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Abstract: In this paper, a new approach in predicting the hardness of Titanium Aluminum Nitrite 
(TiAlN) coatings using Adaptive Neuro-Fuzzy Inference System (ANFIS) is implemented. TiAlN 
coated cutting tool is widely used in machining due to its excellent properties. The TiAlN coatings 
were formed using Physical Vapor Deposition (PVD) magnetron sputtering process. The substrate 
sputtering power, bias voltage and temperature were selected as the input parameters and the hardness 
as an output of the process. A statistical design of experiment called Response Surface Methodology 
(RSM) was used in collecting optimized data. The ANFIS model was trained using the limited 
experimental data. The triangular, trapezoidal, bell and Gaussian shapes of membership functions 
were used for inputs as well as output. The results of ANFIS model were validated with the testing 
data and compared with fuzzy and nonlinear RSM hardness models in terms of the root mean square 
error (RMSE) and model prediction accuracy. The result indicated that the ANFIS model using 3-3-3 
triangular shapes membership function obtained better result compared to the fuzzy and nonlinear 
RSM hardness models. The result also indicated that the ANFIS model could predict the output 
response in high prediction accuracy even using limited training data.   
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INTRODUCTION 

 
In high-speed machining process, the cutting tool is consistently dealing with high localized stress at the 

tool tip and high temperature which exceeds 800°C. In this process too, the cutting tool slides off the chip along 
the rake face and the newly cut workpiece surface (Kalpakjian and Schmid 2006). These conditions are causing 
tool wear, reducing the cutting tool performances and quality of parts and deteriorating the tool life. The tool 
wear problem also could be influenced by workpiece material, cutting interface, cutting tool performance and 
geometry and machine condition. In addition, tool wear condition has a direct effect on the economics of cutting 
operations, final product quality and process reliability (Yen et al. 2004). Fig. 1 shows the cause and effect of 
tool wear in machining process.  

The wear problem could be addressed by improving the hardness of the cutting tool surface. This could be 
done by applying the thin film coating on the cutting tool. The main purpose of the thin film coating application 
is to improve the tool surface properties while maintaining its bulks properties. The performance of the coated 
tool has been proven in wear mechanism (Bhatt et al. 2010), hardness and adhesion (Jianxin et al. 2008) and 
tool life (Su et al. 2004). It is also has been ascertained that the coated tool is forty times better in tool wear 
performance compared to the uncoated tools (Tuffy et al. 2004). This finding promises prolonging of tool life 
and enables the implementation of minimum liquid lubrication to reduce cost of coolant that makes up 16 to 
20% of manufacturing cost (Sreejith and Ngoi 2000). This finding too contributes in minimizing environmental 
impacts produced by discarding of cutting fluid (Byrne and Scholta 1993). 
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Fig. 1: Four major functional elements influencing tool wear in machining process (Yen et al. 2004). 

 
Physical Vapor Deposition (PVD) coating process plays essential roles in order to make the cutting tool 

perform better. It has been selected as a main coating process in hard coating purposes. However, two main 
challenging issues that need to be encountered in the coating process are cost and customization. The challenge 
to ensure reasonable cost in the process of coating and efficient process of treatment should be well-addressed as 
it directly affects the cutting tool market value (Bradbury and Huyanan 2000). Besides the equipment 
maintenance, other reasons that lead to high machining costs are the material usage and labor and the number of 
trial-and-error experiment. In PVD magnetron sputtering, process parameters like sputtering power, substrate 
bias voltage, substrate temperature (Md Nizam 2010), gas pressure (Sun et al. 2010) and turntable speed (Zhou 
et al. 2009) influence the coating performances. These conditions cause complexity in the coating process.  In 
addition, the new application of coating needs trial and error experiments so that it could suit the parameters 
with the material used. Therefore, many researchers have developed models to address the coating process 
issues. Model development reduces resources wastage such as materials, equipment utilization, human resources 
and working time related to the trial and error experiments run. 

