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This paper reports on modelling decision problems associated with condition monitoring by 

providing some scientific support to maintenance decision making. In this study, a 

Spectrometric Oil Analysis Programme (SOAP) is used as monitoring measures for diesel 

engines used in ships. Using the residual time at a monitoring check as the condition of the 

diesel engines, we seek to establish the relationship between the residual time and the total 

wear concentrations which are available from SOAP data. These metal concentrations are 

treated as concomittent variables which are influenced by the residual time. We also used 

lubricant measurements data acting as covariates that may increase/decrease the residual time. 

The formula for finding a residual time distribution is presented using a filtering technique 

and a method for estimating the model parameters is discussed. Once the distribution of the 

residual time is known, a decision model can be established to recommend the optimal 

maintenance actions in terms of cost, availability or any criterion of interest. 
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1. INTRODUCTION 

The residual time of a machine tends to be a highly uncertain and may depend upon several 

variable factors. In the case of oil analysis, the moment lubricant oil enters an operating 

machine; it begins to deteriorate as it becomes contaminated with wear metal debris, 

oxidation by-products and external substances such as water, dirt and/or process material. A 

high level of oil contamination is usually an indication of the presence of a mechanical or 

lubricant degradation, which if left unattended could lead to extensive damage or failure of 

the machine. Using a SOAP data, it provides us with two types of condition monitoring data, 

i.e. metal concentration data and lubricant condition data. In theory, metal concentration is a 

good indicator that indicates the wear processes that are occurring within the engines. By 

defining the residual time as a representation of the wear process the relationship between the 

residual time and metal concentration may be established. Since wear is the roots cause of the 

observed metal concentrations the relationship between wear (residual time) and metal 

concentration is one way namely the amount of wears determines the total metal 

concentrations in a stochastic way, but not vice versus. We call for now these metal 

concentration data as concomittent variables. The lubricant condition monitoring on the other 

hand determines if the lubricant itself is fit for continue used based on some performance 

measures. Changes in the operating state of a machine i.e. stress and load can have a 

substantial effect on the results. Even more importantly, the lubrication schedule within the 

plant and the types of additions and changes made to the working lubricant within the 

machine will have a profound effect on the lubricant analysis. Therefore, this information by 

itself has great value in determining the condition of both the lubricant and the machine to be 

used in maintenance decision making.    
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In a parallel work, (Hussin and Wang, 2006) we had shown how the residual time of an 

engines used in ships can be modelled using total metal concentrations based on SOAP 

analysis. However, SOAP analysis can detect metals element up to 8 microns in size, which 

implied that the larger metals are not detected. Hence, we might not capture more information 

that could tell us about the exact accumulated metal concentration in engines. However, 

SOAP also provides lubricant performance measures as an indicator of lubricant performance, 

which could influence the engine wear. Hence, we are interested to develop a residual time 

prediction model that combined the information given by metal concentration and the 

lubricant data.  

 

2. MODELLING DEVELOPMENT 

This development of a new model is similar with a model which had developed in other 

works, (Wang and Christer, 2000; Wang, 2002; Wang, 2004), (Zhang, 2004) and (Wang and 

Zhang, 2005) but with a few new extensions as we embed lubricant data as a factor that could 

increase or decrease the residual time. For the purpose of model building, we list notation as 

follows:    

 

2.1 Notations  

ix  is a residual time at time it . 

iy  is a type of concomittent monitoring information which reflects the condition of the engine 

state. iy  is random and the relationship between ix  and iy  is described as )|( ii xyp . 

iz  is a type of covariate monitoring information which may influence ix   but is assumed not 

having influence in iy .  This is because if both of the measurements are correlated, it is 

sufficient to use only one measurement. Thus, at this early stage, a simple analysis has been 

carried out from data that support our assumption, that there are no correlation between iy  

and iz .   


ix  is the residual time before information iz  is taken at time it . In our case, both information 

iy  and iz  are available at the same time.    


ix  is the residual life after the information iz  is taken at time it .  

iY  and iZ  are the monitoring history for iy  and iz  which takes the values of 

   ii zzzyyy ,,,,,,, 2121  .   

