

Proceedings

1ST NATIONAL

CONFERENCE ON ACTIVE LEARNING

"Active Learning Strategies:

Transformation In Educational Innovation"

Co. Organizers

10 & 11 December 2011 City Campus, UTeM

Contents

PREFACE
Implementing PBL in Human Computer Interaction Class
3D Design Of Chemistry Subject at UTeM : Atom Cubic
A conceptual framework for the design of a 3D courseware on electromagnetic theory 20
Kesan Dasar Pengajaran Matematik Dalam Bahasa Inggeris Di Kalangan Pelajar-Pelajar Tahur Lima Di Sekolah Kebangsaan Hulu Bernam20
A Study of Consequences on Individual and Group Performance Using Visualization Features for Cooperative Learning
Active Learning: Learning Through Photonics Laboratory
Using Content Specific Videos and Class Discussions to Support the Learning of Oral Presentation
Student Centred Learning – A Paradox50
Implementation of Cooperative Problem-Based Learning in Achieving Learning Outcomes. 52
Pembangunan Perisian Cerita Animasi Interaktif untuk Pendidikan Sains Teknologi Pendidikan59
Enhancement of interest in learning electrical power system by introducing industrial base project67
Exploring level of student's generated question through a problem based learning approach
An automated Outcome-Based Education assessment template for Engineering Programmes
The Effects of Implementing 'Literature Circles'
Individual Characteristics in using Ubiquitous Technology among Undergraduates: A Confirmatory Factor Analysis92
Subject Matter Experts' Perception towards Using Rapid e-Learning (ReL) in Developing Learning Objects
The Evaluation of PEO Attainment Based on Alumni and Employer Survey
Basic Quran Recitation Multimedia Application for Malay-Speaking Readers Based On Meaningful Learning Approach: Analysis and Design
Students Person-Environment Fit: Comparison of Two Academic Program in One Public Higher Learning Institution in Melaka
Simulation tool for active learning of introductory computer network subjects 119
Method to Assess Programme Outcomes
Using an Adaptive Learning Environment for Conceptual and Procedural Knowledge

Simulation tool for active learning of introductory computer network subjects

Khadijah Wan Mohd Ghazali
Faculty of Information Technology and Communication
Universiti Teknikal Malaysia Melaka
Melaka, Malaysia
e-mail: khadijah@utem.edu.my

Abstract— Simulation software helps a learner of networking subject to have an active learning experience. There are many simulator tools available either freely or off the shelf. Hence, simulation tools need to be carefully chosen to maximize the benefit to the learners. In order to choose simulation tools, comparison is made from a number of simulation tools that are easily available for the public. The comparison made to the tools produce a recommendation of which tool is to be chosen in different study environments.

Keywords- computer networks, computer aided instruction, computer science education, electronic learning, network topology, hardware virtualization, next generation networking

I. INTRODUCTION

This paper focuses on tools that assist undergraduate students to learn introductory computer network subject, particularly software tools that act as network device simulator or emulator. As a technical subject, the computer network curriculum requires abstract understanding of concepts as well as skill-building practice. Traditional lectures alone are not sufficient to fulfill this requirement. Hence students need a tool that can help them to both understand that subject and carry out practical exercises.

II. NETWORK STUDY TOOLS

Network Emulators and Network Simulators

To enable learning of networking subjects, dedicated labs [1-3] with real hardware is compulsory to enable real life practice. However, it cannot be the only approach for learning the practical side of network because a complete lab requires high cost of acquisition, upgrade and maintenance [4]. The real devices, being expensive, can only be bought in a limited quantity, thus need to be shared by many students. As the devices must be kept in the lab, they are not accessible to all students all the time [5]. Using only real devices also limits the range of network conditions for students to experiment with [6]. Real devices also require hardware setup, thus taking more of the students' learning time [7].

Hence a number of other options are investigated in order to suggest an additional tool that can help students learning introductory networking subjects at undergraduate level. The options include network emulators, grid computing network Rosilah Hassan, Zulkarnain Md. Ali Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia

e-mail: rosilah@ftsm.ukm.my, zma@ftsm.ukm.my

emulators, complex and simple network simulators, and finally networking device simulators and emulators.