The coating process model is very useful to predict the coating performances while looking for the 
optimized value. However, limited number of experimental data due to experimental cost issue is a major 
constraint in modelling work. Various techniques such as design of experiment (Xiao and Zhu 2010), neural 
network (Cetinel et al. 2006), fuzzy logic (Manaila et al. 2002) and ANFIS (Buragohain and Mahanta 2008) 
have been applied. The design of experiment approaches like Taguchi, full factorial and Response Surface 
Methodology (RSM) are widely used to collect optimum and minimum experimental data (Karacan et al. 2007).  

The Adaptive Neuro-Fuzzy Inference System (ANFIS) has been used in predicting the output response in 
many applications. The rules of the model is developed based on training data pairs and suggestion from the 
expert. The ANFIS has been proven to be well-suited for modelling nonlinear industrial processes such as end 
milling (Uros et al. 2009), wire-EDM (Ulas et al. 2009), welding (Zapata et al. 2010) and waterjet cleaning 
(Daoming and Jie 2006). In view of the nonlinear conditions of a the magnetron sputtering coating process, the 
ANFIS is employed for predicting the hardness value of TiAlN coatings. So far, there is no study has been 
carried out on application of ANFIS for predicting the hardness of TiAlN coatings. The main purpose of this 
study is to investigate the application of ANFIS model for predicting the hardness of TiAlN coatings with 
limited experimental data. 

MATERIALS AND METHODS 
 

Experimental Run: 
The experiment was run in unbalanced PVD magnetron sputtering system made by VACTEC Korean 

model VTC PVD 1000 which has two vertically mounted TiAl alloys. This system also consists of substrate 
holder with adjustable planetary rotation. Fig. 2 (a) shows the PVD magnetron sputtering system. The titanium 
alloy was selected as the target material and the chemical compositions of the material was 50% of titanium and 
50% of aluminum. The surface of tungsten carbide cutting tool insert was cleaned with alcohol bath in an 
ultrasonic cleaner for 20 minutes as shown in Fig. 2 (b). The substrates were loaded in the rotating substrate 
holder inside the coating chamber. The rotation speed was set at 5 rpm. Argon gas was used to produce electron 
and sputter the target material. The substrate was coated with the alloy in presence of nitrogen gas as the 
reactive gas. 
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            (a) 

                             (b) 

Fig. 2: (a) PVD unbalanced magnetron sputtering system model VTC PVD 1000, and (b) ultrasonic bath 
cleaner 

 
Table 1: The experiment setting. 

Process Substrate ion cleaning Interlayer coating deposition (TiAl) TiAlN coating deposition 

Argon pressure:  
N2 pressure: 
Ion source power:  
Substrate bias: Duration: 

5.5 x 10-3 mbar 
- 
0.24 kV/ 0.4 A 
-200V 
30 mins 

4.0 x 10-3 mbar 
- 
0.24 kV/ 0.4 A 
-200V 
5 mins (0.2 micron) 

4.0x 10-3 mbar 
0.4 x 10-3 mbar 
0.24 kV/ 0.4 A 
-50-300V 
90 mins 

 
The coating process consisted of three stages: 1). substrate ion cleaning, 2). interlayer coating deposition 

and 3). TiAlN deposition. The purpose of the substrate ion cleaning process is to remove impurity from the 
substrate surface for better adhesion. The interlayer coating deposition of TiAl was done to minimize the 
coefficient of thermal expansion gradient between the insert and TiAlN coatings. The detail process settings of 
the three stages are summarized in Table 1. The RSM centre cubic design (CCD) using Design Expert software 
version 7.03 was used to develop the experimental matrix. The influences of sputtering power, bias voltage and 
substrate temperature on the coating hardness were observed. 

 

(a) (b) 
Fig. 3: (a) NanoTest nano-indentaion system to measure the hardness of the coating. (b) The loading and 

unloading curve. 
 
