
Building Location-based Service with Java Technologies

Anusuriya Devaraju
Kolej Universiti Teknikal Kebangsaan Malaysia,

Malaysia.
anusuriya@kutkm.edu.my

Simon Beddus
British Telecommunications (BT) Research and

Venturing, UK.
simon.beddus@bt.com

Abstract – The growing use of Java in Location-based
Service provides an opportunity to find solutions for
problems and challenges in the rapidly changing
telecommunications environment. This paper describes
the development of location-based service components
using Java technologies. The technologies include J2ME,
Servlet, Java Server Pages (JSP) and XML Java Binding
Tool. The developed components are the location server
simulator, location service application and device client
application. This study is crucial for support of BT’s
launch of User Location Service on prototype ERICA
mobile application platform through supporting the
testing and validation of the platform components.

Keywords: Location Based Service, Simulator, Mobile
Location Protocol, XML, J2ME

1 Introduction
Location-based Services or LBS are any services use

spatial data that are available to anyone, anywhere,
anytime on any mobile-based device. Common services
for the consumers include Safety and Emergency,
Tracking, Navigation, Information Guide, and so forth.
This project deals with the design delivery and testing of
location-based service components using Java
technologies. This paper is structured into several parts.
The first part opens discussion leads to the formulation of
the problem that is to be analyzed. The second part
contains theory; focusing on basic concepts and
technologies to build LBS. The third part presents design
and development of each component in the system. In the
last part, the future and open work items are clarified and
conclusions are presented.

1.1 Background

Before Windows, developers faced many problems to
develop applications on computers. However, when
Microsoft created basic software standard that took care
of the system operation, the developers enable to build
new applications with minimal fuss. Project Erica aims to
do the same for mobile communications. This prototype
mobile application platform (Figure 1) is purposely
developed by BT to provide a middleware service access
point to the network infrastructure enabling the mobile
operators to build and deploy wide range of wireless API
services with management capabilities [3]. One of mobile
services offered by Erica is the User Location Service or
ULS. The ULS is mainly designed to enable a single
location Application Programming Interfaces (API) for
network based location services. Application developers
can easily integrate and deploy new and existing location

based applications, utilizing real time positioning data
from UK mobile operators such as Three, O2, Vodafone,
T-Mobile and Orange. This helps to reduce the risk and
cost to both parties. However, testing each application
with real time data is charged per lookup. As the complex
and expensive testing can inhibit cost-effective
development of location-based applications, we need a
different approach to testing and evaluating these
applications without access to a real mobile network. In
response to this need, this project introduces a location
server simulator based on Location Interoperability
Forum (LIF) API [11]. A location-based service
application and a J2ME client called ‘Map4U’ are
developed as part of the test and evaluation process for
the simulator. Apart from this, there is a portal, which
allows developers to remotely manage the location data.

Figure 1. Erica mobile application platform

2 Basic Concepts and Technologies

In order to develop location-based service system, the
location APIs, protocols, technologies and infrastructure
of LBS must be understood and reconciled.

2.1 Positioning technology

There are two basic of positioning a mobile device,
firstly by using satellite for instance, Global Positioning
system (GPS); secondly by using mobile telephone
network. This section will discuss the most prominent
network based positioning, the Global System for Mobile
Communications or GSM. GSM is the leading digital
cellular radio network. While the current GSM system
was originally designed with an emphasis on voice
sessions, the General Packet Radio Service (GPRS)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka (UTeM) Repository

https://core.ac.uk/display/235629027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

system brings the packet switched bearer services to the
existing GSM system. GPRS uses the bandwidth more
efficiently because it does not require a dedicated line.
The call charging is solely based on amount of
transmitted data.

2.2 Positioning method

The common positioning methods found basis for
providing location services in all networks is the Cell-
based Positioning. This method provides a location
coordinate based on the cell the subscriber is within. The
location infrastructure contains information on the
location coordinate of each cell centric. The current Cell
ID can be used to identify the Base Transceiver Station
(BTS) that the device is communicating with and the
location of that BTS. The accuracy of this method
depends on the size of the cell. Positioning is generally
more accurate in urban areas with a dense network of
smaller cells. Rural areas have a lower density of base
stations.

