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Abstract— In this paper, a new approach in predicting the 
flank wear of Titanium Aluminum Nitrite (TiAlN) coatings 
using Adaptive Network Based Fuzzy Inference System 
(ANFIS) is implemented. TiAlN coated cutting tool is widely 
used in machining due to its excellent resistance to wear. The 
TiAlN coatings were formed using Physical Vapor Deposition 
(PVD) magnetron sputtering process. The substrate sputtering 
power, bias voltage and temperature were selected as the input 
parameters and the flank wear as an output of the process. A 
statistical design of experiment called Response Surface 
Methodology (RSM) was used in collecting optimized data. The 
ANFIS model was trained using the limited experimental data. 
The triangular, trapezoidal, bell and Gaussian shapes of 
membership functions were used for inputs as well as output. 
The results of ANFIS model were validated with the testing 
data and compared with fuzzy rule-based and RSM flank wear 
models in terms of the root mean square error (RMSE), co-
efficient determination (R2) and model accuracy (A). The result 
indicated that the ANFIS model using three bell shapes 
membership function obtained better result compared to the 
fuzzy and RSM flank wear models. The result also indicated 
that the ANFIS model could predict the output response in 
high prediction accuracy even using limited training data.  

Keywords- ANFIS technique; flank wear; TiAlN coatings; 
PVD magnetron sputtering 

I.  INTRODUCTION 
In high-speed machining process, the cutting tool is 

consistently dealing with high localized stress at the tool tip 
and high temperature which exceeds 800°C. In this process 
too, the cutting tool slides off the chip along the rake face 
and the newly cut workpiece surface [1]. These conditions 
are causing tool wear, reducing the cutting tool 
performances and quality of parts and deteriorating the tool 
life. The tool wear problem also could be influenced by 
workpiece material, cutting interface, cutting tool 
performance and geometry, and machine condition. In 
addition, tool wear condition has a direct effect on the 
economics of cutting operations, final product quality and 
process reliability [2]   

Meanwhile, the cutting tool with high resistance wear 
promises better tool life and directly reduces machining 
cost. This performance could be enhanced by applying the 
thin film coating on the cutting tool. The main purpose of 
the thin film coating application is to improve the tool 
surface properties while maintaining its bulks properties. 
The performance of the coated tool has been proven in wear 
mechanism [3], hardness and adhesion [4] and tool life [5]. 
It is also has been ascertained that the coated tool is forty 
times better in tool wear performance compared to the 
uncoated tools [6]. This finding promises prolonging of tool 
life and enables the implementation of minimum liquid 
lubrication to reduce cost of coolant that makes up 16 to 
20% of manufacturing cost [7]. This finding too contributes 
in minimizing environmental impacts produced by 
discarding of cutting fluid [8]. 

Physical Vapor Deposition (PVD) coating process plays 
essential roles in order to make the cutting tool perform 
better. It has been selected as a main coating process in hard 
coating purposes. However, two main challenging issues 
that need to be encountered in the coating process are cost 
and customization. The challenge to ensure reasonable cost 
in the process of coating and efficient process of treatment 
should be well-addressed as it directly affects the cutting 
tool market value [9]. Besides the equipment maintenance, 
other reasons that lead to high machining costs are the 
material usage and labor and the number of trial-and-error 
experiment. The new application of coating to the other 
process such as drilling and milling also are causing other 
trial and error experiments so that it could suit the 
parameters with the material used. Therefore, many 
researchers have developed models to address the coating 
process issues. Model development reduces resources 
wastage such as materials, equipment utilization, human 
resources and working time related to the trial and error 
experiments run. 

The coating process model is very useful to predict the 
coating performances while looking for the optimized value. 
However, limited number of experimental data due to 
experimental cost issue is a major constraint in modeling 
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work. Various techniques such as design of experiment [10], 
neural network [11], fuzzy logic [12] and Adaptive Network 
Based Fuzzy Inference System (ANFIS) have been applied. 
The design of experiment approaches like Taguchi, full 
factorial and Response Surface Methodology (RSM) are 
widely used to collect optimum and minimum experimental 
data [13].  