The first option investigated is the network emulators like Nist Net [8], Dummynet [9] and Empower [10]. Network emulators are usually hardware devices that reproduce the behavior of a real network such as specific Internet topologies [11], wireless networks [12], [10] and satellite links [13], [14] without acually building the testbed. Although network emulation is useful for learning and research of computer networks, its deployment is as difficult as the deployment of a real testbed [6].

In addition, there are large scale grid computing-oriented network emulators such as Emulab, Planetlab, Open Network Lab (ONL) [15-19] and IREEL [6]. They are connected infrastructure consisting of real devices configured for network experiments. These grid-computing emulators are more suitable for research environment rather than teaching-learning environment because they need expertise to be built and maintained. These solutions also need real networking devices connected to the grid [6].

In the absence of real devices, full-featured event-driven simulators software like opnet, ns2, ns3, glomosim and OMNeT++ [20-24] may be used. They are developed to help the user to study the theoretical aspect of the network behavior, as done in many network related researches. However, these simulators are not recommended as a tool for teaching introductory networking subjects because they require the users (students) to put time to learn the modeling language and model abstraction. As this is outside the scope of most introductory networking courses, these simulators also do not introduce network device configuration and troubleshooting which is an essential part of introductory networking course [5-7].

On the other hand, less complex network simulators, such as cnet and the scalable simulation framework (SSF) [25], [26] lack some part of the networking stack and cannot be used together with standard network monitoring and debugging applications like tcpdump, tcpstat, Wireshark and snmp/mrtg [5].

The next subtopic will look at networking devices simulators and emulators and why these two types of solutions are better than the ones discussed above. Simulators and Emulators as Network Learning Tools

A simulator is software tool that pretends to be another software application or hardware device by mimicking its functionalities. When a user enters a command, the simulator pretends that the command is being executed without carrying out the actual processing. The operations that a simulator can mimic are subjected to the constraints defined in the simulation software environment [4], [7]. Examples of network devices simulators are Cisco Packet Tracer, Boson Netsim and Networksims [27-29].

An emulator, on the other hand, mimics the full functions of a hardware device. A command entered by a user in an emulator will be actually processed. An emulator offers all functionalities of its emulated device [4], [7]. Examples of emulator programs are VMware and GNS3 [30], [31].

Unlike the network simulators and emulators introduced in the previous topic, the simulators and emulators used as a learning tool for introductory networking subjects simulate and emulate networking devices, not the network protocols behavior. Hence students can use them as practice tools to configure and troubleshoot network devices like routers and switch.

III. METHODOLOGY

This study begins with a web search of information related to the use of simulators/emulators in education. Recommendations are collected from forums of networking subject students and educators as well as users' forums of open source simulators/emulators. Next, literature review is done to collect credible sources for the study. The recommended tools are then evaluated through a study of their documentation and actual tests on a network configuration. Results are collected, documented, discussed and final recommendation is made based on the discussion of the result.

IV. RESULT

Table 1 summarizes five simulators and emulators that are used in learning and teaching of introductory networking subjects at undergraduate level universities. These tools are chosen from many others that are recommended in various network learning communities. Other tools that are not chosen are those that cannot run on Windows operating systems, or not suitable for introductory networking courses. As more universities now adopt Cisco-based curriculum, namely the Cisco Certified Network Associate (CCNA) certification for introductory networking subjects, the simulators and emulators chosen to be included in this study are those that can be used for CCNA certification study and those related with it.

Table 2 discusses the advantages and disadvantages of all the five tools chosen.

V. DISCUSSION AND RECOMMENDATION

Table 1 and Table 2 depicted the five chosen tools with advantages and disadvantages discussed. In order to recommend the best among the five, some important factors

are considered. Table 3 lists the factors and recommends the tools that are suitable to fulfill the criteria.

All the five tools discussed fulfill the first two criteria that is suitable to be used by students to study independently (possibly at home without the real devices) and suitable as a learning tool for an introductory networking subject that utilizes the Cisco curriculum, namely the CCNA (Cisco Certified Network Associate) certification.