2.3 Location API and protocol

Wireless services are not connected directly to mobile
telephone system. They are connected to the Gateway
Mobile Location Centre (GMLC) or Mobile Positioning
Centre (MPC), which act as bridge between the IT world,
and the telecom world to retrieve the location information
from GSM/UMTS networks. One of the ways to acquire
location data from network today is by using LIF API.
LIF is a global industry initiative, which is jointly formed
by Ericsson, Nokia and Motorola in September 2000. It
has produced an application level protocol called Mobile
Location Protocol (MLP). The purpose of the MLP
specifications is to define a simple and secure access
method that allows Internet applications to query location
information from a wireless network, irrespective of its
underlying air interface technologies and positioning
method [11].

Figure 2. Location service architecture

Figure 3. Layered view of Mobile Location Protocol

2.3 Why Java for location-based service?
The following topic describes briefly how Java

technologies support growth of the LBS industry in the
telecommunications environment.

Platform independence. Wireless applications

developed using Java are optimized for portability. For
example, an application written using the MIDP APIs
from J2ME will be directly portable to any MIDP devices
compared to native clients (applications written using
proprietary programming languages such as C and C++).

Easy to develop. Java language retains most of the

power of C++, but with far less complexity. The breadth
and robustness of the core Java Foundation Classes
allows developers to get their wireless applications
developed more quickly with minimal fuss. In addition,
the Java application server provides system infrastructure
and management tools for deploying wireless
applications.

Security for wireless applications[17]. Java provides

several levels of security, from class loader and byte code
verifier to Security Manager, which can protect systems
from untrustworthy programs. Java also provides
extended security APIs for securely transforming content
over the wireless network. For instance, MIDP 2.0
include support for HTTPS, also there are also third-party
Java-based security packages such as Bouncy Castle,
KSSL, and Phaos Micro Foundation toolkit to build
secure location-based applications.

The partnership between Java and XML. Java is

portable language and XML is portable data. XML’s
extensible data types fit well Java’s platform independent
executables and combining these two provide
interoperability and scalability between application
components and application themselves [9]. Several Java
based XML binding tools are freely available, such as
XMLBeans, Enhydra Zeus, Castor, and etc.

Modularity. When developing a complete location-

based service system, programs can get large and
complex. LBS must be modular and reusable
independently of the underlying systems so that they are
easier to maintain and understand. The J2EE platform
contains packages such as Servlets, JSP, Java Messaging
Service (JMS), Remote Method Invocation (RMI) and
Enterprise JavaBeans (EJB) that provide a way to
modularize and divide the application down into different
tiers and individual tasks [1].

2.4 Technologies that support system

development
Java 2 Micro Edition. The J2ME technology consists

of a range of Java virtual machines and a library of APIs
that target consumer devices with limited memory,
display and processing power, such as cell phones,
pagers, PDAs and set-top boxes. Configurations and
profiles are the two main building blocks in J2ME. A

configuration defines the Java language and virtual
machine features and minimum libraries that expect to be
available on all devices of the same class. A profile is
reside on top of a configuration, adding a set of APIs for
user interface components, persistent storage, network
connectivity, and whatever else is necessary to write
applications for a particular type of device. For instance,
the Mobile Information Device Profile (MIDP), when
combined with the Connected Limited Device
Configuration (CLDC), provides a portable and
extensible platform for developing wireless applications
for small mobile devices, mainly cellular phones and two-
way pagers (Figure 4). The Sun Java Wireless Toolkit is a
state-of-the-art toolbox for developing wireless
applications that are based on J2ME's CLDC and Mobile
Information Device Profile. The toolkit includes the
emulation environments, performance optimization and
tuning features, documentation, and examples that
required by developers to built efficient and successful
wireless applications.

Figure 4. J2ME runtime environment

J2ME versus competing technologies [4]. Thin client
applications are based on mark-up languages such as
Wireless Markup Language (WML), HTML, and
Compact HTML (cHTML) for content generation and
interactions. These applications are relatively easy to
create; however they require a constantly available
network connection. In a thin client solution, the
applications themselves reside on a server and the server
is responsible for generating displays mark-up, this
requires a round-trip every time the interface changes. In
contrast, a J2ME client is contained within the device, so
it can operate even when disconnected. On occasions
when the devices do interact with the server, it incurs less
network traffic because the J2ME client downloads only
the application data. Besides that, the developer also can
choose how to split their application and service logic
between the device and server. Thin client solution such
as WAP also has known security issues in the WAP
gateway, where the protocol conversion occurs, while
Java technology provides for a robust, well-tested
security model, with many J2ME based devices
supporting end-to-end secure HTTP (HTTPS).