The ANFIS model is trained by using actual experimental 
data. Then, the rules can be modified by expert. The ANFIS 
has been proven to be well-suited for modeling nonlinear 
industrial processes such as end-milling [14, 15], welding 
[16], water jet machining [17] and wire electrical discharge 
machine (WEDM) [18] . In view of the nonlinear conditions 
of a the magnetron sputtering coating process, the ANFIS 
model is employed for predicting the flank wear value of 
TiAlN coatings. So far, there is no study has been carried 
out on application of ANFIS technique for predicting the 
flank wear of TiAlN coatings. The main purpose of this 
study is to investigate the application of ANFIS model for 
predicting the flank wear of TiAlN coatings by using limited 
number of experimental data. Part II explains how the 
experimental data was collected. Part III describes how the 
ANFIS modeling was done. Part IV indicates and discuss 
the result of the study. 

II. EXPERIMENTAL DETAILS  

A. Material and Method 
In this study, the experiment was run in unbalanced 

PVD magnetron sputtering system made by VACTEC 
Korea model VTC PVD 1000. Fig. 1 shows the PVD 
magnetron sputtering system. The coating chamber has two 
vertically mounted TiAl alloys which were selected as 
coating material. The chemical compositions of the TiAl 
alloy were titanium and aluminum with even percentage. 
The cutting tool inserts were hold in substrate holders with 
adjustable planetary rotation.  

 

 
Figure 1.  PVD unbalanced magnetron sputtering system VACTEC Korea 

model VTC PVD 1000. 
 
Before the coating process, the surface of tungsten 

carbide cutting tool insert was cleaned with alcohol bath in 
an ultrasonic cleaner. After a 20- minute-bathing, the 
substrates were dried and then loaded in the rotating 
substrate holder. The rotation speed was set at 5 rpm. Then, 

an inert gas, Argon was pumped into the chamber with 
controlled gas pressure. Argon was used to produce 
electron. The nitrogen gas was also pumped in as a reactive 
gas. The substrate was coated with the alloy in the presence 
of nitrogen gases. 

The coating process consisted of substrate ion cleaning, 
deposition of interlayer coating of TiAl and deposition of 
TiAlN coating. In order to produce better adhesion, the 
impurity on the substrate surface was removed through the 
substrate ion cleaning process. The coefficient of thermal 
expansion gradient between the insert and TiAlN coatings 
was minimized through the interlayer coating deposition of 
TiAl. Then, the coating process was done in the presence of 
nitrogen gas to produce TiAlN. The detail process settings 
of the three stages are shown in Table I. A design of 
experiment technique called Response Surface Modeling 
(RSM) centre cubic design using Design Expert software 
version 7.03 was used to develop the experimental matrix. 
After the experiment, the influences of sputter power, bias 
voltage and substrate temperature on the coating flank wear 
were analyzed. 

TABLE I.  THE EXPERIMENT SETTING 

Process Substrate 
ion 
cleaning 

Interlayer 
coating 
deposition  

TiAlN 
deposition 

Argon pressure (mbar):  
N2 pressure (mbar): 

Ion source power (kV/A): 
Substrate bias (V): 

Duration (mins): 

5.5 x 10-3 
- 
0.24 / 0.4 
-200 
30 

4.0 x 10-3 
- 
0.24 / 0.4 
-200 
5 (0.2 µm) 

4.0x 10-3  
0.4 x 10-3  
0.24 / 0.4 
-50-300 
90  

 

B. Flank Wear Measurement 

 

Figure 2.  GATE-Precision milling machine and lathes model G-410-TCV   
 

The flank wear of coated cutting tool for single point 
turning was determined based on the ISO 3685:1993(E) 
standard. The wear of twenty tungsten carbide cutting tool 
inserts coated with TiAlN were measured.  The coated tools 
were focused to dry turning of steel using GATE-Precision 
milling and lathe machine model G-410-TCV, as shown in 
Fig. 2.  The details of turning process are shown in Table II. 
The flank wear was measured using Axiomat 2 microscope 
with Axiovison software. Fig. 3 shows a example of flank 
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wear from the experiment. Table III shows the flank wear 
values of the machined coated cutting tools.  