 

2.2 Formulations 

Our objective is to find the residual time distribution given the information of metal 

concentration and lubricant data, i.e. ),|( iii ZYxp   at time it . To start with, we defined the 

residual time adopted from (Wang and Christer, 2000) as  
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no maintenance intervention,    
(1) 

The relationship between 

ix and 

ix  can be shown as below   


ix = izB

i ex
  

 
(2) 

where B  is a parameter that defines the influence of iz and  iz  is  1 ii zz . Noted that if 

iz  is a vector than this relationship can be presented as  
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where M  is the size of the vector.  For the sake of simplicity, we will use a scalar to explain 

the influence of iz  in the model. We will deal with this vector while fitting the model with 

data. Hence, equation (2) and (3) can be explained as follows,   

1. if 0 iz , then   ii xx  which means the residual time remains the same. 

2. if 0 iz ,   ii xx  which means the residual time becomes shorter, the system is 

deteriorating.  

3. if 0 iz ,   ii xx  which means the residual life becomes more longer, the system is 

improving.  

We seek to establish the ),|( iii ZYxp   and adopted from (Wang and Christer, 2000), it can be 

written as    

),|( iii ZYxp   = ),,|( 1 iiii ZYyxp 
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and after some manipulation, equation (4) can be written as  

),|( iii ZYxp   = 
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(5) 

 

Equations (4) and (5) are important that explained how the condition monitoring data is taking 

into account in the model with two key issues that need further explanation. 

ix  measures the 

residual time from new, taking consideration the concomittent variables and covariates. Since 

0Y  and 0Z , are not available at 0t  in most cases, we therefore set )(),|( 0000 xpZYxp  , 

which is the pdf  of the machine life.  

The next stage is to establish the relationship between the observed information, iy  and iz , 

with the residual time, 

ix , which can be established by a probability distribution (Wang and 

Christer, 2000). Generally, we expect that a short residual time, 

ix , will generate a high 

reading in iy . However, taking consideration of covariates, iz  should increase or decrease the 

residual time, 

ix . This relationship is modelled in equation (1). The value of )( 0xp  and 

)|( 

ii xyp  can be freely chosen from any distribution and it can be shown that (5) can be 

determined recursively if )|( 00 Yxp  and )|( 

ii xyp  are known. As an example, Weibull 

distribution is chosen to represent both )( 0xp  and )|( 

ii xyp . Generalizing to the ith  terms,  

),|( iii ZYxp   can be written as  

),|( iii ZYxp   = 
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3. PARAMETER ESTIMATION  

To be able to use equation (6) we need to know the parameters within equation (6). The 

model parameters are estimated in two steps, with the first step is to estimate the parameters 

in )( 0xp , namely  , the scale, and  , the shape parameters of the Weibull distribution as a 

failure distribution. This can be done because from our assumption that iy  is dependent on 

ix , but ix  is independent of iy . The second step is to estimate a , b ,  , 1B , 2B , 3B  and 4B  

which is in )|( ii xyp  from the observed data.  

At every time checking it , two pieces of information are valuable to us. The first is the 

observed monitoring information, iy  with their history, 1iY  and the second is if the engine 

has survived over it , their residual time is 11   iii ttx . Furthermore, if the last observation 

is the failure at time, ft (assuming we have this information, which in practice is hard to 

obtain), nf tt  , where nt  is the time of the last monitoring check, its contribution to the 

likelihood function is )|( nnfn Yttxp  .  The likelihood function for a single item using this 

approach becomes, 
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where )|( 1ii Yyp can be written as, 
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After some manipulation, the log likelihood function of all observation points can be written 

as  
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4. FITTING THE MODEL TO THE DATA  
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In order to fit data to the model, we need to prepare data that is suitable for the model’s 

requirements. To prepare the required data from metal element information, we used the 

analysis that yields total wear metal concentrations, (Hussin and Wang, 2006). For data 

preparation from oil performance measurements, instead of using the original oil data values, 

we applied a concept called independent component analysis (ICA). This is carried out for 

two main reasons; the first is to normalize the scale of each individual oil performance 

measurement and the second is to identify the possibility of reducing the dimensions of the 

monitored variables for oil performance. Normalization of the scale of the parameters is 

important, as each parameter has its own scale and it was noted from the literature, (Lukas 

and Anderson, 1996) and discussion with persons familiar with similar types of data that these 

variables are very much correlated among themselves. Therefore, ICA can be used to 

calculate the contribution of each parameter.  