Native applications are developed for a particular
operating system such as PalmOS, Windows CE,
SymbianOS are traditionally written in C, C++ or C#
languages. These applications can work in an offline

environment but are completely dependent on the
operating system of the device. They require a higher
level of expertise because of the complexity of the user
interface, communication models, and the wide variations
in OS capabilities. Apart from this, built-in, fixed-feature
applications are difficult to upgrade and install new
applications without getting the manufacturer involved.
Conversely, native applications can take full advantage of
inherent featured such as hardware management and
interaction because they are tightly coupled to a particular
operating system. Compared with the native platforms,
the main strength of the J2ME is that it provides an
access to dynamic content applications and allows us to
write portable wireless applications, on any network and
on any device easily.

Java Servlet and Java Server Pages (JSP). Servlets
are instances of Java class that operates as a web
component. They are invoked to service HTTP requests
and generate responses to those requests. Servlets operate
within a ‘Servlet’ container; application servers such as
J2EE, Tomcat usually provides this container [8]. When
the user issues a request for a specific Servlet, that server
will simply use a different thread and then process the
individual requests. This has a positive impact on
performance, since multiple requests do not generate
multiple processes. Threads need fewer resources, so
their use already gives them an advantage.

JSP is server side programs to generate dynamic web
contents. When the first time the request for a JSP comes
in, the JSP engine on application server will compile the
page to a Servlet, then the application server’s Servlet
engine will run the compiled page and then returns the
resulting contents to client. If the JSP gets changed, the
class loader of the application server detects it and
recompiles before serving it again [8].

XMLBeans [16]. XMLBeans is an XML binding tool,

which enable user to access and manipulate XML
documents by Java programs easily. It is developed by
BEA Systems, and was donated to the Apache
Foundation in 2003. XMLBeans compiles an XML
Schema to generate a set of Java interfaces that mirror the
schema. An XML schema describes the structure or a set
of rules of an XML document, to which other XML
documents must conform. The resulting XMLBeans
classes are able to parse any XML instance document that
conforms to the schema. Also, an instance documents can
be created by manipulating the XMLBeans classes.

3 System Architecture

The architecture of the system is shown in Figure 5.
The simulator and location-based service application are
built with Servlet and JSP and require a Servlet/JSP
enabled web server to run on. In this case, Apache
Tomcat is used to support both components. The device
client application is based on MIDP 2.0 from J2ME. A
user having a J2ME enabled mobile device will be able to
download the device client application from a network
and run them on his/her mobile device. The simulator
does not have connection to obtain real-time positioning

data from network. Thus, a database is created on
MySQL to store the simulated location data. The
interface highlighted between the Location Service
Application and Simulator uses the MLP 3.0.0. Among
the five services offered by MLP specification, the
simulator supports the Standard Location Immediate
Service (SLIS). SLIS is the standard service that allows
subscribers to request a single location response from the
Location Server. The request may be served by several
asynchronous location responses (until a predefined
timeout limit is reached). This service used request-
response messages known as Standard Location
Immediate Request (SLIR) and Standard Location
Immediate Answer (SLIA).

The following steps describe the interaction between

components in the system.
1. MIDlet is a J2ME client application installed on

mobile phone. The midlet supports map display,
selective zooming, standard menus, and progress
indicator to let the mobile users know that the
application is working. The mobile id, username and
password are sent to the location service application
via HTTP to request the map of the subscriber.

2. When the location service application receives the
request, it identifies the subscriber and the service
requested by the subscriber.

3. Then, it constructs a SLIR, and sends it to the
simulator.

4. The simulator parses the received SLIR. Parsing
SLIR means retrieving data from an XML document
based on its meaning and structure.

5. Format or method of request will be validated against
DTD during XML parsing. If all checks pass, the
simulator connects to the positioning database and
retrieves a random location data of the mobile id.
The positioning data are expressed in latitude and
longitude decimal degrees. However, if there was an
error in the request, or the request could not be
fulfilled, an error response is returned instead.

6. Finally, the simulator constructs a SLIA, consists of
location data and other elements such as radius, local
time, GMT and so forth. It classifies the MIME type
as ‘text/xml’ and writes the SLIA contents into
opened HTTP connection from the application
service provider.