TABLE II.  DETAILS OF TURNING PROCESS 

Item Details 
Process 
Workpiece material 
Machine type 
Feed rate, (mm/rev) 
Depth of cut, (mm) 
Cutting speed, (m/min) 
Fixed cutting length (m)  

Dry turning 
D2 X115Cr VMo121 steel 

MAMOC lathe model SM200 
0.26 

1.6 
200 
18 

 
 

 

Figure 3.  Flank wear on the coated tool (white arrow) 

TABLE III.  PROCESS PARAMETERS AND EXPERIMENTAL RESULT OF 
TIALN COATINGS FLANK WEAR 

Run Process variables  Result 

 

Sputter 
Power 
(kW) 

Bias 
Voltage 
(Volts) 

Substrate 
Temp. 
(°C) 

 Flank 
Wear 
(mm) 

1 6.00 50.00 400.00  2.29 
2 4.81 100.67 518.92  1.08 
3 4.81 249.33 281.08  0.73 
4 6.00 175.00 400.00  1.40 
5 6.00 175.00 200.00  0.94 
6 4.81 100.67 281.08  2.01 
7 7.19 249.33 281.08  1.92 
8 6.00 175.00 400.00  0.57 
9 6.00 175.00 400.00  1.26 
10 4.81 249.33 518.92  1.97 
11 7.19 100.67 281.08  1.18 
12 6.00 175.00 600.00  1.72 
13 7.19 249.33 518.92  0.35 
14 6.00 175.00 400.00  0.86 
15 8.00 175.00 400.00  0.27 
16 6.00 300.00 400.00  1.03 
17 7.19 100.67 518.92  0.93 
18 4.00 175.00 400.00  0.56 
19 6.00 175.00 400.00  0.85 
20 6.00 175.00 400.00  0.83 

 
 

III. ANFIS MODELING 

Adaptive Network Based Fuzzy Inference System (ANFIS) 
was presented by Jang in 1993 [19]. In this system, a hybrid 
learning procedure is used to construct an input-output 
mapping based on the human knowledge and training data 
pairs. The fuzzy inference system is employed in the 
framework of adaptive networks. ANFIS is normally 
contains a five-layer feed forward neural network excluding 
inputs to construct the inference system. Each layer consists 
of several nodes described by nodes function. The nodes in 
previous layer feed input to nodes in next layer.  

 
Figure 4.  The ANFIS structure with five layers and nodes [20] 

 

The Fig. 4 illustrates the structure of ANFIS with five 
layers. To illustrate the procedures of an ANFIS, it is 
assumed that the system has two inputs (x1, x2) and one 
output (y). The ANFIS rules based contains fuzzy if-then 
rules of Sugeno type. The rules can be stated as: 

 
Rule 1: If x is A1 and y is B1 then z is f1(x,y) 
Rule 2: If x is A2 and y is B2 then z is f2(x,y) 

 
where x and y are the inputs of ANFIS, A and B are the 
fuzzy sets fi (x, y) is a first order polynomial and represents 
the outputs of the first order Sugeno fuzzy inference system. 

TABLE IV.  PARAMETERS SETTING FOR ANFIS MODEL  

ANFIS Setting Details 
Input Variables 
Output Response 
Input MFs Type 
 
No. of MFs 
Output MFs Type 
Optimization Method 
 
 
Epochs 

Power, Voltage, Temperature 
Flank Wear 
Triangular, Trapezoidal, Bell, 
and Gaussian   
2,3 and 5 
Constant and linear 
Hybrid of the least-squares and 
the back propagation gradient 
descent method.  
100 

 
In this study, three variables were selected for inputs of 

the ANFIS model to predict an output response. In order to 
find the best combination, three parameters in the ANFIS 
model were adjusted which were the type of input 
membership function (MFs), number of MFs and the type of 
output MFs. The model were developed using different 
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shape of input membership function (MFs) type which were 
triangular, trapezoidal, bell and Gaussian shapes, with 
number of the MFs were two, three and five. In purpose of 
training the model, a hybrid of the least-squares method and 
the back propagation gradient descent method was used to 
emulate a given training data set. The constant and linear of 
output MFs type were employed to produce the flank wear 
value. The details of model setting is shown in Table IV. 
The details of ANFIS model is shown in Table V. 

