shown in Table 1. Besides the tap positions and the length

Table 1. Parameters for the KATAN Family of Block Ciphers

Cipher |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

of the registers, the difference between all the three variants is the number of
times the nonlinear functions fa and fb are applied in each round using the same
subkey. One round of KATAN48 is shifting the registers L1 and L2 two bits to
the left (i.e. requires two clock cycles). In each shift within the same round, the
function fa and fb are applied using the same subkey ka||kb. Hence, full round
of KATAN48 requires 508 clock cycles (i.e. 254 rounds × 2 clocks per round) to
produce the ciphertext.

In contrast, one round of KATAN64 requires the registers L1 and L2 to be
shifted three bits to the left (i.e. requires three clock cycles). Similarly, in each
shift within the same round, the function fa and fb are applied using the same
subkey ka||kb. As a result, the full round KATAN64 requires 762 clock cycles to
produce the ciphertext. Fig. 1 shows the generic structure of the KATAN family
of block ciphers. The initial state of KATAN-v (for v=32, 48, 64) is denoted by
IS = (sv−1, · · · , s1, s0) = L1||L2 for the associated L1 and L2 registers.

3 An Overview of the Cube and Extended Cube Attacks

The main idea underlying the cube attack [8] is that the multivariate “master”
polynomial p(v1, · · · , vm, k1, · · · , kn), representing an output bit of a cryptosys-
tem over GF(2) of secret variables ki (key bits) and public variables vi (i.e.
plaintext or initial values), may inject algebraic equations of low degrees, in
particular linear equations. The cube attack provides a method to derive such
lower degree (especially linear) equations, given the master polynomial only as
a black-box which can be evaluated on the secret and public variables.
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Let’s ignore the distinction between the secret and public variables’ notations
and denote all of them by xi, · · · , x`, where ` = m + n. Let I ⊆ {1, ..., `} be
a subset of the variable indexes, and tI denote a monomial term containing
multiplication of all the xis with i ∈ I. By factoring the master polynomial p by
the monomial tI , we have:

p(x1, · · · , x`) = tI · pS(I) + q(x1, · · · , x`) (4)

where pS(I), which is called the superpoly of tI in p, does not have any common
variable with tI , and each monomial term tJ in the residue polynomial q misses
at least one variable from tI . A term tI is called a “maxterm” if its superpoly in
p is linear polynomial which is not a constant, i.e. deg(pS(I)) = 1.

The main observation of the cube attack is that, the summation of p over tI ,
i.e. by assigning all the possible combinations of 0/1 values to the xis with i ∈ I
and fixing the value of all the remaining xis with i /∈ I, the resultant polynomial
equals pS(I) (mod 2). Given access to a cryptographic function with public and
secret variables, this observation enables an adversary to recover the value of the
secret variables (kis) in two steps, namely the preprocessing and online phases.

During the preprocessing phase, the adversary first finds sufficiently many
maxterms, i.e. tIs, such that each tI consists of a subset of public variables
v1, · · · , vm. To find the maxterms, the adversary performs a probabilistic lin-
earity test (such as the BLR test of [4]) on pS(I) over the secret variables
ki ∈ {k1, · · · , kn} while the value of the public variables not in tI are fixed
(to 0 or 1) (cf. [8] for more details).

Then the next step is to derive linearly independent equations in the secret
variables kis from pS(I) that are closely related to the master polynomial p, such
that, solving them enables the adversary to determine the values of the secret
variables. Once sufficiently many linearly independent equations in the secret
variables are found, the preprocessing phase is completed. In the online phase, the
adversary’s aim is to find the value of the right-hand side of each linear equation
by summing the black box polynomial p over the same set of maxterms tIs
which are obtained during the preprocessing phase. Now, the adversary can easily
solve the resultant system of the linear equations, e.g. by using the Gaussian
elimination method, to determine the values of the secret (key) variables.

A generalized variant of the cube attack, called extended cube, has been
shown in [1] for extracting “low-degree nonlinear” equations efficiently. It revises
the notion of tweakable polynomials from the original cube attack as

p(x1, ..., x`) = tI ·XK · pS(I∪K) + q(x1, ..., x`) (5)

where tI is a subterm of size s over xis with i ∈ I; XK is a subterm of size r
over xis with i ∈ K, and pS(I∪K) is the superpoly of tI · XK in p. Note that
since both subterms tI and XK are factored out from p, the superpoly pS(I∪K)

does not contain any common variable with tI and XK , and each term tJ in
the residue polynomial q misses at least one variable from tI · XK . Now using
the main observation of the cube attack, the summation of p over ‘tI ·XK ’, by
assigning all the possible combinations of 0/1 values to the xis with i ∈ I∪K and
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fixing the value of all the remaining xis with i /∈ I ∪K, the resultant polynomial
equals to pS(I∪K) (mod 2).

