
Automated Software Tool Support for Checking the Inconsistency of Requirements

Massila Kamalrudin
Department of Electrical and Computer Engineering,

University of Auckland,
University of Auckland, Private Bag

92019, Auckland, New Zealand
 mkam032@aucklanduni.ac.nz

Abstract—Handling inconsistency in software requirements is
a complicated task which has attracted the interest of many
groups of researchers. Formal and semi-formal specifications
often have inconsistencies in the depicted requirements that
need to be managed and resolved. This is particularly
challenging when refining informal to formalized
requirements. We propose an automated tool with traceability
and consistency checking techniques to support analysis of
requirements and traceability between different
representations: textual, visual, informal and formal.

Keywords-Inconsistency management, Requirements
Engineering, Traceability, textual and visual requirements
representations

I. INTRODUCTION
A Requirement is interpreted as a specification that needs

to be implemented during system development [1]. It
describes “how the system should behave, constraints on the
system’s application domain information, constraints on the
system operation or specification of a system property or
attribute” [1]. Software requirement specifications elaborate
the functional and non-functional requirements, design
artifacts, business processes and other aspects of a software
system. Software requirement specifications that are
complete and accepted by developers and clients provide a
shared understanding and agreement of what a software
system should do and why. Since requirements documents
form the basis of development processes and this agreement,
they should be correct, complete, and unambiguous [2] and
need to be analyzed with respect to Consistency,
Completeness and Correctness (“3 Cs”) to detect errors such
as inconsistency and incompleteness. However Zowghi and
Gervasi note that “improving the consistency of
requirements can reduce completeness and, thereby again
diminishing correctness”[4].

In our work consistency is our key focus in order to
ensure that models of requirements are entirely precise and
fulfill the needs of a user. In order to make sure requirements
are consistent and follow the customers’ needs from the
beginning we want to apply rigorous consistency checking
from early stages of the Requirement Engineering process.
We want to support the use of informal natural language
requirements and more formalized representations but allow
these to be readily related, updated and kept consistent. To

this end we are designing and prototyping a tool to support
refinement of informal requirements to a set of semi-formal
models; analysis of these models for consistency; traceability
between informal and semi-formal models; and consistency
management between these models.

II. BACKGROUND AND MOTIVATION
The major disadvantages of specifying requirements only

in Natural language “are inherent imprecision, such as
ambiguity, incompleteness and inaccuracy” [2]. It has also
been found that they are often error-prone and this is
partially caused by interpretation problems due to the use of
Natural language itself [3]. Although the aim of object-
oriented analysis e.g. using (semi-)formalized models like
UML or formal models like KAOS is to have a better
requirement specification, most of the requirements
documentation or specification of a software system is still
often written in – or at least derived from - free text
expressed in Natural language. This is often vague, informal
and contradictory and may or may not express the users’
needs. Much research has been devoted to the checking of
inconsistency of requirements in a formal or semi-formal
model. For example, XLinkit uses first order logic, object-Z
specifications and utilizes tests of the specification, model
abstraction and model checking for their verification. A
“formal reasoning approach including the goal elaboration,
ordered abduction and morphing of path” [8] is applied
together with the use of knowledge base and rule base
approach in detecting the inconsistency. Key limitations of
using formal specification are the users needing to have deep
understanding of the formal modelling language or
continually have the formal specification explained to them.
Users can not usually directly modify the specifications.
Additionally, some of the algorithms “check only the self
consistency of each class of a specification which does not
guarantee the consistency of a specification”[7].

Much of research has been done using semi-formal
specifications especially UML diagrams. Tools like
VERIDEV [9], BVUML [5], CDET [10] and
VIEWINTEGRA [11] are examples that check requirements
consistency using semi formal specifications. They verify the
consistency between the user requirements specification and
class diagram, or verify consistency between user
requirement specification and sequence diagrams. Some
verify consistency between sequence diagrams with use

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.38

677

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.38

691

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.38

691

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.38

689

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.38

693

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka (UTeM) Repository

https://core.ac.uk/display/235631221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cases or state diagrams. Less work has been done in
checking the consistency between scenario and textual
descriptions of requirements. There is also almost no work
done in checking consistency or inconsistency using
essential use cases [12]. One of the advantages of models is
that they could be broken into smaller parts to allow them to
be understood better [6] and this allows the consistency
checking process to be easier but maintaining consistency
between vastly different models is potentially very difficult
and of high cost.