4.1 Independent Component Analysis (ICA) 

ICA of a random vector X consists of finding a linear transformation Wxs ˆ  so that the 

components iŝ  are as independent as possible, in the sense of maximizing some function 

)ˆ,.....,ˆ( 1 mssF  that measures independence. To begin the discussion of ICA, we can express 

the entire system of n  measured signals and m  observations as  

Asx  :             
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We refer to each original independent signal as s . Each measured signal x  can be expressed 

as a linear combination of the original independent signals. A  is an nm  mixing matrix that 

generates x  from s . Hence, the goal of ICA, given the observation x , is to calculate matrix 

A  and the set of independent s  values.  In order to perform this task, our intention is to find a 

matrix W (the inverse of A ) such that, if it is applied to x , it yields a dataset ŝ  that is as 

independent as possible and thus approaches the unknown signals s . 

Wxs ˆ :   
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In our case we have 4 variables from lubricant measurement, i.e. INS, KV, TBN and WC.  

INS measures the build-up of insoluble combustion-related debris and oxidation products. 

High INS values will cause lacquer formation on hot surfaces, sticking of piston rings and 

wear of the cylinder liner and bearing surfaces, which indicates a contamination of the 

system. Kinetic viscosity (KV) is the most important property of a lubricant. Increased oil 

viscosity will cause wear of bearings and running surfaces, thus high KV indicates that the 

system has been contaminated. WC is a quantification of water contamination, where water in 

a lubricant will promote corrosion and oxidation. An increase again shows that the system has 

been contaminated. The total base number (TBN) of a used lubricant is a measurement of its 

ability to neutralize acids. A low TBN will cause more corrosion and thus indicates oil 

contamination. (Lukas and Anderson, 1996). It should be noted that each of these variables 

influences the others, so that applying ICA as a technique to separate linearly mixed sources 

seems promising. Several approaches to making ICA estimations are available. In this 

research, the FastICA package developed for Matlab application and designed by Aapo 

Hyvärinen at Helsinki University of Technology has been applied, (Hyvärinen and Oja, 

1997). Thus, for every set of data, the transformation is made from the original value of 

lubricant variables to a set of independent variables. The transformed data will be used for 
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further analysis. As noted above, ICA has the possibility of reducing the dimensions of the 

variables, although this is not it main purpose. This analysis was conducted on our data set, 

and while conducting the whitening process, the eigenvalues of the first principal component 

of uncorrelated variables showed a range of values from 55 to 95%. This strongly suggests 

that the dimensions could not be reduced, hence we decided to use the entire set of variables 

in the model. Having all the data required in hand, we first estimated the parameter values for 

our model. We randomly selected 22 sets of data for this purpose and the results are shown 

below. 
Table 1: Estimated parameters from observed data 

   a  b    
1B  2B  3B  4B  

0.00106 0.00021 1.19712 0.03321 0.01672 0.03516 0.06309 

 

The variances of the estimated parameters are relatively small for all parameters, which tell us 

something about variability around the mean. Thus, we can say that the parameter estimates 

were good. The covariance of each parameter is literally small, indicating that there are no 

relationships between variables. Using the estimated parameters, we calculated our residual 

model, ),|( iii ZYxp  , using the remaining dataset. Figure 1 below shows one of the results for 

residual time distribution. The dotted straight line in the plot indicates the actual residual life. 

It is shown that the variance of the pdf of the residual time becomes smaller as we have more 

information.   

 Figure 1: pdf and actual residual time for engine 830001/28 

 

 

5. MODEL COMPARISON  

To show the comparison of this new model with the model developed in other work, (Hussin 

and Wang, 2006), Figure 2 below shows the plots of distribution of residual life at the last 

monitoring point for a testing dataset. From Figure 2 it can be seen that the new model gives a 

new prediction that is significantly better that the previous one. Thus, it is concluded that the 

more condition monitoring data is used, the better the model estimation becomes. 
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Figure 2: pdf residual time of engine 830001/28 at the last observation point using total metal 

concentration. 