In terms of study support for certification however, GNS3 does not directly provide it. What is meant by certification study support here are certification examoriented network device configuration exercises that come with the software. Tools other than GNS3 come with scenarios where students can attempt to solve and students' mark are calculated based on the accuracy of the students' configuration.

Among the tools discussed here, Packet Tracer is the only simulator/emulator that allows the instructors to create custom exercises in which the students' answer will be automatically calculated by the software. This can be utilized using the *Activity Wizard* function. In addition, Packet Tracer allows multiple users to collaborate using different computers on one network scenario through its own Packet Tracer Messaging Protocol (PMTP) [27],[32-35].

Due to the collaboration capacity of Cisco Packet Tracer, it can be used for the purpose of research and projects as done by [36]. However, the extent of project supported by Cisco Packet Tracer is limited compared to GNS3. GNS3 has more capacity to be used in a research and project, being an emulator that can emulate many networking devices and computers as long as the operating system images are provided by the users.

RECOMMENDED SIMULATORS/EMULATORS

Product Name	Operating system environme nt	License	User Learning Level	Availability to public
Cisco Packet Tracer	Windows, Linux	Proprietar y, free for all Cisco's Network Academy students	Introducto ry	Free for all Cisco's Network Academy members only from cisco.netacad.net
GNS3	Windows, Linux, Mac	Open source	Introducto ry to high	Free from www.gns3.net
Boson NetSim	Windows	Proprietar y	Introducto ry to medium	Free limited demo version from www.boson.com. Full version available with a cost.
MIMIC Virtual Lab CCNA	Windows, Linux	Proprietar y	Introducto ry	4-days rent or purchase from www.gambitcomm. com
RouterSi m Net Visualiz er	Windows	Proprietar y	Introducto ry	Free limited demo version from www.routersim.com . Full version available with a

cost.

ADVANTAGES AND DISADVANTAGES OF RECOMMENDED SIMULATORS/EMULATORS

Product Name	Advantages	Disadvantages		
Cisco	- Free for Cisco	- Not available for		
Packet	Networking Academy	non CNA members		
Tracer	(CNA) members	- Limited range of		
	- Can run on Windows	devices and		
	and Linux	commands		
	- Standalone - does not	supported – not		
	need other program to	enough for beyond		
	run	introductory level		
	- Simulation mode that	studies		
	allows study of network			
	behaviors			
	- Can be used			
	collaboratively between			
	multiple users and			
	computers (students)			
	 Include functions to 			
	assist instructors to			
	develop exercises and			
	marking			
	 Developed based on 			
	research on CNA's			
	needs for a simulation			
	tool tailored for Cisco's			
	introductory level			
	certification study [37]			
GNS3	 Free and open source 	 Users must supply 		
	 Support full features of 	valid operating		
	the devices and	system files of all		
	operating systems	the emulated		
	emulated	devices		
	 Able to interact with 	 Need other software 		
	real network	installed like		
	 Emulates a big range of 	Dynamips, Qemu,		
	devices and computer	Putty and Winpcap.		
	operating systems,			
	hence useful for all			
	levels of study and			
	related research			
	 Support VirtualBox (a 			
	free virtual machine			
	software) integration			
	 Has been enhanced 			
	specifically for use in			
	undergraduate			
	introductory networking			
	course in [7]			
Boson	- Simulates a bigger range	 Needs purchase 		
NetSim	of devices and functions	 Runs on Windows 		
	compared to Cisco	only		
	Packet Tracer – can be	- Simulates Cisco		
	used for study beyond	devices only		
	introductory level			
	 Include exercises with 			
	marking function to help			
	independent study			
MIMIC	- Runs on Windows and	 Needs purchase 		
Virtual Lab	Linux	 Limited range of 		
CCNA	 Include exercises to help 	devices and		
	independent study	commands		

		supported – not enough for beyond introductory level studies
RouterSim Net Visualizer	Include exercises to help independent study	Needs purchase Runs on Windows only Limited range of devices and commands supported – not enough for beyond introductory level studies

Furthermore, with the ability to emulate high end networking devices with all their functions, GNS3 can be used to learn advanced networking subjects as well. As for Boson NetSim, it also provides exercises for curriculum beyond the introductory level CCNA that is Cisco Certified Network Professional (CCNP).

