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In this paper, immune systems and its relationships with multi-robot shepherding prob-
lems are discussed. The proposed algorithm is based on immune network theories that
have many similarities with the multi-robot systems domain. The underlying immune
inspired cooperative mechanism of the algorithm is simulated and evaluated. The pa-
per also describes a refinement of the memory-based immune network that enhances a
robot’s action-selection process. A refined model, which is based on the Immune Network
T-cell-regulated—with Memory (INT-M) model, is applied to the dog-sheep scenario.
The refinements involves the low-level behaviors of the robot dogs, namely shepherds’
formation and shepherds’ approach. These behaviors would make the shepherds to form
a line behind the group of sheep and also obey a safety zone of each flock, thus achiev-
ing better control of the flock and minimize flock separation occurrences. Simulation
experiments are conducted on the Player/Stage robotics platform.

Keywords: memory-based immune systems; immune network; multi-robot cooperation;
shepherding.

1. Introduction

Usually mobile robots need to interact and engage with one another in order

to achieve assigned tasks more efficiently. These autonomous multi-robot systems

would be highly beneficial in assisting humans to complete suitable tasks. In such

systems, distributed intelligence is highly needed in the team whereby decisions are

processed in each individual robots.1,2 Furthermore, these robots would need to

have the mechanism to cooperate so that they would achieve the assigned task.3,4
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Biological systems are examples of distributed information processing that are

capable of solving problems in living organisms in a distributed manner. These bi-

ological systems include neural networks in the brain that is capable of processing

information through impulses at the synapses, genetic systems in constructing the

organism genes and immune systems which protect and maintain the homeostatic

state of the living organism. Biological immune systems are particularly interest-

ing, not only because they have no central processing but also exhibit cooperative

capability among the antibodies in maintaining the internal stable environment of

the body.

This leads to the advances in research on Artificial Immune Systems (AIS) and

the application of AIS in engineering fields particularly in Multi-Robot Systems

(MRS) domain.1,3,5 Situations faced by multi-robot systems require real-time pro-

cessing and response. Furthermore, such situations would also require these systems

to be robust to changes in the environment and some unexpected events, such as

failure of robots in the team. Thus, mimicking the biological immune system is

appropriate.

This paper proposes a refinement upon the memory-enhanced immune system

algorithm to achieve better shepherding behavior in a team of multiple shepherds.

Using the algorithm inspired by the immune network theory, the robots have the

capability of performing their task in a dynamically changing environment. The

proposed refined algorithm is applied to the dog and sheep scenario.5,6 Simula-

tion experiments are arranged to investigate the refinements performance using the

stated scenario.

2. Inspiration from Immunology

This section explains the principle of the biological immune response and the Id-

iotypic Network Hypothesis which describe the cooperative behavior achieved by

immune systems in vertebrate organisms. This is followed by the generic relation

between immune systems and multi-robot systems.

2.1. Biological immune systems

Immune system is a system that eliminates foreign substances from an organism’s

body. These foreign substances such as bacteria, fungi or virus cells that can harm

the host are called pathogens. When such substance activates an immune response

it is called antigen, which stimulates the system’s antibody generation. Each type

of antigen has a unique set of identification on its surface called epitope. These

antigenic determinants are where the host’s antibodies would attach to by using

their paratope, as shown in Fig. 1. Antibodies are cells in the immune system that

kill antigens in order to maintain the host homeostatic state—i.e. balancing the

body’s health status.

The immune system can be divided into two general categories, innate immunity
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Fig. 1. Antigen-antibody binding and Jerne’s Idiotypic Network Theory.

and adaptive immunity. Innate immunity is the first line of defense of the immune

system. Generic pathogens that can be recognized and killed by the innate immunity

cells would not be able to harm the host further. However, certain disease carrying

antigens would bypass this defense mechanism because the innate immunity does

not adapt to antigens that originate from various types of illnesses. The adaptive

immunity would then play its role through the use of lymphocytes which are gen-

erally known as white blood cells. Lymphocytes have two main types, T-cells that

mainly help in recognizing antigen cells and B-cells that mainly produce antibodies

to fight specific antigens. In humans, T-cells are primarily produced in the thymus

while B-cells are produced in bone marrows. These innate and adaptive immune

responses make up effective and important defense mechanism for living organisms.