The only difference between the original cube attack and the extended cube
attack is in the preprocessing phase; the online phase for both of the methods are
the same. During the preprocessing phase of the extended cube attack, the ad-
versary finds many monomials tIs, such that each tI consists of a subset of public
variables v1, · · · , vm, and the corresponding superpoly pS(I) is a polynomial of
degree D. To find those tIs, the adversary performs the generalized version of
the BLR test as proposed by Dinur and Shamir in [8] on pS(I) over the secret
variables k1, · · · , kn.

To derive efficiently a nonlinear equation pS(I) of degree D over secret vari-
ables kis, the adversary should identify the subset S ⊆ {1, · · · , n} that consists
of the secret variable indexes within pS(I), in which each ki with i ∈ S is either
a term or a subterm of pS(I). To do this, the subterm XK (cf. equation (5))
is assigned with each secret variable ki ∈ {k1, · · · , kn} one at a time while the
subterm tI is fixed to the monomial in which its superpoly pS(I) is of degree D,
and all public variables vis with i /∈ I are fixed to 0 or 1. For each assignment of
XK , the adversary chooses κ sets of vector x ∈ {0, 1}n−1 representing samples
of n−1 secret variables kis with i /∈ K independently and uniformly at random,
and verify that XK (or similarly the secret variable ki that is assigned to XK)
exists as a variable in the superpoly pS(I) if pS(I∪K) = 1 for at least an instance
vector x.

Having the set of secret variables kis with i ∈ S of the nonlinear superpoly
pS(I) of degree D enables the adversary to derive the nonlinear equation over the
secret variables by finding all terms of degrees 0, 1, · · · , D within the superpoly
equation. Suppose N = |S| is the number of secret variables kis with i ∈ S of
the superpoly pS(I) of degree D. To derive pS(I), firstly the adversary assigns the
subterm XK one at a time with a monomial indexed by a subset K ∈ T where
T is a set of cube indexes of monomials constructed from all combinations of kis
from degree 1 until degree D with i ∈ S. In each assignment, all vi, ki /∈ tI ·XK

are set to zero. Then to verify the existence of the monomial XK ∈ T as a term
in pS(I), the adversary sums p over the monomial tI ·XK . If the result is equal
to 1, then with probability 1, XK is a term in the superpoly pS(I). Finally, the
existence of a constant term (i.e. a term of degree 0) in the superpoly pS(I) is also
determined by setting all public variables, vis, for i /∈ I and all secret variables
k1, · · · , kn to zero, and sum the polynomial p over tI . Similarly, if the result is
equal to 1, then with probability 1, a constant term exists within the superpoly
pS(I).

4 Fault Analysis of KATAN

We simulate a fault attack assuming that the adversary can cause one transient
single-bit error at a time in the internal state during the encryption/decryption
process. It is assumed that the adversary can choose the target round(s) in which
faults should be injected, for example, based on the side channel information
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inferred from power consumption traces and/or the clocking sequence (e.g., this
can be done by triggering a laser beam with the target number of clocks of the
cryptographic module). However, it is assumed that adversary cannot influence
the exact position of the faulty bit within the internal state; he can only inject
the fault randomly with the hope that it will hit the target bit positions by
chance.

Using this fault model, our aim is to recover the 80-bit secret key used in
KATAN. Our attack consists of two phases, namely offline and online phases.
During the offline phase, firstly we identify the rounds (of the enciphering process)
that can provide linear and quadratic equations due to single-bit faults. We call
such rounds as effective rounds for our fault attacks.

Next, we determine the position of the faulty bits within the internal state us-
ing difference characteristics which we construct using the cube methods. Given
a faulty ciphertext resulting from a random fault injection into an “unknown”
internal state bit sj+t after t-th round, to determine the position j, first we
compute the ciphertext differential, ∆c, by XORing (summing modulo 2) the
non-faulty ciphertext c with the faulty ciphertext c′ such that ∆cj = cj ⊕ c′j , for
0 ≤ j < |L1|+ |L2|. Then, guided by the lookup table, we refer to positions with
values ‘0’ and ‘1’ (and ignore those with a ‘-’ sign) within each characteristic and
compare them with bits in the same positions in ∆c. If all the corresponding
bits in ∆c match the bits in the characteristic of the faulty bit sj+t then we can
ensure that a fault has been injected into the bit at position j.