III. APPROACH
Our aim is to better support users and developers to work

with informal and semi-formal requirements and keep them
consistent. We aim to produce an automated prototype tool
providing authoring facilities for textual requirements and
checking the inconsistency of these requirements. This tool
will assist requirement engineers and business analysts to
check whether their requirements that are written or collected
in natural language are consistent with other analysis and
design representations. We have chosen to use essential use
case modeling [16] and high level user interface design as
our semi-formal models. This was due to their appeal as
representations that developers and end users could work
with and the limited research done to date investigating
consistency issues with these representations and natural
language requirements [12]. It was also to allow us to do
complementary work on requirements quality and
completeness improvement using characteristics of the
essential use case model.

In order to support this concept we need a traceability
technique so that the elements of natural language
requirements and essential use case requirements can be
traced between each other. We believe that supporting this
traceability will enable us to better detect and manage inter-
specification inconsistencies and also enable developers and
users to work more effectively with different models of
requirements. We will embed our consistency management
and tracing tool within the Eclipse-based Marama [15] meta-
tool environment. We plan to support traceability and
consistency management with essential use case views,
essential use case-based user interface designs, and
conventional UML use cases and class diagrams.

To support requirements analysis in order to improve
requirements completeness and quality, complementary
work will be done in collection and categorization of
terminology from different case studies and scenarios. This
will provide a set of essential use case interactions and
essential use case patterns to assist engineers in finding
appropriate abstract interactions for designing the essential
use cases for a system.

Figure 1 shows an example of our proposed approach.
Grey areas show elements of the work done to date. Natural
language requirements (1) are analyzed using a database of
essential use case interactions (2) and essential use case
models are generated (3). The user may select items in the
essential use case and see the originating natural language
elements (4). The user, a requirements engineer or end user,
may also change elements in the essential use case model or

natural language model and see the impact on the other
model (4). An analysis tool (5) will use a set of essential use
case patterns to determine if an extracted essential use case
model is complete, consistent and correct according to
acceptable patterns of essential use case interactions in the
essential use case pattern library. Further extractors (6) will
allow UML use cases, scenarios of use case usage (7), and
essential use case-based high level form designs (8) to be
derived from the essential use case requirements model OR
the essential use case model to be derived or augmented
from these other requirements models. Support for
traceability and inter-model change management will be
done in a similar way as between natural language and
essential use case models (4). Conventional techniques to
derive OOA/D models from derived use cases or vice-versa
will be incorporated (9).

IV. METHODOLOGY
We are using an iterative approach to our work, adding

additional extraction, consistency management, traceability
and analysis components after evaluation of each stage of the
research. An outline of our key steps is shown below. We
have:

 Conducted a literature review of consistency and
inconsistency checking of requirements in the
Requirement engineering domain, compared and
evaluated their approaches in checking the
inconsistency of requirements;

 Identified from this an initial concept, outlined
above, of how to support the checking of
requirements inconsistencies, traceability and
aspects of completeness and correctness;

 Collected and categorized the natural language
terminology which follows the pattern of essential
use case from different case studies and scenarios
and produced a database of key abstract interactions;

 Developed an initial automated prototype to explore
the problems and issues extracting essential use
cases and tracing between textual requirements by
using our database of abstract interactions;

 Developed a set of consistency rules between the
textual requirements and the essential use case
model of requirements;

 Identified appropriate usage scenarios and evaluated
the result of using our consistency management and
tracing tool if changes are made to the requirements;

 Developed an initial prototype of our automated
inconsistency checking tool by embedding the
tracing tool in Marama and connecting it to Marama
Essential Use Case and User interface design tools;

 Evaluated the automated consistency checking tool
by using case studies and scenario examples;

 Planned the refinement of our prototype by adding
further analysis support for requirements quality
checking using essential use case patterns; adding
further inconsistency management and traceability
support features; and eventually adding traceability

678692692690694

and consistency management support to more
requirements and design models.

