
INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY (ICSTIE 2006): Applications in Industry and Education (2006)

A FLEXIBLE FRAMEWORK FOR A WEB TRANSACTIONAL
APPLICATION

1Mohd Khanapi Abd Ghani, 2Abdul Samad Shibghatullah, 3Mohamad Hisyam Selamat
1Faculty of Engineering and Computing, Coventry University,

West Midlands, CV1 5FB, UK. abdghanm@coventry.ac.uk
2School of Information System, Computing and Mathematics

Brunel University, Uxbridge, UB8 3PH, UK. cspgass@brunel.ac.uk
3Fakulti Perakaunan, Universiti Utara Malaysia,

06010 Sintok, Kedah, Malaysia. hisyam@uum.edu.my

Abstract. Software development project becomes difficult because of the complexity in the business requirements, rigid framework
and unpredictable performance. These cause difficulties to deliver the software on time, to maintain it and to adapt to new
requirements. This research proposes a Web-Based Transactional Application Architecture Framework (WTBF) to simplify the
development of a complex software project by using template approach that contains assembled pieces of reusable software
components. The framework provides a generalized component-based architectural template that can be reused by the users
(software developer and an independent software vendor) to develop multi-tier transactional applications within a specific domain
or for a new software project. One of its significant benefits is that users can concentrate on their business components
development tasks instead of spending time on redeveloping basic software infrastructure from the scratch. The WTBF framework
is developed by using the Java 2 Technology and the Model View Controller (MVC) is used for the architectural model.

1.0 Introduction

Managing software development projects is more difficult in a complex business environment, rigid design
approach and due to unpredictable software performance. This results in late delivery, complicated systems
maintenance and inability to adopt to new requirements. A possible solution to this is that a flexible framework
that can shorten software development period, ease systems maintenance and adapt to new requirements.

This paper proposes a Web-Based Transactional Application Architecture Framework (WTBF) to simplify
software development projects by using template approach that contains assembled pieces of reusable software
components. The framework provides a generalized component-based architectural template that can be reused
by the users to develop multiple-tiers transactional applications within a specific domain or for a new software
project.

One of the significant benefits of WTBF is that users can concentrate on developing business components
rather than spending time on developing the basic software infrastructure from the beginning. WTBF can also
reduce the software development cost and period; and indirectly can optimize task distribution amongst the
project team members.

Before describing WTBF, this paper presents some of the problems that are related to software development
project. Then, the issues that highlight the need for a WTBF are discussed. Thereafter, the component of WTBF
is defined and described in detail. Finally, the conclusion and suggestions for further research are dealt with.

2.0 Software development project problems

Some of the significant problems to software development project are late delivery, just-do-it approach, poor

system maintenance and unpredictable performances.
Late delivery will create other problems such as, increased development cost, bad reputation and stress to

staffs. The reasons that contribute to late delivery are such as, failure to understand requirements, poor planning,
and mismanagement. Almost new software project starts from the scratch whereby every single component and
service has to go through a proper software development process. This is due to inadequate reuse of software
components. As a result, longer development period is involved and in turn increases the project cost.

On the other hand, just-do-it approach will produce a software system that is brittle and inflexible because
no consideration is given to the need to adapt to new requirements and maintenance efforts. A proper software

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka (UTeM) Repository

https://core.ac.uk/display/235629137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

development methodology is important as it will ensure that every aspect of the systems development are
undertaken exhaustively.

The difficulty to maintain a system is caused by poor documentation, and failure to understand and identify
beforehand how the modification of the software could be made. Thus, software modification or enhancement
will take a longer period to accomplish.

Unpredictable performance occurs when the delivered software cannot meet the response time guidelines
and criteria. This leads to problems in managing system performance and addressing the performance issues.
The same code may be redone over and over again leading to unpredictable performance.

With regard to the above issues and a fierce market competition, companies do not have other choice except
to change. They must constantly oblige to adapt to new needs, make their products evolve, change their
development process and establish new collaborations (Crnkovic, 2001). These evolutions require the
implementation of a flexible application systems framework architecture that is adaptable to the evolution of
business products and business process.