Finally, we extract a low-degree system of multivariate polynomial equations
which are obtainable within the effective rounds using the difference between
faulty and non-faulty ciphertexts facilitate by the cube and extended cube meth-
ods. More precisely, we only concentrate on extracting simple independent linear
and quadratic equations that are easily solvable. After having a sufficient number
of independent equations, we determine the target internal state bit positions
for fault injections.

Knowing both the rounds and bit positions to be aimed, next the adversary
moves to the online phase. In the online phase, the adversary repeatedly clocks
the ciphers from the beginning until achieving one of the target rounds. Upon
achieving this round, the adversary randomly injects a fault to the internal state
with the hope to effect one of the target bits by chance. As the fault injection
might not hit any one of the target bits, and the effect of one injection should
be mutually exclusive from the effect of other injections, the error caused by
the injections need to be transient rather than permanent. This is to enable the
adversary to inject faults into the internal state repeatedly until all the target bits
of each target round have been injected successfully. The aim of the online phase
is to determine the value of right hand side of each equation obtained during the
offline phase. Having the value of right-hand side of the equations, enables the
adversary to recover the subkey bits provided by the key schedule algorithm. The
knowledge about the value of the subkey bits enables the adversary to exploit
the key schedule algorithm to recover the 80-bit secret key.
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Our attack on the KATAN ciphers exploits the observation that after recov-
ering n neighboring “subkey bits”, the adversary can recover the 80-bit “secret
key” with time complexity of 280−n computations. This is because the 80-bit
secret key is directly loaded into an 80-bit LFSR (the key register) and the sub-
key bits for round t > 79 are computed using a linear update function and shift
operations (cf. Equation 3 and Equation 3′). Therefore, at any round t > 79,
if we can recover the value of some of the LFSR bits (or similarly the value of
the subkey bits), we can guess the remaining 80−n values of the LFSR internal
state bits and iteratively clock the LFSR backward until round t = 0 to recover
the secret key. Suppose the highest and the lowest index values of the subkey
bits to be recovered are H and L respectively. Hence, our aim is to recover the
subkey bits such that H − L ≤ 79, as all subkey bits between these index range
will be the content of the 80-bit LFSR at a particular round t.

4.1 Attack on KATAN32

To apply differential fault attack on KATAN, first we determine the effective
rounds for fault injection. To do this, we find the number of linear and quadratic
equations within each round during the offline phase using cube methods. For
each faulty round t, we consider each internal state bit as the monomial tI (cf.
equation 4) one at a time, and each bit of the ciphertext as a polynomial p
over the internal state bits at round t. Next we detect the linear and quadratic
equations by applying linearity and quadraticity tests using the BLR and gen-
eralized BLR tests as described in Section 3. Each time an equation (linear and
quadratic) being detected, we accumulate the number of equations accordingly
until all the internal state bits of round t have been considered. We repeat this
procedure for each round of all KATAN’s variants. As a result, Fig. 2 is derived
indicating the range of rounds that should be considered for fault injections. In
the figure, “Faulty Round” denotes the number of rounds that the cipher has
run before injecting a fault into the internal state.

In order to examine the actual internal state position of faulty round t which
has been affected by a random fault injection, the difference characteristic for
each of the internal state bit of round t needs to be constructed. To construct
the difference characteristics, we select each of the internal state bit of round
t as the monomial, tI , one at a time and apply the BLR linearity test on the
corresponding superpoly, pS(I), to determine whether the test will result con-
stant 0, constant 1, linear or higher degree superpoly. Constant 0 and constant 1
superpolys indicate values ‘0’ and ‘1’ in the difference characteristic bits, respec-
tively. However linear and higher degree superpolys indicate unknown values in
the characteristic bits, i.e. the ‘-’ sign. Table 6 in Appendix shows an example
of difference characteristics for KATAN32 for faulty round t = 237.