2.2. Biological immune response

The immune response can be described in six general phases of recognition and

activation. Pathogen; which are cells from outside of the host organism; is ini-

tially digested by Antigen Presenting Cells (APC) where it is broken down into

peptides.7 These peptides will then bind to Major Histocompatibility Complex

(MHC) molecules, then presented on the APC surface. T-cells recognize these differ-

ent APC receptors and thus become activated. They divide and release lymphokines

that transmit chemical signals to stimulate other immune system components to

take action. B-cells would then travel to the affected area and be able to recognize

the antigen. This would activate the B-cells which then mature into plasma cells.

Plasma cells are the ones which release specific antibody molecules that neutralize

the particular pathogens.

This immune response cycle results in the host’s immunity against the antigen

which triggers it, thus having protection in future attacks.7 Prominent characteris-

tics of the immune system is that there is no central control of the lymphocytes in
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fighting antigens that invade the host and the system’s adaptability in responding

to various kind of antigens. The B-cells cooperatively merge at the affected area and

produce appropriate antibodies for that particular situation. This phase of immune

response exhibits cooperative behavior of the related cells.

2.3. Idiotypic network hypothesis

Studies in immunology have suggested that antibodies are not isolated but they

‘communicate’ with each other. Each type of antibody has its specific idiotope, an

antigen determinant as shown in Fig. 1. Jerne who is an immunologist proposed

the Idiotypic Network Hypothesis (also known as Idiotypic Network Theory) which

views the immune system as a large-scale closed system consisting of interaction

of various lymphocytes (i.e. B-cells).8,9 Referring to Fig. 1, idiotope of antibody i

stimulates antibody i+1 through its paratope. Antibody i+1 views that idiotope

(belonging to antibody i) simultaneously as an antigen. Thus, antibody i is sup-

pressed by antibody i+1. These mutual stimulation and suppression chains between

antibodies form a controlling mechanism for the immune response.7

Farmer et al. proposed differential equations of Jerne’s idiotypic network

theory.10 These equations consist of antibodies’ stimulus and suppression terms,

antigen-antibody affinity, and cell’s natural mortality rate. This large-scale closed

system interaction is the main mechanism that can be used for cooperation of multi-

robot systems.

2.4. Immune systems and multi-robot systems

The relationship of the immune systems with multi-robot systems is evident where

obstacles, robots and their responses are antigens, B-cells and antibodies respec-

tively. Table 1 lists the parallel terminologies of MRS and immune systems that are

being used in this paper.

Table 1. Immune Systems and MRS relationship

Immune Systems Multi-Robot Systems

B-cell Robot
Antigen Robot’s Environment
Antibody Robot’s action
T-cell Control parameter
Plasma cell Excellent robot
Inactivated cell Inferior robot
Immune network Robots interaction
Stimulus Adequate robot stimulation
Suppression Inadequate robot stimulation

Immune network theory as previously described is suitable as a basis for em-

ulating cooperative behavior in a multi-robot environment. This is because the
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immune network uses affinity measures that are dependent on other cells concen-

tration and location in determining the next action. Other than that, multi-robot

systems require recognition ability of obstacles and other robots, which is parallel

to the immune system recognition and activation phase of an immune response.

Obviously, in immune network the processing of information is done in real-time

and in a distributed manner—as what a multi-robot system requires.