TABLE V.  DETAILS OF ANFIS MODEL 

ANFIS Info 
Number of nodes: 78 

Number of linear parameters: 108 
Number of nonlinear parameters: 27 

Total number of parameters: 135 
Number of training data pairs: 20 
Number of checking data pairs: 3 

Number of fuzzy rules: 27 
 

IV. RESULT AND DISCUSSION 
After the training process, the initial membership functions 
for input variables were derived by training. Fig. 5 (a)-(c) 
show the initial of MFs, while Fig. 5 (d)-(f) show the final 
MFs of the constant output.  

 
(a) (d) 

 
(b) (e) 

 
(c) (f) 

 
Figure 5.  The MFs for the input variables before (a-c) and after (d-f) 

training 
 

From the figures, a major change obviously can be seen 
on the shape of POWER membership function after the 
training process. Otherwise, the membership functions of 
the VOLTAGE and TEMPERATURE indicated only a 
slight changes. Fig. 6 shows the convergence of the ANFIS 
training. Meanwhile, the RMSE became steady after 2 
epochs. The limited number of data cause the converging 
process is very fast and steady in that epoch. 
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Figure 6.  Convergence of ANFIS training 

 
To verify the performance of the proposed ANFIS model, 

the following measures were used. The root mean squared 
error (RMSE) in (1) was used to quantify the difference 
between predicted and actual values. Meanwhile, the co-
efficient determination (R2) in (2) was calculated in order to 
see how well the future output response is likely to be 
predicted by the model. Lastly, the prediction accuracy (A) 
in (3) was computed to determine the accuracy of the 
models.  
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where n  is number of testing data, av is experimental value 

and pv is predicted value.  
Three testing dataset from separated experiment were 

used to verify the proposed model. The testing dataset is 
shown in Table VI. Meanwhile, Table VII shows the wear 
values for the ANFIS models with different type of output 
(linear or constant), different shape of input membership 
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function (triangular, trapezoidal, Gaussian and bell) and 
different number of membership function (2, 3 and 5).  

TABLE VI.  VALIDATING DATA 

Testing Power 
(kW) 

Volt 
(V)  

Temp. 
(°C)   

Actual  
Result 

wear 1 5 100 280 1.97 
wear 2 6.5 150 350 0.97 
wear 3 7 145 450   0.73 

TABLE VII.  RESULT FOR ANFIS MODEL WITH DIFFERENT TYPE AND 
NUMBER OF MFS 

MFs 
Linear Constant 

wear 1 wear 2 wear 3 wear 1 wear 2 wear 3 

T
ri

M
F 2 2.030 0.929 0.854 1.980 1.390 1.230 

3 1.970 1.190 0.827 1.610 1.060 0.642 

5 2.300 0.366 0.317 1.970 0.295 0.285 

T
ra

pM
F 2 2.060 1.270 0.587 1.910 1.240 0.754 

3 1.850 0.839 0.659 1.520 0.962 0.516 

5 2.000 0.251 0.186 2.010 0.254 0.209 

B
el

lM
F 2 2.033 1.193 0.863 2.100 1.350 1.130 

3 1.923 0.940 0.728 2.030 0.312 0.263 

5 2.040 0.484 0.360 2.000 0.345 0.197 

G
au

ss
M

F 2 2.011 1.072 1.003 1.850 1.330 1.170 

3 1.960 1.015 0.740 2.030 0.930 0.360 

5 2.040 0.484 0.360 1.990 0.410 0.268 

 
Table VIII shows the RMSE, R2 and prediction accuracy 

of the ANFIS models. The result shows that most of the 
models with linear output indicate less RMSE, and higher in 
R2 and A compared to the model with constant output.  