In this study, the hardness of TiAlN was measured using nano-indentation test. In nano-indentation system 

as shown in Fig. 3 (a), the hardness measuring process was done by indenting a specimen by a load from a very 
small set value to a maximum set value using a high precision instrument.  Every load and displacement reading 
was recorded continuously. The mechanical properties of thin films coatings can be derived from the measure 
load-displacement loading/unloading curve through appropriate data analysis. A usual loading/unloading curve 
is shown in Fig. 3 (b).  This curve is used to calculate the hardness and Young modulus as published by Oliver 
and Pharr (Oliver and Pharr 1992).  

For this study, all of the samples were tested using Berkovitch indenter with maximum load set at 50mN. 
The dwell time at this load was set at 10 seconds. For each sample, six measurements were taken and the 
average value was calculated to be used as the harness value for the particular sample. Table 2 shows the input 
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process parameter and experimental result of TiAlN coatings hardness. This data is used for training purpose. 
Table 3 shows another three experimental run with different combination of input value and the result was used 
for testing purpose. Fig. 4 shows the sputtering power, bias voltage and substrate temperature as the input 
variables to the model and the TiAlN coating hardness as the predicted output. 

 
Table 2: Process variables and experimental result of hardness of TiAlN coatings for training purpose. 

Run Process variables Result 

Sputter Power (kW) Bias Voltage (Volts) Substrate Temp. (°C) Hardness (GPa) 

1 6.00 50.00 400.00 3.54 

2 4.81 100.67 518.92 5.27 

3 4.81 249.33 281.08 13.17 

4 6.00 175.00 400.00 10.96 

5 6.00 175.00 200.00 8.06 

6 4.81 100.67 281.08 4.33 

7 7.19 249.33 281.08 4.04 

8 6.00 175.00 400.00 16.12 

9 6.00 175.00 400.00 7.77 

10 4.81 249.33 518.92 3.53 

11 7.19 100.67 281.08 9.76 

12 6.00 175.00 600.00 7.48 

13 7.19 249.33 518.92 15.26 

14 6.00 175.00 400.00 8.91 

15 8.00 175.00 400.00 22.64 

16 6.00 300.00 400.00 14.14 

17 7.19 100.67 518.92 8.88 

18 4.00 175.00 400.00 15.69 

19 6.00 175.00 400.00 11.27 

20 6.00 175.00 400.00 12.34 
 

Table 3: Data of TiAlN coating hardness for testing purpose 

Run Process variables Result 

Sputter Power (kW) Bias Voltage (Volts) Substrate Temp. (°C) Hardness (GPa) 

1 5.00 100.00 280.00 5.2 

2 6.50 150.00 350.00 10.3 

3 7.00 145.00 450.00 14.2 

 

 
 
 
 
 

 
 
 

Fig. 4: The inputs and output of the ANFIS model. 
 

ANFIS Modeling: 
Adaptive Neuro-Fuzzy Inference System (ANFIS) was presented by Jang in 1993 (Jang 1993). In this 

system, a hybrid learning procedure is used to construct an input-output mapping based on the human 
knowledge and training data pairs. The fuzzy inference system is employed in the framework of adaptive 
networks. ANFIS is normally contains a five-layer feed forward neural network excluding inputs to construct 
the inference system. Each layer consists of several nodes described by nodes function. The nodes in previous 
layer feed input to nodes in next layer.  

ANFIS can be classified into two types based on the input space partition method which are grid and 
clustering partition. The grid partition (GP) construct the rules by enumerating all possible combination of 
membership functions (MFs). The Fig. 5 illustrates the structure of ANFIS-GP with three input and using two 
membership functions. This leads to an exponential explosion even when the number of inputs is moderately 
large. For example, the ANFIS with 3 inputs, each of which has 2 MFs, the GP creates 23 = 8 rules.  

 

ANFIS 
 Sputtering power (kW) 

 Bias Voltage (Volts) 

 Substrate Temperature (°C) 

TiAlN coating 
hardness (GPa) 
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The five network layers are used in ANFIS to perform the following fuzzy inference steps: 1). 
fuzzification, 2). product, 3). normalization, 4). defuzzification, and 5). summation output.  