3.0 Issues related to WTBF

WTBF is a web-based, model-view-controller, and reuse approach. The reasons are explained in details
below:

3.1 Software technology evolution

In the early decades of the computer existence, mainframe technology was the main tool for the computing
system and all software were tied to this central entity. The applications in this type of architectural association
are commonly referred to as single tier applications (Ahmed et. al., 2001). From the application perspective,
single tier is the most problematic one because it has to face the changing technology and increase business
requirements in the future.

The second generation of the application technology that is the client-server (two-tier) approach mitigates
the above issues by moving the presentation aspects and some of the business logic to a separate tier. The web
applications involved multiple tiers (n-tier), either by physical or logical separation that is according to
responsibilities and services. The n-tier approach attempts to achieve a better balance by separating the
presentation logic from the business logic and the business logic from the underlying data.

Based on the fact that the n-tier architecture involved multiple layers and component services, it is important
to note that a proper and systematic architecture framework needs to be designed and developed at the beginning
stage of the project. The software developers realize that getting the right architecture framework is a critical
success factor for the software design and development project.

3.2 Software Architecture

Software architecture is a principal mechanism and pattern that defines and communicates the structure of a
system (Jacobson et. al., 1998). The architecture allows applications and components to evolve gracefully and
enables software developers to achieve significant levels of reuse, enables components to work well together,
and allows software developers to develop under stable systems that are easier to maintain.

Local software developers (in Malaysia) usually do not pay any attention to the architectural elements of
their business to create better products and to enable them to compete in the global market (Mohamed M.,
2005). The traditional approach such as structured sequential application development methodology (SSADM)
is still used in their software projects. This methodology has often been criticized for lack of modularity,
reusability, maintainability and compositionality.

Nowadays, software developers must pay more attention to the architectural or design element of their
software product. Similar to how the architecture helps the construction or house developer to create his
masterpieces, the same approach can be applied to software development. There are many dimensions in the
software architecture that is from the platform and development to the application.

Model-view-controller (MVC) is a software architecture that separates an application's business logic, user
interface, and control logic into three distinct components so that modifications to one component can be made
with minimal impact to the others. It separates objects into one of three categories — models for maintaining
business logic, views for displaying all or a portion of the data, and controllers for handling events that affect
the model or view(s). By applying the MVC architecture to an application, the developer can separate core
business model functionality from the presentation and control logic that uses this functionality. Such separation
allows multiple views to share the same enterprise data model, which makes supporting multiple clients become
easy to implement, test, and maintain.

http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Software_componentry

3.3 Template and reuse approach

According to Cambridge Dictionary (2003), template is a pattern made of metal, plastic or paper, which is
used to make many copies of a shape or to help cut material accurately. In the context of software, it is a system
that helps us arrange information on a computer screen and logic.

A general understanding of template is that it helps us to develop products faster and more accurate whilst
avoid major risks of erroneous mistakes. The existing products or patterns or software framework will be reused
and customized in order to match with the targeted products that are going to be developed. Reusing the
experienced products that are the product that have been used by many users, would be less risky compared to
the product that is developed from the scratch.

Many companies realize that reuse architecture is the most effective path towards dramatic improvement of
both development costs and period. According to Mcllroy (1996), “Software reuse is simple as develop systems
of components of a reasonable size and reuse them”. In this case, the idea of “component systems” is extended
from merely based on code to requirements, analysis models, design and test. All the stages in the software
development process are subject to “reuse”.

By using reuse approach, the developers can save problem-solving effort throughout the development chain.
In addition, they can minimize the redundant work and enhance the reliability of their work because each of the
reused component system has already been reviewed and inspected according to its original development.

The experienced companies such as, Hewlett-Packard, Microsoft, AT&T, Motorola, IBM and Toshiba
gained a significant cost and time saving from the systematic reuse. They have obtained around 90% reuse
levels in certain projects or areas and gained a substantial result in the following elements:

Time to market: reductions of 2 to 5 times
Defect density: reductions of 5 to 10 times
Maintenance cost: reductions of 5 to 10 times
Overall software development cost: reductions of around 15% to as much as 75% for long term projects.

Source: Jacobson et. al. (1998); Yourdan (1996) ; and Cusumano(1991)

Many companies are trying to improve their software development performance. Therefore, the template and

software reuse must become key parts of their software engineering strategy. The above discussion shows that a
giant software company such as Microsoft and IBM gained success from the software reuse effort. Hence,
software reuse is a vital strategy and approach for the viability of the software industry.