The fault attack can be efficiently applied if the rounds that have high number
of quadratic equations are considered. As for KATAN32, this refers to the fault
injections after t = 237 rounds as shown in Fig. 2. Considering this faulty round,
we provide a sample set of linear and quadratic equations that can help in
recovering the target subkey bits as shown in Table 3 in Appendix.
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Fig. 2. Distribution of Linear and Quadratic Equations in KATAN

In the table, L2 = (s18+t, · · · , s0+t) and L1 = (s31+t, · · · , s19+t). ∆cj denotes
a ciphertext bit difference where the difference is obtained by XORing the non-
faulty ciphertext bit cj with the faulty ciphertext bit c′j , i.e. ∆cj = cj ⊕ c′j , for
0 ≤ j ≤ 31. For subkey bits we use a slightly different notation to facilitate our
analysis, in which we denote the kis as subkey bits whose indexes range from
0 ≤ i ≤ 507 (in which bits indexed 0 until 79 are from the original secret key
bits). We do not consider each subkey bit indexed i > 79 as a boolean function
over the 80 secret key bits. Instead, to facilitate our analysis we only consider
each one of them as an independent new variable.

Considering fault injection after t = 237 rounds, 10 subkey bits can be found
within the quadratic equations, i.e. k474, . . . , k482 and k484 (cf. Table 3 for the
polynomial equations and Table 6 for the difference characteristics in Appen-
dix). Recovering these subkey bits, requires solving the corresponding quadratic
equations in which some of the linear equations listed in the table should also be
involved, as they can provide the solution for the internal state bits of registers
L1 and L2 within the quadratic equations. For example, to find the solution for
k474, we consider s1+t as the faulty bit after t = 237 rounds. Considering the dif-
ference between non-faulty and faulty ciphertext bit c24, i.e. ∆c24, the symbolic
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representation of the differential is

s22+t + s26+t + s31+t + k474 + s24+ts27+t = ∆c24. (6)

The value of the right hand side (RHS) of this equation (either 0 or 1) can be
determined by numerically computing ∆c24, such that ∆c24 = c24 ⊕ c′24. To
recover the value of k474 for example, requires the values of all other bits within
the equation to be known. If there exist a case in which the value of certain bits
cannot be recovered considering the equations derived from the faulty round t
only, the adversary needs to consider earlier rounds to find equivalent bits since
the value of the internal state bits are only shifted from the LSB to MSB except
the LSB bits. Tables 2–5 in Appendix show the set of equations that are solvable
and resulting from faulty rounds t = 231, 237, 243 and 249, respectively. Note
that, comparing more earlier rounds results in having difficulty to determine the
faulty bit positions within register L1 and L2. This is because the uniqueness of
the difference characteristics will slowly disappear as we consider earlier rounds.

4.2 Attack on KATAN48

Following the method used on KATAN32, we consider the KATAN48 block ci-
pher as our next target. Since KATAN48 requires two clocks for each round, if a
certain internal state bit sj+t cannot be solved directly in certain faulty round
t, then its solution may be found by referring to bit sj−2n+t in an earlier faulty
round t− n, for j − 2n ≥ 29 and 31 ≤ j ≤ 47, or j − 2n ≥ 0 and 2 ≤ j ≤ 28.

Our attack on KATAN48 considers faulty rounds t = 234, 238, 242, 246 and
250 as the target rounds. Similar to the analysis of KATAN32, the selection of
these rounds is based on the number of quadratic equations that can be found
within the effective rounds. Fig. 2 shows that the highest number of quadratic
equations for KATAN48 can be found at faulty rounds t = 237 and t = 238. Since
the difference characteristics are more clearly defined when we consider later
rounds, we choose t = 238 rather than t = 237 as our first target round. Table
8 in Appendix shows the polynomial equations obtained using the difference
between non-faulty and faulty ciphertexts for fault induction after t = 238 rounds
of KATAN48. Table 7 in Appendix shows the equations obtained using fault
induction after t = 234 rounds of KATAN48. For equations obtainable using
fault induction after t = 242, 246, 250 rounds of KATAN48 we refer to the full
version of this paper in [2].

4.3 Attack on KATAN64

Now we consider a fault attack on the third variant of the KATAN block cipher,
namely, KATAN64. In KATAN64 we have L2 = (s38+t, · · · , s0+t) and L1 =
(s63+t, · · · , s39+t). Since each round in KATAN64 requires 3 clocks, if certain
internal state bits sj+t cannot be recovered at faulty round t, we can try to
recover their values from bit sj−3n+t of faulty round t− n, for j − 3n ≥ 39 and
42 ≤ j ≤ 63, or j − 3n ≥ 0 and 3 ≤ j ≤ 38. Our attack on KATAN64 considers
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faulty rounds t = 236, 238, 242, 246 and 250 as the target rounds. Equations
obtainable using fault induction after these rounds are provided in the the full
version of this paper in [2].