3. Immune Inspired Multi-Robot Shepherding

3.1. Immune-based swarm behaviors

Sun et al. have proposed a model based on Farmer’s immune network equation that

involves T-cells as control parameter which provides adaptation ability in group

behavior.11 The advantage of adding the T-cell model is that the system adapts

quickly to the environment by recovery of antibody concentration to the initial

state, when antigens have successfully been removed. Thus, the system is more

adaptable to environmental changes.

The group control or coordination phase is done in a distributed manner via

local communication between nearby robots. When a robot encounters other robot

and both have the same or similar strategy, this strategy is stimulated; if not, the

strategy is suppressed. This facilitates the group to self-organize towards a common

action which is optimal for the local environment. If a robot is stimulated beyond

a certain threshold—which makes it an excellent robot, its behavior is regarded

as adequate in the system such that it can transmit its strategy to other inferior

robots. This is a metaphor of the plasma cell in the biological immune systems.

3.2. Multi-robot shepherding problems

The application domain of multi-robot shepherding is complex, as there are many

robot shepherds trying to control a constantly moving flock which comprises of

several robots. Some of the approach proposed assumes that the shepherds have

a global view of the current environment.12,13 However, this assumption makes it

not a fully distributed approach. Other than that, usually it is assumed that the

shepherds have some a priori information regarding the dynamic situation—such

as the total number of robots in the flock.

Another problem is regarding the propagation of local group behavior. Other

proposed approaches rely on propagation using one-to-one basis (i.e. during two

robots encounter).5,11 To achieve a more precise description of the local neighbor-

hood environment, local group behaviors should be propagated within the robots’

local neighborhood radius.

3.3. The INT-M model

In biological immune response, there is a Clonal Selection process, whereby various

B-cells try to identify the antigen. Once the appropriate B-cell is selected, it is
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activated and multiplied (i.e. proliferate) so that adequate immune response could

be mounted later. The activated B-cells will proliferate and differentiate into Plasma

cells that will secrete specific antibodies and Memory cells which will be in the host

body for quite a long time.7 These memory cells will act as catalysts in mounting

a quick immune response to the same antigen in the future.

In order to improve the approach by Sun et al., a specific memory mechanism is

proposed in order to retain the appropriate action for relevant environment condi-

tion. This mechanism is introduced when the newly sensed environment is similar

to the previous environment. Thus, a quick action-selection process can be executed

without the need of re-evaluating the new situation.

The approach is named as Immune Network T-cell-regulated—with Memory

(INT-M) which involves modeling the memory part of the biological immune

systems.14 The general algorithm is shown in Algorithm 1 which is an extension

of Sun et al. approach. The algorithm being displayed is for each robot in the

group, and uses Eq. (1), (2) and (3).

Si (t) = Si (t− 1)+





α

N−1
P

j=0

(mij−mji)sj(t−1)

N
+ βgi − ci (t− 1)− ki






si (t− 1) (1)

si (t) =
1

1 + exp (0.5− Si (t))
(2)

ci (t) = η (1− gi (t))Si (t) (3)

In Eq. (1), (2) and (3), Si(t) is the stimulus value of antibody i where i, j =

0 . . .N , N is the number of antibody types. mij is the mutual stimulus of antibody

i and j, which is detailed in Table 2. gi is the affinity of antibody i and antigen,

which can arbitrarily be assigned using a function. A simple step function is used

to assign the antigen to antibody affinity values, i.e. gi as shown in Table 3. si(t) is

the concentration of antibody i. The difference with Farmer et al. immune network

equation is that sj(t) is not the concentration of self-antibody, but that of other

robot’s antibody obtained by communication.