7. After parsing the SLIA response message, the
location service application opens an URL
connection to the Multimap server with the location
data. The map will be read from URL.

8. The location service application customizes the
format and size of the map to fit the device’s
characteristics, and then send it to the mobile user. If
an error message is returned from simulator, the
service will not initiate a map request; instead it will
forward the error message directly to the mobile
subscriber.

3.1 Initiating a location request

XML over HTTP. In LIF/MLP specification, the
protocols that can to be used for communication between
the location application and location server are the Simple
Object Access Protocol (SOAP) and XML. This project
implements communication based on XML over HTTP.
The XML request documents can be posted directly from
developer application (using Java, or any other
development environment) to the actual MLP 3.0.0
interface. The location service application issues an
HTTP POST request towards the Location Server. The
request includes the entity-header Content-length field as
part of the request. The SLIS can be invoked by posting
the SLIR to the following URL:

Figure 5. System Architecture

http://mdp.opentel.bt.co.uk:8080/SLIS/

 Request format. The request consists of two parts, the
header and the body. Header element contains client
credentials and other information pertaining to the client.
The body contains the mobile identification, which is the
XML formatted request. The simulator supports the GSM
Mobile Subscriber ISDN (MSISDN) as the Mobile
Subscriber Identifier (MSID). A subscriber’s MSISDN is
simply his or her mobile phone number.

<?xml version = "1.0" ?>
 <!DOCTYPE svc_init SYSTEM "MLP_SVC_INIT_300.DTD">
<svc_init ver="3.0.0">

<hdr ver="3.0.0">
<client>
<id>asd</id>
<pwd>asd38</pwd>
</client>

</hdr>
<slir ver="3.0.0">

<msids>
<msid type="MSISDN">447979374734</msid>
</msids>
<eqop>
<resp_req type="LOW_DELAY" />
</eqop>
<loc_type type="CURRENT_OR_LAST"/>

</slir>
</svc_init>

Figure 6. A successful SLIR

 Manage location data with portal. Request
parameters such as username, password and mobile id
will be provided when a user registered with the portal
(Figure 6). Using these parameters, the service
application providers able to test and demonstrate
location-based applications using the simulator MLP
interface. The data contained in this site is simulated data

and is not linked to any person or business. Using the
web-based Graphical User Interface (GUI) of portal with
provided username and password, the developers able to
add and modify sets of location data and its response code
for given mobile id that shall be possible to position.

Figure 7. Portal to update location data

3

o create the instances of the
quest/response messages.

Figure 8. XML data binding application flow

.2 Generating a location response
XML binding. The method that is used to parse the

request-response messages is Simple API for XML or
SAX. SAX is an event-driven interface in which the
parser invokes one of several methods supplied by the
caller when a ‘parsing event’ occurs. ‘Events’ include
recognizing an XML tag like start and end of the
document, start element, end element, finding an error,
encountering a reference to an external entity, or
processing a DTD specification. The parser reads the
SLIA contents line by line and fires events that contain
information about the line that was just read. User defined
Java program that listens to a particular events will
extract the location request values from the XML
document. The XML parser used in this project is Apache
Xerces for Java [2]. In this project, XMLBeans is used to
construct request/response parameters into XML message
because SAX (even though faster) can be more
complicated for writing XML from scratch. XMLBeans
classes that mirrored the schemas of SLIR/SLIA XML
documents are manipulated t
re

Figure 9 shows a position for the indicated MSID, in
the shape of a circle centered at the specified coordinate
with the given radius. The position was acquired at the
time 12:57:16 on 03-08-2005 in time zone +0700.

<?xml version = "1.0"?>
<!DOCTYPE slia SYSTEM "MLP_SLIA_300.DTD">
<slia ver="3.0.0">

<pos>
<msid>447979374734</msid>
<pd>
<time utc_off='+0700'> 20050308125716 </time>
<shape>
<CircularArea>

<coord>
<X>52.0622</X>
<Y>1.2685</Y>
</coord>
<radius>20</radius>

</CircularArea>
</shape>
<alt>5280.0</alt>
<alt_acc>20</alt_acc>
</pd>
</pos>

</slia>
Figure 9. Successful SLIA

Error handling. The simulator performs error handling
concerning following aspects to allow localizing.
a. Unsupported request

Client request a service other than SLIS, which is not
supported by the simulator.

b. Unknown and incorrect request
A protocol element in the request has invalid format.
The XML parser cannot resolve a XML request
because of syntactical errors in the incoming request
like missing brackets, end tags.

c. Localization
The request cannot be handled because connection to
the positioning database is failed. The location data is
not available for requested mobile id.

d. Authentication and Authorization
The requesting location-based application is not
allowed to access the location server or a wrong
password has been supplied. The application
provider is unknown or no such subscription exists.