4.4 Attack Complexity

Result on KATAN32. Our experimental simulation of the attack on KATAN32
shows that 21 subkey bits from faulty rounds t = 231, 237, 243, 249 can be recov-
ered, requiring collectively 20 specific internal state bit positions (regardless of
the round number) to be considered as target faulty bits, as shown in Tables 2–5
in Appendix. The average number of fault injections needed to successfully hit
these 20 target faulty bits is 115 (where the average is taken over 10,000 trials).

Since the highest index of the subkey bits is H = 498 and the lowest index
is L = 474 (hence H − L = 24 < 80) the target subkey bits can be found in the
80-bit key register within rounds 209 ≤ t ≤ 236. Therefore, to recover the secret
key, we need to guess the remaining 59 bits of the key register and then to clock
the key register backward until round t = 0. This reduces the complexity of the
attack to 259 computations compared to 280 by exhaustive key search.

Result on KATAN48. The attack on KATAN48 results in recovering 25 sub-
key bits considering faulty rounds t = 234, 238, 242, 246, 250 which requires col-
lectively 27 specific internal state bits positions to be considered as target faulty
bits (refer to Tables 7 and 8 in Appendix and the full version of this paper in
[2]). The average number of required fault injections to successfully hit these
27 target faulty bits is 211 (where the average is taken over 10,000 trials). The
highest and the lowest subkey bit indexes are H = 500 and L = 476, respectively
(hence H−L = 24 < 80), so all the subkey bits can be found within the content
of the 80-bit key register at rounds 210 ≤ t ≤ 237. Therefore, to recover the
secret key we need to guess the remaining 55 bits of the key register and then
to clock backward until round t = 0 to recover the secret key. Thus, finding the
correct key requires 255 computations in this attack.

Result on KATAN64. In attacking KATAN64 we consider faulty rounds t =
236, 238, 242, 246, 250 to recover (at least) the same 25 subkey bits as in the
attack on KATAN48 which requires collectively 44 specific internal state bit
positions to be faulty (refer to the full version of this paper in [2]). The average
number of required fault injections to successfully hit these 44 target faulty bits is
278 (where the average is taken over 10,000 trials). This results in an attack with
complexity 255 (Noticing that the highest index of the subkey bits is H = 491
and the lowest index is L = 476 (i.e. H − L = 15 < 80); hence, these 25 target
subkey bits can be found in the 80-bit secret key register and we only need to
guess the remaining 55 bits of the key register).

5 Conclusion

In this paper, we showed fault attacks using a transient single-bit fault model
against all three members of the KATAN family; namely, KATAN32, KATAN48
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and KATAN64. Our attacks employ the cube attack and its extensions to deter-
mine the effective fault injection rounds, to generate the difference characteristics
and to generate linear and quadratic equations. The complexity of our attack on
KATAN32 is 259 computations and about 115 fault injections. For KATAN48
and KATAN64, the attack requires 255 computations (for both variants), while
the required number of fault injections is 211 and 278, respectively. Our fault
attacks on KATAN48 and KATAN64, so far, are the only attacks against the
full-round versions of these ciphers.

Acknowledgments. We thank Flavio D. Garcia and the anonymous reviewers
of ISPEC 2012 for their constructive comments and suggestions.
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A Appendix

Table 2. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t = 231 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s8+t ∆c7 s10+t

s9+t ∆c8 s11+t

s10+t ∆c9 s12+t

s11+t ∆c17 s9+t

s19+t ∆c28 s22+t

s20+t ∆c29 s23+t

s21+t ∆c30 s24+t

s22+t ∆c31 s25+t
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Table 3. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t = 237 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s1+t ∆c28 s19+t + s23+t + s28+t + k480 + s21+ts24+t