TABLE VIII.  RMSE, R2 AND MODEL ACCURACY FOR THE ANFIS 
MODELS 

MFs 
Linear Constant 

RMSE R2 A(%) RMSE R2 A(%) 

T
ri

M
F 2 0.083 0.996 91.91 0.377 0.942 62.57 

3 0.139 0.990 88.01 0.220 0.965 86.80 

5 0.463 0.883 54.80 0.467 0.839 56.48 

T
ra

pM
F 2 0.199 0.981 81.64 0.160 0.987 88.61 

3 0.110 0.992 90.22 0.288 0.929 82.34 

5 0.521 0.801 49.95 0.512 0.811 50.93 

B
el

lM
F 2 0.154 0.989 85.21 0.327 0.957 66.48 

3 0.033 0.999 98.09 0.467 0.847 55.05 

5 0.355 0.916 65.22 0.475 0.838 53.68 

G
au

ss
M

F 2 0.170 0.986 83.35 0.335 0.949 65.51 

3 0.032 0.999 97.20 0.218 0.972 80.72 

5 0.344 0.924 65.95 0.419 0.874 53.68 

Meanwhile, the model that used 3 bell MFs in the input 
variables indicates the highest prediction accuracy with 
98.09%. On the other hand, the model with 3 Gaussian MFs 
shows the smallest RMSE with 0.032. However, both 
models show the same R2 with 0.999. The smooth shapes of 
the Gaussian and bell MFs helps in variant of fuzzy surface. 

Besides that, Table IX shows the comparison of 3 bell 
MFs of ANFIS model with fuzzy and RSM flank wear 
model [21] in terms of RMSE, R2 and prediction accuracy. 
The comparison used same types and number of input 
variables. From the table, the ANFIS model indicates better 
performances compared to the other models to predict the 
flank wear. 

TABLE IX.  COMPARISON OF ANFIS WITH FUZZY AND RSM FLANK 
WEAR MODELS IN TERMS OF RMSE, R2 AND MODEL ACCURACY  

Performance 
measures 

ANFIS 
BellMFs 3-3-3 

Fuzzy 
TriMFs 5-7 

RSM 
model [21] 

RMSE 0.033 0.2394 0.0714 
R2 0.999 0.972 0.997 
A (%) 98.09 83.42 93.28 

 
Besides that, Fig. 7 shows agreement between actual and 

predicted wear value of the ANFIS, fuzzy and RSM models. 
The Fig. 7 shows that the predicted values of ANFIS model 
has a better agreement with the actual training values 
compared to the fuzzy and RSM models. Therefore, the 
ANFIS model is a good alternative to predict the flank wear 
of TiAlN coatings. 
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Figure 7.  Predicted and measured flank wear value of TiAlN coating 

using ANFIS, fuzzy and RSM model. 

V. CONCLUSION 
In this study, the ANFIS model was used in predicting 

the flank wear of TiAlN coatings. The 20 experimental data 
were used for the model training purpose and 3 testing 
dataset were used for validation. The input parameters were 
the sputtering power, substrate bias voltage and substrate 
temperature with the flank wear of TiAlN coatings as the 
output response. The triangular, trapezoidal, bell and 
Gaussian shapes were selected as input membership 
function with number of membership function were two, 
three and five. The RMSE became steady after 2 epochs and 
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a major change obviously can be seen on the shape of 
POWER membership function after the training process. 
The results in terms of the RMSE, co-efficient determination 
and model prediction accuracy were compared with fuzzy 
rule-based and RSM flank wear models. The results have 
shown that: 
• The ANFIS model that used linear output showed better 

performances compared to the constant output.  
• The ANFIS model with 3 bell MFs in the input variables 

indicated the highest prediction accuracy with 98.09%. 
• Otherwise, the model with 3 Gaussian MFs showed the 

smallest RMSE with 0.032. 
• Both of the models indicated same R2 with 0.999. 
• The ANFIS models with five MFs indicated higher 

RMSE and less R2 and prediction accuracy compared to 
the models with two and three MFs. Therefore, the small 
number of MFs is most suitable to be used in ANFIS 
modeling structure.    

• The 3 bell MFs of ANFIS model showed better 
performances compared to the fuzzy and RSM flank 
wear models in terms of RMSE, R2 and prediction 
accuracy. 

• The better agreement between the measured and 
predicted values of ANFIS model showed that the 
proposed ANFIS model can be a good option in 
predicting TiAlN flank wear.   

• The result also indicated that the ANFIS model could 
predict the output response even using limited 
experimental data for training purpose. 
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