In environments where both Windows and Linux operating systems are used, Cisco Packet Tracer, GNS3 and MIMIC Virtual Lab CCNA can be used compared to the others which can operate on one operating system only.

Finally, in terms of licensing, only GNS3 is totally free and open source for users. As for Cisco Packet Tracer, it is free for students and instructors of Cisco Networking Academy, downloadable through the members' section of CAN website.

Due to all the factors discussed above, the simulator/emulator tools recommended for introductory networking courses are GNS3 and Cisco Packet Tracer for an institution that adopts Cisco Networking Academy curriculum. If the institution does not adopt Cisco curriculum, GNS3 is more than enough due to its capability to fulfill many important criteria above.

SIMULATORS/EMULATORS FULFILMENT OF LEARNING/TEACHING CRITERIA

	Cisco Packet	GNS3	Boson NetSim	MIMIC Virtual	RouterSim Net
	Tracer		Tittisiiii	Lab	Visualizer
				CCNA	
Independent	√	√	√	√	√
study					
Cisco	√		√	√	\checkmark
Networking					
Academy					
Certification	√		V	$\sqrt{}$	$\sqrt{}$
study support					
Teaching	√				
support					
Users	√				
collaboration					
Research and	√	√			
project					
Learning		√	V		
beyond basic					
Windows and	√	√		V	
Linux					
Free	V	V			
	(CNA)				

VI. CONCLUSION

This paper discusses available tools that can be used to help introductory level networking subject students at undergraduate level. Each tool is categorized, and each category is evaluated against its suitability to be used in the context aforementioned. Networking device simulators and emulators are chosen as the suitable category of tools that can be used for introductory networking subjects.

Then, each tool in the category is evaluated based on its advantages and disadvantages for different requirement of learning institutions. Finally, a recommendation is made based on how some tool can fulfill the learning/teaching criteria better than the other tools.

ACKNOWLEDGMENT

All authors are members of Software Technology and Programming Research Group, Center of Computer Science, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia. The first author would like to thank Universiti Teknikal Malaysia Melaka for allowing her a study leave and the government of Malaysia for sponsoring her study.

REFERENCES

- J. C. Adams and W. D. Laverell, "Configuring a multi-course lab for system-level projects," in 36th SIGCSE technical symposium on Computer Science Education, 2005, pp. 525–529.
- [2] D. E. Comer, Hands-On Networking with Internet Technologies. Upper Saddle River, New Jersey: Prentice Hall, 2004.
- [3] J. Liebeherr and M. E. Zarki, Mastering Networks: An Internet Lab Manual. Addison-Wesley, 2004.
- [4] C. Li, J. Pickard, P. Li, T. Mohammed, B. Yang, and K. Augustus, "A practical study on networking equipment emulation," *Journal of Computing Sciences in Colleges*, vol. 24, no. 2, pp. 137-143, 2008.
- [5] W. D. Laverell, Z. Fei, and J. N. Griffioen, "Isn't it time you had an emulab?," in SIGCSE technical symposium on Computer science education (SIGCSE '08), 2008, vol. 40, no. 1, pp. 246-250.
- [6] L. Dairaine, G. Jourjon, E. Lochin, and S. Ardon, "IREEL: Remote Experimentation with Real Protocols and Applications over Emulated Network," SIGCSE Bull, pp. 92-96, 2007.
- [7] D. I. L. Mcluskie, "Creation and Evaluation of an Educational Framework for use in Network Teaching," Edinburgh Napier University, 2008.
- [8] M. Carson and D. Santay, "Nist net: A linux-based network emulation tool," ACM Computer Communication Review, vol. 33, no. 3, 2003.
- [9] L. Rizzo, "Dummynet: a simple approach to the evaluation of network protocols," SIGCOMM Comput. Commun. Rev., vol. 27, no. 1, pp. 31-41, 1997.
- [10] P. Zheng and L. M. Nil, "Empower: A network emulator for wireline and wireless networks," in *IEEE Infocom*, 2003.
 [11] M. Zec and M. Mikuc, "Operating system support for integrated
- [11] M. Zec and M. Mikuc, "Operating system support for integrated network emulation in imunes," in First Workshop on Operating System and Architectural Support for the on demand IT InfraStructure, 2004.
- [12] T. Perennou, E. Conchon, L. Dairaine, and M. Diaz, "Two-stage wireless network emulation," in Workshop on Challenges of Mobility (WCM 2004).
- [13] F. Arnal, A. Bolea-alamañac, M. Bousquet, and L. Castanet, "Reliable multicast transport protocols performances in emulated satellite environnement taking into account an adaptive physical layer for the geocast system," in Workshop of COST Actions 272 and 280, 2003, no. 1.
- [14] M. Gineste, H. Thalmensy, L. Dairaine, P. Sénac, and M. Diaz, "Active emulation of a DVB-RCS satellite link in an end-to-end QoS-