 
Fig. 5: The ANFIS structure with five layers and nodes. 

 
Layer 1: Transferring input data to the fuzzified values through membership functions. 

iii CBA ..  are membership functions. 

Input data  x ,  y  and  z , i = 1,2 

    xx
iA ,  y   y

iB  and  z   z
iC  
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where  iii c,b,a  is the premise parameter set. 

 
Layer 2: Multiplying the incoming signals and sending the product out. 
 

     zyxw
iii CBAi  , i =1,2           (2) 

Each node output represents the firing strength of a rule. 
 
Layer 3: Normalizing the firing strengths. 
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Layer 4: Defuzzification 

 iiiiiii sz.ry.qx.p.wf.w             (4) 

 
where   iiii s,r,q,p is the consequent parameter set, which is determined during the training process. If 

iii r,q,p are zero (f = constant), the model is called zero-order-Sugeno model. Alternatively, first-order-Sugeno 

model. 
Layer 5: Summation of all incoming signals. 
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The output of each rule is a linear combination of input variables plus a constant term and the final output 
is the weighted average of each rule’s output. 

There are many type of parameters need to be set in ANFIS modelling. The parameters give a minor and 
major influence to the prediction output performance. 
i. the type of membership function (MFs) (triangular, Gaussian, bell shape, trapezoidal etc), 

ii. the type of consequent part (linear or constant), 
iii. the number of MFs (>1),  
iv. the number of training epoch,  
v. the number of training data,  

vi. the selection method (grid partition or subtractive clustering) 
vii. the optimization method (back-propagation, or hybrid of the least-squares and the back propagation 

gradient descent). 
 
In this study, three variables were selected for inputs of the ANFIS model to predict an output response. 

The model were developed using different shape of input membership function (MFs) type which were 
triangular, Gaussian, bell shape and trapezoidal, with number of the MFs were two, three, four and five. In 
purpose of training the model, a hybrid of the least-squares method and the back propagation gradient descent 
method was used to emulate a given training data set. The linear and constant of output MFs type were 
employed to produce the hardness value. Fig. 6 shows the flowchart for predicting TiAlN coating hardness 
using ANFIS system. The model setting is shown in Table 3.  

 
Table 3: Parameters setting for ANFIS model 

ANFIS Setting Details 
Input Variables 
Output Response 
Type of Input MFs  
No. of MFs 
Type of Output MFs 
Optimization Method 
Epochs 

Power, Voltage, Temperature 
Hardness 
Triangular, Gaussian, Bell Shape, and Trapezoidal 
2,3, 4 and 5 
Linear and constant 
Hybrid of the least-squares and the back propagation gradient descent method.  
100 

 

 
Fig.  6: Flowchart of hardness prediction of ANFIS system. 
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RESULTS AND DISCUSSION 
 
An example of ANFIS model details using two MFs with linear output is shown in Table 4. This info was 

indicated in MATLAB program during the training process. Three input with two MFs each created eight fuzzy 
rules. After the training process, the initial membership functions for input variables were derived by training. 
Fig. 7 (a)-(c) show the initial of MFs (constant output), while Fig. 7 (d)-(f) show the final MFs after training 
process. From the figures, major change can be seen on the shapes of the membership function in the POWER 
variable. Otherwise, the shapes of the membership function in the VOLTAGE and TEMPERATURE indicated 
only slight changes. Meanwhile, Fig. 8 shows that after the 2 epochs, the root means square error become 
steady. This happen because the model was trained using limited experimental data.  

 

(a) (d) 

(b) (e) 

(c) (f) 
Fig. 7: (a)-(f). The MFs before (a-c) and after (d-f) training process. 

 
Table 4: Details of ANFIS model. 

ANFIS Info 
Number of nodes: 34 
Number of linear parameters: 32 
Number of nonlinear parameters: 18 
Total number of parameters: 50 
Number of training data pairs: 20 
Number of checking data pairs: 3 
Number of fuzzy rules: 8 
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Fig. 8: Convergence of ANFIS training. 