∆c24 s22+t + s26+t + s31+t + k474 + s24+ts27+t

∆c6 s6+t

∆c4 s4+t + s15+t + k481 + s0+ts5+t + s7+ts9+t

s2+t ∆c29 s20+t + s24+t + s29+t + k478 + s22+ts25+t

∆c27 s4+t

∆c25 s0+t

∆c5 s5+t + s16+t + k479 + s1+ts6+t + s8+ts10+t

s3+t ∆c30 s25+t + s30+t + k476 + s23+ts26+t

∆c28 s5+t

∆c26 s1+t

∆c12 s8+t

∆c6 s6+t + s17+t + k477 + s2+ts7+t + s9+ts11+t

s4+t ∆c27 s2+t

∆c7 s7+t + s18+t + k475 + s3+ts8+t + s10+ts12+t

s5+t ∆c30 s7+t

∆c28 s3+t

∆c21 s21+t + s26+t + k484 + s19+ts22+t

∆c8 s19+t

s9+t ∆c2 s11+t

s10+t ∆c12 s12+t

s11+t ∆c7 s9+t

s12+t ∆c12 s10+t

s19+t ∆c22 s22+t

s20+t ∆c23 s23+t

s21+t ∆c24 s24+t

s22+t ∆c25 s25+t

s23+t ∆c26 s26+t

∆c12 s20+t

s24+t ∆c27 s27+t

∆c20 s7+t + s18+t + s22+t + s27+t + k475 + k482 + s3+ts8+t+
s10+ts12+t + s20+ts23+t + 1

∆c13 s21+t
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Table 4. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t = 243 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s0+t ∆c21 s22+t + s27+t + k494 + s20+ts23+t

s1+t ∆c27 s6+t

∆c22 s23+t + s28+t + k492 + s21+ts24+t

∆c20 s3+t

s2+t ∆c28 s7+t

∆c23 s24+t + s29+t + k490 + s22+ts25+t

∆c21 s4+t

∆c19 s0+t

s3+t ∆c24 s25+t + s30+t + k488 + s23+ts26+t

∆c22 s5+t

∆c20 s1+t

∆c0 s6+t + s17+t + k489 + s2+ts7+t + s9+ts11+t

s4+t ∆c25 s26+t + s31+t + k486 + s24+ts27+t

∆c21 s2+t

∆c1 s7+t + s18+t + k487 + s3+ts8+t + s10+ts12+t

s18+t ∆c4 s21+t

∆c1 s4+t + s15+t + k493 + s0+ts5+t + s7+ts9+t

s19+t ∆c5 s22+t

∆c2 s5+t + s16+t + k491 + s1+ts6+t + s8+ts10+t

s21+t ∆c7 s24+t

s22+t ∆c8 s25+t

∆c5 s19+t

s23+t ∆c9 s26+t

∆c6 s20+t

s24+t ∆c10 s27+t

∆c7 s21+t

s26+t ∆c20 s21+t + s23+t + s31+t + k486 + k496 + s19+ts22+t+
s24+ts27+t + 1

∆c9 s23+t
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Table 5. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t = 249 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s4+t ∆c19 s22+t + s26+t + s31+t + k498 + s24+ts27+t