Table 2. Mutual stimulus coefficient, mij

robot i \ robot j Ab0 Ab1 Ab2 Ab3

Aggregation, Ab0 1.0 -0.4 -0.2 -0.4
Search, Ab1 -0.4 1.0 -0.4 -0.2

Dispersion, Ab2 -0.2 -0.4 1.0 -0.4
Homing, Ab3 -0.4 -0.2 -0.4 1.0
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Algorithm 1 Immune Network T-cell-regulated—with Memory (INT-M)

Require: t = 0, Si(0) = si(0) = 0.5 for i = 0 . . .N − 1, N is number of actions

Ensure: retain previous Ab if robot is excellent and environment is similar

Abmax ← Ab1, robot ← inferior, environment ← similar

loop

Execute Abmax

if robot 6= inferior then {robot is activated (i.e. excellent)}

if gi(t) ≈ gi(t− 1) then {environment sensed is similar to previous}

Si(t)← Si(t− 1), si(t)← si(t− 1), ci(t)← ci(t− 1)

else

environment ← changed

end if

end if

if (robot = inferior) ‖ (environment = changed) then

for i← 0 to N − 1 do

calculate Si(t), si(t) and ci(t)

end for

if Si(t) > τ̄ then

robot ← excellent

else if Si(t) < τ then

robot ← inferior

if robot encounter robotexcellent then

for all i do

receive Abi and renew si(t)

end for

end if

end if

end if

if Abi has max(si(t)) then

Abmax ← Abi

end if

t← t + 1

end loop

Eq. (3) is the T-cell model whereby ci(t) is the concentration of T-cell which

controls the concentration of antibody i. ki is a constant that represents the cell’s

death rate in biological immune systems. α, β, and η are constants, whereby α
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Table 3. Antigen-antibody affinity stimulus function, gi

(other index values remain as 0.0)

Task Detected (%) Task Density gi values

(66 – 100] High g0 = 1.0
(10 – 66] Medium g1 = 1.0
( 0 – 10] Low g2 = 1.0

0 None g2 = 1.0, g3 = 0.5

and β are parameters of response rate of other robot and the environment (anti-

gen) respectively. In biological immune systems, helper T-cells activate B-cells when

antigen invades, and suppressor T-cells prevent the activation of B-cells when the

antigen has been eliminated thus ensuring that the system adapts quickly to the

environment by recovery of antibody concentration to the initial state. The respec-

tive values of 0.622 and 0.378 are for the upper (τ) and lower (τ ) thresholds based

on Eq. (4) and (5), are used in determining whether a robot becomes an excellent

(i.e. plasma cell) or an inferior (i.e. inactivated cell) robot.

τ =
1

1 + e−0.5
= 0.622 (4)

τ =
1

1 + e0.5
= 0.378 (5)

3.4. Shepherding test scenario

In this paper we investigate shepherding behavior of robots. Shepherding behavior is

similar to a flocking behavior but having agents/robots outside of the flock guiding

or controlling the members.12,13 It is similar to multiple combat Unmanned Ground

Vehicle (UGV) systems scenario.15

A distinct part of this study is that we are looking into the refined low-level

behavior of the memory-based immune network cooperation approach by the robots

(i.e. dogs) in maintaining the herd (i.e. sheep). This utilizes better shepherding

control in addition to the advantage of memory in the action-selection phase.

In a dog and sheep problem, a few dogs try to guide a few sheep to the grazing site

(also called the safety zone) without going beyond the borders.6 Dogs are required

to cooperate in shepherding the sheep which are moving away from the dogs or

wandering randomly inside the area. The objective is to herd the sheep into the

grazing site while having partial information of what is happening in the area.

Fig. 2 shows the screen-shot of the dog and sheep scenario.

This problem is highly dynamic and obviously requires the robots to have real-

time processing of partial information of the environment. The robot dogs use

the proposed immune-inspired approach in cooperating with one another while the

robot sheep have basic avoidance and flocking behaviors. Furthermore, the robot
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Fig. 2. The Dog-Sheep problem environment with four robot dogs at the bottom-left corner while
the smaller robots are the sheep—the grazing site is at the middle of the enclosed field and the
bottom-left circle is to mark the robot dogs’ start position.

dogs also uses the Vector Field Histogram (VFH+) algorithm provided in the simu-

lation platform for obstacle avoidance and goal-seeking behaviors, i.e searching for

the shepherds’ positions with respect to the herd.16

3.5. INT-M refinement

Multiple shepherds pose a few underlying problems regarding the interaction be-

tween the shepherds and the flock.13 The proposed refinement of the INT-M model

is focused only on the Shepherds’ Formation and Shepherds’ Approach aspects. This

refinement is then applied onto the dog and sheep scenario.