 
To verify the performance of the proposed ANFIS model, the following measures were used. The root 

mean squared error (RMSE) in (6) was used to quantify the difference between predicted and actual values. 
Meanwhile, the prediction accuracy (A) in (7) was computed to determine the accuracy of the prediction models. 
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where n  is number of testing data, av is experimental value and pv is predicted value. Three testing dataset 

from separated experiment were used to verify the proposed model.  
 

Table 5: Result of the ANFIS model with linear output. 
Input Triangular Gaussian 
Power Voltage Temp. 2-2-2 3-3-3 4-4-4 5-5-5 2-2-2 3-3-3 4-4-4 5-5-5 
5 100 280 5.60 4.70 4.28 4.95 5.06 4.72 4.29 4.47 
6.5 150 350 11.04 10.94 13.74 3.46 11.78 10.85 14.67 4.90 
7 145 450 13.24 13.96 15.97 3.03 14.85 15.87 14.77 4.58 
Input Bell Shape Trapezoidal 
Power Voltage Temp. 2-2-2 3-3-3 4-4-4 5-5-5 2-2-2 3-3-3 4-4-4 5-5-5 
5 100 280 4.81 4.82 4.24 4.42 4.46 4.81 4.05 4.31 
6.5 150 350 11.83 10.51 15.34 4.70 12.08 9.79 17.04 2.61 
7 145 450 14.96 16.62 13.52 4.43 14.86 18.25 10.65 1.77 

 
Meanwhile, Table 5 and 6 show the hardness values for the ANFIS models with different type of output 

(linear or constant), different shapes of input membership function (triangular, trapezoidal, Gaussian and bell) 
and different number of membership function (2, 3 and 5). From the tables, the value of hardness for all MFs 
with five shapes indicated far from the target values. The hardness result for model with two, three and four 
MFs showed around the target values. This pattern happen for both constant and linear output MFs.  
 
Table 6: Result of the ANFIS model with constant output. 

 Input Triangular Gaussian 
Power Voltage Temp. 2-2-2 3-3-3 4-4-4 5-5-5 2-2-2 3-3-3 4-4-4 5-5-5 
5 100 280 5.89 4.62 4.15 4.97 5.62 4.57 4.12 4.49 
6.5 150 350 10.11 10.88 12.08 3.25 10.15 11.32 12.52 4.86 
7 145 450 11.54 13.47 16.50 3.41 11.65 15.12 15.63 4.80 
Input Bell Shape Trapezoidal 
Power Voltage Temp. 2-2-2 3-3-3 4-4-4 5-5-5 2-2-2 3-3-3 4-4-4 5-5-5 
5 100 280 5.49 4.66 4.22 4.43 5.29 4.73 4.51 4.33 
6.5 150 350 10.21 11.36 13.03 4.75 10.27 11.23 14.57 2.72 
7 145 450 11.62 15.68 14.97 4.61 11.82 16.93 13.28 2.00 
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Table 7 and 8 show the RMSE and prediction accuracy of the ANFIS models for linear and constant 
output respectively. The tables indicate that the 2-2-2 and 3-3-3 structure gave high prediction accuracy with 
greater than 85%. In the table 7, the 3-3-3 triangular MFs obtains the highest prediction accuracy and the lowest 
RMSE with 94.15% and 0.4884 respectively. Meanwhile, the table 8 shows that the 2-2-2 trapeziodal MFs 
obtains the highest prediction accuracy with 93.75%. Otherwise, the lowest RMSE is indicated by the 3-3-3 
triangular MFs with 0.6344. 

 
Table 7: The RMSE and the prediction accuracy of the ANFIS model with linear output. 