To date we have prototyped steps (1) to (4) in Figure 1
i.e. developed a database of essential use case interactions;
supporting extraction of essential use case requirements
models from natural language; and supporting traceability
between natural language and essential use case
requirements models. Figure 2 shows some voter
registration system requirements used as an example for our
initial tracing tool.

From the diagram, the requirements are extracted and
traced by the extraction engine to provide the list of abstract
interaction. The textual requirement is extracted by selecting
and comparing particular phrases with the abstract
interaction database. The list of abstract interaction also can
trace back to the original requirements. This initial prototype
has proven that traceability management is needed in
supporting the traceability between natural language and
essential use case requirements.

V. RESEARCH RESULTS AND PROGRESS
Based on our initial design an automated prototype

tracing tool was developed using Java. A collection of
essential use case interactions is stored in a database. The
database consists of phrases describing abstract interactions
to be identified and they are extracted from the natural
language requirements. The extracted phrases are compared
with the stored abstract interaction terminology in the
database. The abstract interaction terminology is gained from
a collection of phrase patterns from various scenario
domains. The tracing engine is divided into two categories,
trace and trace back engine, as shown in Figure 3. The next
stage of this research is in progress: integrating with the
Marama platform in Eclipse and with Marama Essential Use
Case and User Interface Design tools. Any change or
modification of a Marama Essential Use case or textual
editor is expected to be traceable and the consistency issue
between both is to be evaluated. The completeness and
correctness in the Essential Use case diagram and textual
editor is checked in order to confirm the consistency.

VI. RESEARCH IMPLICATIONS
Evaluation of our initial prototype shows that it is indeed

useful to check the traceability between the natural language
requirements with an extracted list of abstract interactions.
This provides a basic process enabling users and developers
to trace requirements elements and modifications which may
lead to inconsistencies. Much research shows that
traceability is difficult [13] and the number of current
supporting tools is limited. Even with the existence of
automated traceability and consistency checking tools
engineers may still not be able to foresee the results [14].
With our initial work we have shown that the problem might
be addressed via an integrated toolset supporting both
traceability and consistency management between diverse
requirements models. The essential use case abstract
interaction list assists engineers in finding the right
interaction patterns for designing essential use case and the
user interface later. We also plan to use an essential use case

pattern library to assist engineers and users in identifying
correctness and completeness issues with these requirements.
The contribution of our tool is in minimizing the time
engineers spend developing consistent interaction models
and in providing a framework in which users and developers
agree on interaction terminology. Furthermore, our research
involves the collection and categorization of terminology for
a database of abstract interactions and interaction patterns
based on the essential use case model of requirements which
assists avoiding textual requirements being vague and error-
prone.

ACKNOWLEDGMENT
This PhD research is funded by Ministry of Higher

Education Malaysia (KPT) and PReSS Account of
University of Auckland. A Special acknowledgement is
given to the author’s supervisors, Prof John Grundy and John
Hosking for their guidance and support throughout this
research.

REFERENCES

[1] Gerald Kotonya, I.S., Requirement Engineering Process and
Techniques, ed. P.P.W. Professor David Barron. 1998, West Sussex,
England: John Wiley & Sons Ltd. 282.

[2] Denger, C., D.M. Berry, and E. Kamsties, Higher Quality
Requirements Specifications through Natural Language Patterns, in
Proceedings of the IEEE International Conference on Software-
Science, Technology \& Engineering. 2003, IEEE Computer Society.
p. 80 %@ 0-7695-2047-2.

[3] Fabbrini, F., et al. The linguistic approach to the natural language
requirements quality: benefit of the use of an automatic tool. in
Software Engineering Workshop, 2001. Proceedings. 26th Annual
NASA Goddard. 2001.