4.0 The WTBF framework

In this paper, we propose a flexible framework that supports a web-based system, MVC approach and can

accommodate reusable component. This relationship is illustrated in figure 1. The framework consists of three
main components that are message grammar format, front end and back end. Message grammar format is a new
format that is proposed by this framework to deal with data transmitting. This new format can transmit data
quicker than the existing format. Front end components consist of Java Web Start, Java Beans and HSQLDB
database. Back end component uses Java 2 Platform, Enterprise Edition (J2EE).

Front end

Message grammar format

Java web start Java beans
HSQLDB

Java™ 2 Platform, Enterprise Edition (J2EE) Back end

Figure 1: The WTBF framework components

4.1 Choice of front end technology

In the modern applications, that involve business logics and requirement of a complex user interface, web
application requires systematic architecture framework in order to be beneficial for client computers to share in
the execution of some of the business logics. The web application executes business logic on the server only;
therefore, the client browser which is just a simple text cannot last longer. Therefore, a thick client/web-centric,
which uses Java Web Start and Java Beans technology, is chosen and integrated in the WTBF front-end
architecture. The Java Web Start overcomes user interface and connectivity limitations and offers client-side
software distribution features as well.

Java Beans technology is software components for the Java 2 Platform. It is built on the Java Foundation
Classes API (JFC). JFC is an infrastructure that enables developers to build components, each in the language of
their own choice, and share these objects with one another in order to build a bigger and more complex system.
One of the key features that make WTBF front end architecture suitable for the web-centric is its components
that enable automatic download when necessary. Normally, when utilising Java Network Launching Protocol
(JNLP) on the client, the application control is cached in a ‘jar file’

Table 1 compares the different technologies that are used for designing Web clients. These different factors
influence the design of the WTBF front end architecture (http://java.sun.com/developer/technicalArticles/
JavaLP/jawawebstart/).

Table 1: Comparison of different technologies used for designing Web clients

Factors Applets XML/HTML-based clients Java Web Start
User interface Moderate to

sophisticated
Simple to moderate Moderate to

sophisticated
Offline support No No Yes
UI response Network independent Network independent Network independent
Interactively Browser limited Browser/markup limited Open
First use response Minutes Seconds Minutes
Subsequent use
response

Minutes Seconds Seconds

Bandwidth usage Variable Fixed Flexible
Lightweight client
support

Limited Open Limited

As we can see, while applets take same time to download in the first use and each subsequent use, Java Web

Start applications will load faster on the subsequent uses due to the product’s inherent caching features.

4.1.1 Hypersonic Database (HSQLDB)

Hsqldb is a relational database engine written in Java. WTBF client use Hsqldb for the offline transaction

whereby the transactional messages are stored locally. The transaction is written in the disk instead of memory.
This is to ensure that the reliability and the stability of the transaction data in local disk are maintained.
Furthermore, the response time to save and retrieve the data is faster than from the server.

4.2 Choice of Back End Application Patterns

WTBF back end architecture adopts the Model View Controller (MVC) architecture pattern. The main
reason behind this is that to minimize the coupling among objects in a system by aligning them with a specific
set of responsibilities in the area of the persistent data and associated rules, presentation, and the application
logic.

The Java™ 2 Platform, Enterprise Edition (J2EE) has been selected for building server-side and enterprise-
class application for WTBF. The enterprise software development is a complex task and requires extensive
knowledge of many different areas. For instance, a typical enterprise application development effort requires us
to be familiar with the inter-process communication issues, security issues, database specific access queries, and
others. J2EE uses build-in concept and transparent to support those processes and similar services. As a result,
the developers are able to focus on implementing business logic codes rather than codes that support basic
application infrastructure.

The J2EE enterprise development model also encourages a demarcation between system development,
deployment, and execution. Because of this, the developers can defer deployment details such as, the actual
database name and location, and can host specific configuration properties to the deployer.

4.3. Design Messages Grammar Format

The message contains object data about the transactional posts by the user. A message is categorized into

two components namely the message header and message detail. Each message is constructed by special
characters that is coined as delimiters. They are the segment terminator, the segment separator, the field
separator, the value separator and the repetition separator. The system should understand the grammar of the
messages before it can be read and sent for further processes in the back end component.

In the absence of other considerations, it was suggested that the delimiter values are designed as shown in
Table 2.