 
 

5.1 The Decision Model 

The essential decision to make at different monitoring point is whether we should replace the 

engine or not given all information available. If the answer is yes then what is the best time 

for such replacement, and should we wait until a suitable production window such as a 

scheduled shutdown arrives? Suppose, we need to develop a decision model, therefore a 

decision variables itself might depend on several criteria’s such as cost, reliability, safety or 

any criterion of interest. To show an example, we adopt a decision model developed by 

(Wang and Christer, 2000) as 
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(11) 

where   

)(tC  is the total expected cost per unit time   

t  is the current monitoring point measured from new 

T  is the planned replacement time 

)|( iii YtTxP   is the probability of the residual time at time t  

fC  is a failure cost  

pC  is a preventive cost 

The decision model above assumes that the cost monitoring cost is negligible. Suppose that 

the mean cost of a failure replacement is 10 times higher than the mean cost for a preventive 

maintenance, using the estimated parameter and equation (11) above we compute the decision 

model on a life dataset. At every at every t  time, we could identify the best time to carry out a 

preventive replacement, T . We show one example. The diesel engine is monitor for 72 data 

points from new and the interval between monitoring is 9.2 days and failed at 658.2 days of 

operation. We notice that from  

Figure 3 that the expected cost per day is decreasing at early stage until it starts to increase at 

th69  monitoring point. This suggested that if preventive replacement is carried out, the cost 

should be minimized. This shows that our model works well to recommend the preventive 

replacement before the failure occurs. 
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Figure 3: Expected cost per day in terms of planned replacement at time t  given that the current 

monitoring check is time t  

 

6. CONCLUSION  

This paper has outlined a new development of conditional residual time where the previous 

approach is enhanced with some data that we assume will increase or decrease the residual 

time. This was done by first assuming that the residual time is a function of observed 

concomittent monitoring data, y . Then, we set up a relationship indicating how the residual 

time will change with the covariates, z . Issues such as the possibility of the covariates being 

correlated with each other were solved by using ICA. By providing the data required by the 

model, we then estimated the model parameters using the maximum likelihood approach. The 

results from parameter estimation were sufficiently good to justify proceeding with fitting the 

model to the data. The results of this approach were satisfactory, showing better prediction 

than the previous model with the same dataset. Thus it is concluded that more information 

leads to better a prediction.  

 

REFERENCES  

Hussin, B. and W. Wang (2006). Maintenance Decision Making Using Condition Monitoring 

Data: A Study From  Oil Analysis Salford Postgraduate Annual Research Conference, 

Salford, University of Salford. 

Hyvärinen, A. and E. Oja (1997). "A Fast Fixed-Point Algorithm for Independent Component 

Analysis. , 9, 1483-1492.  ." Neural Computation(9): 1483-1492. 

Lukas, M. and D. P. Anderson (1996). "Lubricant Analysis for Gas Turbine Condition 

Monitoring." American Society of Mechanical Engineers(Paper): 1-12. 

Wang, W. (2002). "A Model to Predict the Residual Life of Rolling Element Bearings Given 

Monitored Condition Information To Date." IMA Journal of Management 

Mathematics 13: 3-16. 

Wang, W. (2004). Modelling identification of the initial point of a random fault using 

available condition monitoring information. 5th IMA International Conference, 

University of Salford, UK. 

Wang, W. and A. H. Christer (2000). "Towards A General Condition-based Maintenance 

Model For A Stochastic Dynamic System." Journal of The Operational Research 

Society 51(2): 145-155. 

Wang, W. and W. Zhang (2005). "A Model to Predict the Residual Life of Aircraft Engines 

Based Upon Oil Analysis Data." Naval Research Logistics(52): 276-284. 



IMEC2006, ChengDu, China 

 
A-9 

Zhang, W. (2004). Stochastic Modelling And Applications In Condition Based Maintenance. 

Centre For Operational Research And Applied Statistics, School Of Accounting, 

Economics And Management Science. Manchester, University Of Salford, UK: 129. 

 
 