[4] Zowghi, D. and V. Gervasi, On the interplay between consistency,
completeness, and correctness in requirements evolution. Information
and Software Technology, 2003. 45(14): p. 993-1009 %U

[5] Litvak, B., S. Tyszberowicz, and A. Yehudai, Behavioral consistency
validation of UML diagrams, in Software Engineering and Formal
Methods, 2003.Proceedings. First International Conference on. 2003.
p. 118-125.

[6] Egyed, A., Consistent Adaptation and Evolution of Class Diagrams
during Refinement in Fundamental Approaches to Software
Engineering. 2004, Springer Berlin / Heidelberg.

[7] Fathi, T., K.D. Jacob, and A. Fouad Mohammed, On checking the
consistency of Object-Z classes. SIGSOFT Softw. Eng. Notes, 2007.
32(4): p. 11.

[8] Kozlenkov, A. and A. Zisman, Are their Design Specifications
Consistent with our Requirements?, in Proceedings of the 10th
Anniversary IEEE Joint International Conference on Requirements
Engineering. 2002,IEEE Computer Society. p. 145-156 %@ 0-7695-
1465-0.

[9] Do Do, K. Method and Implementation for Consistency Verification
of DEVS Model against User Requirement. in Advanced
Communication Technology, 2008. ICACT 2008. 10th International
Conference on. 2008.

[10] Scheffczyk, J., et al., Pragmatic consistency management in industrial
requirements specifications, in Software Engineering and Formal
Methods, 2005. SEFM 2005. Third IEEE International Conference
on. 2005. p. 272-281.

[11] Egyed, A., Scalable Consistency Checking Between Diagrams-The
ViewIntegra Approach, in Proceedings of the 16th IEEE international
conference on Automated software engineering. 2001, IEEE
Computer Society. p. 387.

679693693691695

[12] Biddle, R., J. Noble, and E. Tempero, Essential use cases and
responsibility in object-oriented development. Aust. Comput. Sci.
Commun., 2002. 24(1): p. 7-16.

[15] Grundy, J.C., Hosking, J.G. Huh, J. and Li, N. Marama: an Eclipse
meta-toolset for generating multi-view environments, Formal
demonstration paper, 2008 IEEE/ACM International Conference on
Software Engineering, Liepzig, Germany, May 2008, ACM Press. [13] ÄÄLINOJA Juho, O.M., Software requirements implementation and

management. Software & systems engineering and their applications
2004 vol. vol.1 à 3, : p. pp. 1.1-1.8Note(s)

[16] Larry, L.C. and A.D.L. Lucy, Structure and style in use cases for user
interface design, in Object modeling and user interface design:
designing interactive systems. 2001, Addison-Wesley Longman
Publishing Co., Inc. p. 245-279.

[14] Egyed, A., Supporting Software Understanding with Automated
Requirements Traceability International Journal of Software
Engineering and Knowledge Engineering, 1994. 0, No. 0 (1994) 000–
000.

Natural Language
Requirements

Essential use
case

Requirements

Library –
essential use

cases

Extraction

Highlight;
change UML Use Case

Requirements;
EUC Scenarios

Essential use
case-based UI

forms

Analysis

Library –
essential use
case patterns

UML OOA/D
model(s)

Extractors

2

3

4

6

7 8

9

1 5

Figure 1. Overview of our requirements consistency and traceability management approach.

1.Voter loads EVote system is online
2.Voter selects voter registration option
3.EVote system ask for name, social security number, date of birth,address
4.Voter provides name, social security number, date of birth,address

Figure 2. Initial support of extracting essential use cases and tracing between natural language and essential use case requirements models.

5.EVote system checks Voter status
 1
6.Evote System generates Voter login id and password 2
7.1.a.After 60 sec 4
2..a. EVote system displays time out page 6 5
 3.a. Voter data is not in record
 4.a.1 Evote System displays incorrect information error page 6

List of abstract interaction
1. Select option

2. Request

identification
3. Identify user
4. Check status
5. Provides

identification

Extraction
 engine

 Library

680694694692696

Textual authoring tool

Trace back result
It shows back the full requirement and where the

keywords come from.

List of Abstract Interaction
-Essential use case requirement

Figure 3. The text authoring tool and Trace and Trace Back Functionality.

681695695693697