4.3.1 MsgHdr

The message header segment defines the intent, source, destination, and some specifics of the syntax of a

message. The syntax is controlled by the real-world event where it creates the need for data to flow among
systems. The real-world event is termed as the transaction code.

4.3.2 MsgDetail

The message detail contains detailed data attributes about the transaction. These are the actual data to be
stored in the persistence storage. The data are controlled by the field separator, the value separator, the repetition
separator and the segment terminator.

Table 2: Message Component Delimiter Values

Delimiter Suggested

Value
Encoding Char
Position

Usage

Segment ID Separator ¤ 1 Separates between the message header and the
message detail.

Value/Component
Separator

¥ 2 Separate between field name and its value

Repetition Separator , 3 Separates multiple occurrences of a field.
Field Separator ¶ 4 Separates two adjacent data fields within a

segment. It also separates the segment ID from
the first data field in each segment.

Segment Terminator ÿ - Terminates a segment record. This value cannot
be changed by implementers.

5.0 Conclusions

This paper has described the software development project problem in the general. The problems will leads

to late delivery, hard to maintain and inflexible to new requirements. This paper proposes a flexible framework
called WTBF to deal with those problems. The aim of WTBF is to simplify the development of complex
software projects by using template approach. Another significant contribution of WTBF is a new format for
the message transaction that will expedite the data transmission between server and client. WTBF uses Java
Web Start and JavaBeans in the front end part and back end part uses J2EE.

J2EE is the Sun’s enterprise Java solution. It is the standard for developing multi-tier enterprise applications.
By using J2EE, WTBF provide a seamless and natural route into the JavaBeans, Java Web Starts, Java servlets,
Java Server Pages, and XML. Thus J2EE provides the bedrock upon which the technology is build: a stable,
well-supported, industrial standard platform, which, via the whole range of Java APIs, provides easy and robust
access to almost every application technology imaginable.

A future development will be to apply the truly component objects on the WTBF back end components
engine. For example, the business logic should provide simple interface to integrate with the existing business
logic or for new business logic. The design of the message components should enable software developers to
adapt to future message format standard such as, Extended Markup Language (XML). The existing message
format that focuses only on the object string will be suitable for Java technology platform. It requires intensive
conversion effort when the different technology platform is decided to be used.

6.0 References

Ahmed K.Z., Umrysh C.E., (2001). Developing Enterprise Java Applications With J2ee And UML, Addison-Wesley.

Cambridge Advanced Learner’s Dictionary (2003), Cambridge University Press.

Conallen J., (2000). Building Web Applications With UML, Addison-Wesley.

Crnkovic I., (2001). Component-Based Software Engineering – New Challenges in Software Development, Software Focus,
Sweden. Vol.2 (4), pages 127-133.

Cusumano M.A. (1991), Japan’s Software Factories : A Challenge to US Management. New York : Oxford University Press.

Garlan D, Software Architecture: A Roadmap, School of Computer Science Carnegie Mellon University ,
garlan@cs.cmu.edu. Downloaded: 23/11/2004

Crnkovic, I., Filipe, J. K., Larsson, M., and Lau, K. 2001. Object-oriented design frameworks: formal specification and some
implementation issues. In Databases and information Systems, J. Barzdins and A. Caplinskas, Eds. Kluwer Academic
Publishers, Norwell, MA, 237-251.

Jacobson I., Griss M., Jonsson P., (1998). Software Reuse: Architecture, Process and Organization for Business Success,
Addison-Wesley.

Kassem N., Enterprise Team., (2000). Designing Enterprise Applications with the JavaTM 2 Platform, Enterprise Edition,
Sun Microsystems, Inc.

Martin Fowler, (2004). UML Distilled Third Edition: A Brief Guide to The Standard object modeling language, Addison-
Wesley.

Rothernberger M.A., Dooley K.J., Kulkami U.R., (2003). Strategies For Software Reuse – A Principal Components Analysis
Of Reuse Practices, IEEE Transactions on Software Engineering. Vol. 29. No.9, September. 2003.

Xiang Y., Gu Q., Li Z., (2003). A Distributed Framework of Web-Based Telemedicine System, Proceedings of the 16th
IEEE Symposium on Computer-Based Medical Systems (CBMS’03) 1063-7125/03 © 2003 IEEE

Yourdan E., (1996), Visual Basic 4. Application Development Strategies, VIII(2), 1-16