Performance 
Measures 

Triangular Gaussian 
2-2-2 3-3-3 4-4-4 5-5-5 2-2-2 3-3-3 4-4-4 5-5-5 

RMSE 0.7344 0.4884 2.2938 7.5642 0.9345 1.0510 2.5971 6.3809 
A (%) 92.79 94.15 78.84 50.03 92.83 91.21 78.69 55.28 
Performance 
Measures 

Bell Shape Trapezoidal 
2-2-2 3-3-3 4-4-4 5-5-5 2-2-2 3-3-3 4-4-4 5-5-5 

RMSE 1.0115 1.4201 2.9850 6.5143 1.1765 2.3700 4.4476 8.4515 
A (%) 90.74 91.99 75.97 53.95 87.96 86.33 62.49 44.40 

 
Table 8: The RMSE and the prediction accuracy of the ANFIS model with constant output. 

Performance 
Measures 

Triangular Gaussian 
2-2-2 3-3-3 4-4-4 5-5-5 2-2-2 3-3-3 4-4-4 5-5-5 

RMSE 1.5922 0.6344 1.7865 7.4427 1.4934 0.8696 1.6483 6.2847 
A (%) 88.75 92.67 82.08 50.37 90.83 90.53 82.54 55.75 
Performance 
Measures 

Bell Shape Trapezoidal 
2-2-2 3-3-3 4-4-4 5-5-5 2-2-2 3-3-3 4-4-4 5-5-5 

RMSE 1.4995 1.0930 1.7337 6.4135 1.3764 1.6894 2.5553 8.3101 
A (%) 91.79 89.65 83.10 54.61 93.75 87.54 79.57 41.23 

 

Table 9 shows comparison of the best ANFIS model with fuzzy and RSM models in terms of RMSE and 
prediction accuracy. The fuzzy and the nonlinear RSM model were constructed based on same types and three 
input parameters. From the comparison, the 3-3-3 triangular linear ANFIS model indicates the highest 
prediction accuracy and the lowest RMSE compared to the others.  

Fig. 9 shows the scatter diagram of the measured and predicted coating hardness (GPa) for the 3 testing 
value using RSM, fuzzy, ANFIS with triangular MFs 3-3-3 linear and ANFIS with trapeziodal MFs 2-2-2 
constant models. It shows that the predicted values of ANFIS model between 4.7 to 14.2 GPa in a good 
agreement and follow the ideal center line very closely. In other words, the ANFIS model can be a good option 
in predicting hardness value of TiAlN coating for certain combination of input parameters. 

 
Fig. 9: Scatter diagram of the measured and predicted coating hardness (GPa) for the testing data using RSM, 

fuzzy, ANFIS TriMFs 3-3-3 linear and ANFIS TrapMFs 2-2-2 constant models. 
 

Table 9: Comparison of ANFIS model with single fuzzy and RSM model 
Performance Measures ANFIS Linear TriMFs 3-

3-3 
ANFIS Constant TrapMFs 2-
2-2 

Fuzzy 
TriMFs 5-9 

RSM model (Md 
Nizam 2010) 

RMSE 0.4884 1.3764 2.898 0.6782 
A (%) 94.15 93.75 78.95 92.56 
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Conclusion: 

In this study, the ANFIS model was used in predicting the hardness of TiAlN coatings. The 20 
experimental data were used for the model training purpose and 3 testing dataset were used for validation. The 
input parameters were the sputtering power, substrate bias voltage and substrate temperature. Meanwhile, the 
hardness of TiAlN coatings was selected as the output response. The triangular, trapezoidal, bell and Gaussian 
shapes were selected as input membership function with number of membership function were two, three, four 
and five. The linear and constant output were determine as the type of output membership function. After the 
training process, the RMSE became steady after 2 epochs.  A major changes obviously could be seen on the 
shape of POWER membership function. However, only slightly changes happened to the shapes of the 
VOLTAGE and TEMPERATURE membership functions. The result showed that the 2-2-2 and 3-3-3 structures 
of ANFIS model gave a good prediction accuracy with greater than 85%. The ANFIS model also better than 
fuzzy and RSM model in terms of RMSE and prediction accuracy with the  same input parameters and data. The 
result also indicated that the ANFIS model could predict the output response with high accuracy even using the 
limited experimental data for training purpose.  
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