- oriented heterogeneous network," in 23rd AIAA International Communications Satellite Systems Conference (ICSSC).
- 15] "Emulab Network Emulation Testbed Home." [Online]. Available: www.emulab.net.
- [16] "PlanetLab | An open platform for developing, deploying, and accessing planetary-scale services." [Online]. Available: http://www.planet-lab.org/.
- [17] K. Wong, "Open network lab demonstration," in Infocom 2005, 2005.
- [18] B. White et al., "An integrated experimental environment for distributed systems and networks," SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 255-270, 2002.
- [19] L. Peterson, T. Anderson, D. Culler, and R. T., "A blueprint for introducing disruptive technology into the internet," in *First Workshop on Hot Topics in Networking (HotNets-I)*, 2002.
- [20] "Optimized Network Engineering Tool." [Online]. Available: http://www.opnet.com.
- [21] "The Network Simulator ns-2." [Online]. Available: http://www.isi.edu/nsnam/ns.
- [22] "The ns-3 Project." [Online]. Available: http://www.nsnam.org.
- [23] "GloMoSim: Global Mobile Information Systems Simulation library." [Online]. Available: http://pcl.cs.ucla.edu/projects/glomosim/.
- [24] "Omnet++." [Online]. Available: http://www.omnetpp.org/.
- [25] C. McDonald, "The enet network simulator (v3.2.3)." [Online]. Available: http://www.csse.uwa.au/cnet.
- [26] "Scalable Simulation Framework." [Online]. Available: http://www.ssfnet.org/internetPage.html.
- [27] "Cisco Packet Tracer." [Online]. Available: http://cisco.netacad.net.
- [28] "NetSim Network Simulator." [Online]. Available: http://www.boson.com/netsim-cisco-network-simulator.
- [29] "NetworkSims ProfSIMs." [Online]. Available: http://www.networksims.com/.
- [30] "VMware Virtualization Software for Desktops, Servers & Virtual Machines for Public and Private Cloud Solutions." [Online]. Available: http://www.vmware.com/.
- [31] "GNS3 | Graphical Network Simulator." [Online]. Available: http://www.gns3.net/.
- [32] J. Janitor, F. Jakab, and K. Kniewald, "Visual Learning Tools for Teaching/Learning Computer Networks: Cisco Networking Academy and Packet Tracer," 2010 Sixth International Conference on Networking and Services, pp. 351-355, Mar. 2010.
- [33] A. Smith and C. Bluck, "Multiuser collaborative practical learning using packet tracer," in IARIA, 2010 Sixth International Conference on Networking and Services, 2010.
- [34] D. C. Frezzo, J. T. Behrens, and R. J. Mislevy, "Activity And Assessment Theory In The Design And Understanding Of The Packet Tracer Ecosystem," *International Journal of Learning and Media*, vol. 1, no. 2, 2009.
- [35] D. C. Frezzo, J. T. Behrens, R. J. Mislevy, P. West, and K. E. Dicerbo, "Psychometric and Evidentiary Approaches to Simulation Assessment in Packet Tracer Software," in *Networking and Services*, 2009. ICNS '09. Fifth International Conference on, 2009, pp. 555 560.
- [36] S. Y. GOH, Computer network design of a primary school. Singapore: , 2011.
- [37] D. C. Frezzo, "Using activity theory to understand the role of a simulation- based interactive learning environment in a computer networking course," University Of Hawai'i At Manoa, 2009.