Further information regarding the error will be indicated
in add_info element on SLIA message (Figure 10).

<?xml version = "1.0"?>
<!DOCTYPE slia SYSTEM "MLP_SLIA_300.DTD">
<slia ver="3.0.0" >
<result resid="6">POSITION METHOD FAILURE </result>
<add_info>Position method failure. The location
service failed to obtain the user's position.
</add_info>
</slia>

Figure 10. Failed SLIR (Position Method Failure)

Location response time. The simulator cannot provide
a guaranteed response time for sending location
information back to the service application. The simulator
and positioning database reside on different server;
response times vary and could be delayed by network
conditions. For this reason, the simulator maintains a

cache of old subscriber locations. This cache can be made
use of by specifying the ‘resp_req’ element in Quality of
Position (QoP) parameter in the MLP request. This
element allows for slightly older information to be
returned in exchange for a faster response [15]. Table 1
defines how long the application is willing to wait for a
response before a response is returned.

Table 1. Controlling response time with ‘resp_req’

Value Action
NO_DELAY Requesting a location with no delay.

If the cache location is not available,
the simulator responds with error.

LOW_DELAY Requesting a location with low
delay (30 seconds). If the current
location is not obtainable, the
simulator checks for cache value. If
the cache location value is not
available, the simulator responds
with error.

DELAY_TOL Requesting a location with
maximum delay (60 seconds). The
behavior of this option value is
identical to LOW_DELAY except
for the difference in time allowance.

3.2 Generating map to fit device’s

characteristics
The location service application converts and resizes

the image instead of the device client application because
it makes the client smaller and likely to be much faster.
Moreover, complex business logics and heavy
computation are left to the server-side due to limited
resources available on wireless.

Format Conversion. The map server returns the

requested map in Graphics Interchange Format (GIF)
format. Here, image format conversion is necessary, as
the MIDP specification only requires support for a single
format, the Portable Network Graphics (PNG) format.
PNG images are always compressed with a loss-less
algorithm. The algorithm is identical to the algorithm
used for JAR files, so the MIDP implementation can save
space by using the same algorithm for both purposes [10].
Images already in PNG format can benefit from being
funneled through a service, because the service can adapt
the image to fit the device's characteristics.

Map Resizing. In J2ME, there is no specific method to

get the model number from the device at server. Thus, the
mobile model name is set manually in the midlet as ‘user-
agent’ to send through the request header. When the
location service application receives the map, it uses the
‘user-agent’ parameter to obtain the screen size of a
mobile phone from the ‘mobilephone’ database. The
database contains current list of MIDP devices with their
screen size. More comprehensive list of MIDP devices
can be found at Sun’s J2ME MIDP website [7].

3.3 Deploying J2ME client application
The device client application and associated

components are packaged into a JAD/JAR file pair using
J2ME Wireless Toolkit. There are 2 possibilities to install
midlet on a mobile device; either connects the device to
the desktop with a data cable, or download midlet from
the Internet to a device over the wireless network. The
process of deploying midlet suites over a network is
known as Over-The-Air (OTA) provisioning. OTA
provisioning works as follows. First a mobile phone
sends a WAP request for a JAD file to a Web server
through a WAP gateway. The Web server sends JAD
package to the mobile phone. Then the phone fetches the
JAR package defined in the JAD file from the Web
server. The phone’s Java Application Manager (JAM)
installs the package.

The following diagrams show how the mobile user uses

Map4U midlet to send a request and receive the map from
to location service application. The components have
been tested via O2 GPRS service.