The formation involves the robot dogs to line-up behind the group of sheep so

that the flock can be better controlled. The approach is also refined as in when a

robot dog move towards a sheep it will obey the safe zone of that sheep, so that the

sheep would not be influenced by the incoming dog. This will achieve a lower flock

separation occurrences, thereby having better shepherding behavior. Fig. 3 is the

depiction of the proposed refinement of the model by having the robot dogs forming

a line behind the group of sheep.

4. Immune Network Inspired Cooperative Mechanism

This section is to test the underlying immune inspired cooperative mechanism,

with regard to the stimulation and suppression of antibodies amongst the group of
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Fig. 3. An example of the refinement of low-level shepherding behavior: robot dogs lining-up (the
grazing site is located at the top-right corner).

robots. Simulation experiments were conducted to verify the proposed cooperation

mechanism.

The values for the constants are α = 0.0, β = 0.05 η = 0.05 and k = 0.002

which follows Sun et al. values, except for η which is our own value.11 At the start

of simulations, the values for gi are set to 0.0 except for g2 (Dispersion) and g3

(Homing) are assigned 1.0 and 0.5 respectively.

Robot 4 starts with not seeing any of the tasks (i.e. percentage of tasks detected

is 0.0%), although assumption is made that all robots are within each others’ com-

munication range. This may happen for instance when robot 4 is facing another

direction from the rest of the group. Meanwhile, the other robots are assumed to

have already detected 75.0% of the task at start time. Furthermore, it is assumed

that all robots remain geographically static over time.

Fig. 4–7 display the average for each antibodies’ concentration value (i.e. si)

over time that was run for several times. The antibody (i.e. strategy) with the

highest concentration (i.e. maximum value) of si will be selected by the robot to be

executed.

4.1. Response to environmental changes

In order to test the response of robot 1–3 towards changes in its environment, all

of the robots’ tasks detected values are changed to 0.0% at t = 50. Fig. 4 shows the

effects of this, whereby slower increase of robot 1–3 Ab2 (Dispersion) value and the

gradual decrease of their Ab0 (Aggregation) value can be seen. This is due to the

fact that only robot 4 is influencing this behavior to the other three robots.

For testing the response of robot 4 to environmental changes, the task detected

of all robots are assigned to 75.0% at t = 50. Fig. 5 displays a steeper and faster

increase of Ab0 (Aggregation) and decrease of Ab2 (Dispersion) respectively. This

signifies a higher level of influence onto robot 4 by the other three robots.
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Fig. 5. Ab0 to Ab3 are the average of robot 1–3, robot 4 starts with 0 task density then changed
to detect 75.0% of the task (like the other robots) at t = 50.

4.2. Propagation of stimulation and suppression of antibodies

Simulations are run to evaluate the propagation of stimulation and suppression of

various antibodies among the group of robots. These will show that the local group
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behavior is propagated within the neighborhood. In Fig. 6 robot 4 gradually becomes

Excellent, then at t = 50 it is set to be Inferior. The figure shows that in almost

instantly robot 4 receives the ‘better’ strategy (Aggregation, Ab0) from the other

robots. However, since its local task detected remains 0.0%, Ab2 is still stimulated.