s5+t ∆c20 s0+t

s21+t ∆c1 s24+t

s23+t ∆c3 s26+t

∆c0 s20+t

s25+t ∆c2 s22+t

Table 6. Difference characteristics for KATAN32 (faulty round t=237). ’0’ and ’1’
denote differential values 0 and 1 of the corresponding ciphertext bit differential ∆cj ,
and ’-’ denotes an unknown differential value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 - 0 - 0 - - 0 - - 0 1 0 0 0 0 0 0 0 0 0 - 0 - - - - 1 -
1 0 0 1 - 0 - 0 - - 0 - - - 1 0 0 0 0 0 0 0 0 0 - 0 - - - - 1 - -
2 0 1 - 0 - 0 - - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 - - - - 1 - - -
3 1 - 0 - - - - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - - - - - - - -
4 - 0 - 0 - 0 0 0 0 - - - - 0 0 0 0 0 0 0 0 0 0 0 - - 1 - - - - -
5 0 - 0 - 0 0 0 0 - - - - - 0 0 0 0 0 0 0 0 0 0 - - 1 - - - - - -
6 - 0 - 0 0 0 0 - - - - - - 0 0 0 0 0 0 0 0 0 - - 1 - - - - - - 0
7 0 - 0 0 - 0 - - - - - - - 0 0 0 0 0 0 1 0 - - 1 - - - - - - - -
8 - 0 0 0 - 0 - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - - - - - - - -
9 0 0 0 0 0 1 0 - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 - - - - 0 - - -
10 0 0 0 0 - 0 - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - - - - - - - -
11 0 0 0 1 0 0 0 - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 - - 0 0 - - - -
12 0 0 1 0 - 0 - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - 0 0 - - - - -
13 0 1 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0
14 1 0 0 0 0 0 0 0 0 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0
15 0 0 0 0 0 0 0 0 0 - 0 - - 0 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0 1
16 0 0 0 0 0 0 0 0 - 0 - - - 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0 1 0
17 0 0 0 0 0 0 0 - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0 1 - 0
18 0 0 0 0 - 0 - 0 - - - - - 0 0 0 0 0 0 1 0 - 0 1 - 0 0 - 1 - 0 -
19 0 0 0 - 0 - 0 - - - - 1 - 0 0 0 0 0 1 0 - 0 1 - 0 0 0 1 - 0 - -
20 0 0 - 0 - 0 - - - - 1 - - 0 0 0 0 1 0 - 0 1 - 0 0 0 1 - 0 - - -
21 0 0 0 - 0 - - - - 1 - - - 0 0 0 0 0 - 0 1 - 0 0 0 1 0 0 - 0 - -
22 - 0 - 0 - - - - 1 - - - - 0 0 1 0 - 0 1 - 0 0 0 1 - 0 - - - - -
23 0 - 0 - - - - 1 - - - - - 0 0 0 - 0 1 - 0 0 0 1 0 0 - - - - - -
24 - 0 - - - - 1 - - - - - - 0 0 - 0 1 - 0 0 0 1 0 0 - 0 - - - - -
25 0 - - 0 0 1 - - - - - - - 0 0 0 1 - 0 0 0 1 0 0 0 0 - - - - - -
26 - - 0 0 1 - - - - - - - - 0 0 1 - 0 0 0 1 0 0 0 0 - - - - - - -
27 - 0 0 0 - - 0 - 1 - - - - 0 0 - 0 0 0 1 0 0 0 0 0 - 0 - - - - -
28 0 0 0 - 0 0 0 1 - 0 - 0 - 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - -
29 0 0 - 0 0 0 1 - 0 - 0 - - 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - - -
30 0 - 0 0 0 1 - 0 - 0 - - 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - - - -
31 - 0 0 0 1 - 0 - 0 - - 0 - 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - - - - 1

∆cj

sj+t

Table 7. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t=234 rounds of KATAN48

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s6+t ∆c26 s15+t

∆c25 s14+t

s9+t ∆c28 s17+t

s11+t ∆c18 s19+t + 1

s29+t ∆c41 s37+t

s30+t ∆c42 s38+t
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Table 8. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t=238 rounds of KATAN48

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s4+t ∆c9 s12+t + 1
∆c16 s13+t

s5+t ∆c17 s14+t

s6+t ∆c24 s15+t

s8+t ∆c47 s0+t

∆c13 s16+t

s9+t ∆c14 s17+t

s10+t ∆c15 s18+t

s11+t ∆c16 s19+t

s12+t ∆c17 s20+t

∆c16 s29+t

∆c15 s3+t

s13+t ∆c17 s30+t

s14+t ∆c18 s31+t

∆c17 s5+t

s15+t ∆c19 s32+t

∆c6 s7+t

s16+t ∆c20 s33+t

∆c13 s8+t

s17+t ∆c38 s29+t + s35+t + s41+t + k482 + s30+ts38+t

∆c21 s34+t

∆c14 s9+t

∆c12 s16+t + s25+t + k479 + s3+ts12+t + s10+ts18+t

s18+t ∆c22 s35+t

∆c15 s10+t

s19+t ∆c46 s1+t

∆c40 s31+t + s37+t + s43+t + k480 + s32+ts40+t

∆c14 s18+t + s27+t + k477 + s5+ts14+t + s12+ts20+t

s29+t ∆c33 s37+t

s30+t ∆c25 s38+t

∆c17 s13+t + s22+t + k483 + s0+ts9+t + s7+ts15+t

s31+t ∆c36 s33+t + s39+t + s45+t + k478 + s34+ts42+t + 1
∆c35 s39+t

∆c18 s14+t + s23+t + k481 + s1+ts10+t + s8+ts16+t

∆c7 s4+t

∆c1 s4+t + s40+t + s46+t + k476 + s35+ts43+t

s32+t ∆c36 s40+t

s33+t ∆c37 s41+t

s34+t ∆c38 s42+t

s35+t ∆c39 s43+t