Figure 11. Screenshots of device client application

4 Future Works and Conclusions

Besides SLIS, there are different possible types of
location services from LIF framework that can be
implemented in the simulator, for example Emergency
Location Immediate Service, Emergency Location
Reporting Service and Triggered Location Reporting
Service. The simulator should support more error
handling concerning internal errors and other possible
errors such as too many position items have been
specified in the request, a protocol element or attribute in
the request has an invalid value, account suspended, this
is normally when an application tries to connect more
than three times with a wrong password and so forth. To
control the age of location and response time, the
resp_req parameter should be mapped with other
parameters loc_type, max_loc_age, resp_timer into timer
values for the location response. Apart from this, the
simulator should allow location lookups for multiple
subscribers in one single request. One way to ensure
secure communication between simulator and location
service application is by implementing the Java Secure
Socket Extension (JSSE) packages. JSSE implements a
Java technology version of Secure Sockets Layer (SSL)

and Transport Layer Security (TLS) protocols. It includes
functionality for data encryption, server authentication,
message integrity, and optional client authentication.

4.1 Conclusions

The main contribution of this project is a location
simulator based on LIF/MLP. The simulator permits third
parties to validate their application with location data in a
test environment prior connecting to live and charged
services from the mobile network. The simulator doesn’t
support all the services defined in MLP specification, but
it supports basic service for developing and test most
location-based application. The implementation of MLP
has been applied to a sample location-based application
and J2ME client to show its structure and use.

This project has focused on mobile location service
solution developed using Java. A wide range of Java
technology has been introduced to build components in
the system. The deployment of Java in building location-
based applications provides benefits, which include ease
of use, cross-platform architecture, language
simplification, and access to the Internet's established
Java API development.

References
[1] Allamaraju, et al, “Professional Java Server
Programming J2EE”, Wrox Press, 2001.

[2] Apache Xerces Parser ;
http://xml.apache.org/xerces2-j/

[3] BT Exact Technologies, “Erica Wireless API
service Gateway”, British Telecommunications plc, UK,
2002.

[4] C.Enrique Ortiz , “Elements of a Typical J2ME
MIDP Business Application”, Micordevnet Technical
Article, 2001.
http://www.microjava.com/articles/techtalk/midp

[5] Hjelm J, “Creating Location Services For The
Wireless Web”, John Wiley & Sons, Inc, 2002.
http://developers.sun.com/techtopics/mobility/midp/articl
es/https/

[6] Jagoe A, “Mobile Location Services- The Definitive
Guide”, Prentice Hall PTR, 2002.

[7] Java 2 Platform, Micro Edition (J2ME);
http://java.sun.com/j2me/index.jsp

[8] Jepsen T, et al, “Java in Telecommunications:
Solutions for Next Generation Networks”, John Wiley &
Sons, 2001.

[9] Knudsen J, “Wireless Java: Developing with
J2ME”, 2nd Edition, Apress, 2003.

[10] Kroll M and Haustein S, “Java 2 Micro Edition
(J2ME) Application Development”, Pearson Education,
2002.

[11] Location Interoperability Forum, “Mobile Location
Protocol Specification”, 2002.
http://www.openmobilealliance.org/tech/affiliates/lif/lifin
dex.html

[12] Mahmoud Q, “Learning Wireless Java”, 2nd
Edition, O'Reilly, 2002.

[13] Mahmoud Q, “Secure Java MIDP Programming
Using HTTPS with MIDP”, Sun developer’s Technical
Article.
http://developers.sun.com/techtopics/mobility/midp/articl
es/https/

[14] Muchow J, “Core J2ME Technology”, Prentice
Hall, 2001.

[15] Openwave, “Location Studio 2.1 MLP 3.0.0
Developer’s Guide”,Openwave Systems Inc, 2004.

[16] XMLBeans; http://xmlbeans.apache.org

[17] Yu Feng, Jun Zhu, “Wireless Java Programming
with J2ME”, Sams. 2001.

http://xml.apache.org/xerces2-j/
http://developers.sun.com/techtopics/mobility/midp/articles/https/
http://developers.sun.com/techtopics/mobility/midp/articles/https/
http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html
http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html
http://xmlbeans.apache.org/

	Introduction
	Background

	Basic Concepts and Technologies
	Positioning technology
	Positioning method
	Location API and protocol
	2.3 Why Java for location-based service?
	Technologies that support system development

	System Architecture
	Initiating a location request
	3.2 Generating a location response
	Generating map to fit device’s characteristics
	Deploying J2ME client application

	Future Works and Conclusions
	Conclusions

	References