Robot 4 eventually becomes Excellent again and thus selects Ab2 (Dispersion) once

more—as it would much more ‘believe’ what it can sense. This happens at t ≈ 110

as shown in Fig. 6.
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Fig. 6. Robot 4 becomes Excellent over time, then changed to be Inferior at t = 50 thus almost
instantaneously receives the strategy (i.e. Ab) from the other robots—which in this case is Ab0
(Aggregation)—but later changed back as it returns to be Excellent once again.

Fig. 7 shows as robot 4 gradually becomes Excellent, it continues to choose (i.e.

‘believe’) Ab2 (Dispersion) strategy—which is suited to its locally sensed environ-

ment (i.e. no task detected). It remains to focus on it’s locally sensed environment,

however its Ab0 (Aggregation) is highly stimulated because of the propagation of

this strategy from the other robots. The other robots’ Ab2 strategy is also stimu-

lated.

5. Simulation Experiments

The proposed approach as described in Algorithm 1 together with the refine-

ments is applied to the dog and sheep problem and adjusted where necessary. The

Player/Stage simulation platform on a Fedora 9 Linux operating system is being

used to test the refined model.17 Simulation data had been collected to analyze the

behaviors of the simulated robots.
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5.1. Simulation setup

The range for the robot dogs are set to five meters for forward sight (i.e. laser) and

20 meters for emulating sense of hearing. The field is constructed of a walled field

with the size of 40 meters each side. The grazing site is situated at the center with a

radius of five meters and each sheep that have entered it will stop. Each experiment

is limited to a limit of five minutes (i.e. 300 seconds — used in Figs. 8 and 9) and

it is done for six times, then the average values are calculated.

5.2. Performance criteria

The performance can mainly be measured on two aspects. The average distance of

the flock that is shepherd into the grazing site (which is known as Average Distance

to Origin), and also the average percentage of sheep left in the field (which is

known as Average Incomplete Tasks) after the maximum time is up. The average

percentage of incomplete tasks criterion signifies the ability to maintain the balance

of the overall goal of shepherding all the sheep and also completing it within the

specified time.

5.3. Simulation results

Fig. 8 shows the average distance of the flock (in relation to the origin) over time.

There are three flock sizes in the experiment — from two sheep up until four sheep

in a herd. The figure indicates that in average the group of sheep is able to be
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contained within the flock. This reflects on the refinements applied to the dogs’

shepherding behavior. Furthermore, the average distance of flocks with four sheep

is quite stable over time. However, flocks of size two do show a relatively smoother

transition over time—indicating that the flock is quite manageable.

 0

 5

 10

 15

 20

 25

 0  50  100  150  200  250  300

di
st

an
ce

 (
m

)

time, t

Average Sheep Distance to Origin

flock size 2
flock size 3
flock size 4

Fig. 8. Average Distance to Origin.

Fig. 9 shows the average percentage of sheep still outside of the grazing site over

time. The figure suggests that in average there will at least be some sheep that

can be shepherd into the grazing site, because after the time is up all of the flock

sizes have less than 80% of incomplete tasks remaining. Nonetheless, the average

incomplete tasks percentage for all flock sizes are not less than 60%. In general,

flocks of size two can achieve lower incomplete task rate within the time limit. On

the other hand, flocks with four sheep display quicker response that might indicate

a trend.

6. Conclusions

In this paper a refined memory-based immune system inspired approach for shep-

herding in multi-robot systems has been proposed. We have described the basic

concepts of biological immune systems, and argued that the immune network is

a suitable analogy for multi-robot shepherding problem. The underlying immune

inspired cooperative mechanism had been described and tested. We have also pro-

posed refinements on the multi-robot cooperation algorithm—the INT-M model,

and applied it to the dog-sheep test scenario. Simulation experiments had been
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carried out to evaluate the cooperative mechanism and the whole approach.

The approach can be extended to other application domains which require sev-

eral agents (robots) to work cooperatively in a distributed way in a dynamic envi-

ronment. It can further be implemented on real robots such as the e-pucks to obtain

the algorithm performance in real world situation.18
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