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Abstract—Self-organizing map (SOM) provides both clustering
and visualization capabilities in mining data. Dynamic self-organizing
maps such as Growing Self-organizing Map (GSOM) has been
developed to overcome the problem of fixed structure in SOM to
enable better representation of the discovered patterns. However, in
mining large datasets or historical data the hierarchical structure of the
data is also useful to view the cluster formation at different levels of
abstraction. In this paper, we present a technique to generate concept
trees from the GSOM. The formation of tree from different spread
factor values of GSOM is also investigated and the quality of the
trees analyzed. The results show that concept trees can be generated
from GSOM, thus, eliminating the need for re-clustering of the data
from scratch to obtain a hierarchical view of the data under study.

Keywords—dynamic self-organizing map, concept formation, clus-
tering.

I. INTRODUCTION

S elf-organizing map (SOM) [1] is an unsupervised learning
method based on artificial neural networks. It can produce

a two-dimensional map from a high dimensional data and has
a topology-preserving property that makes cluster analysis be
made easier. SOM is very useful tool in data mining however;
it suffers from several limitations mainly because of its fixed
structure whereby the number of nodes has to be determined
in advance.

The Growing Self-organizing Map (GSOM) algorithm [2]
has been developed to enhance the ability of SOM in repre-
senting the input patterns. The learning of GSOM is similar
to SOM but the structure is dynamic enabling clusters to be
formed without restriction on the map size. GSOM has been
successfully applied in several applications such as in text
mining [3], bioinformatics data mining [4], [5] and also in
intelligent agent framework [6].

Hierarchy is one of the structures that are commonly used
to discover knowledge from data. It is a convenient way to
visualize the multiple-level relationship between the data as
well as to summarize the data from general to specific order.
Traditional agglomerative or divisive hierarchical algorithms
have some disadvantages when used with large datasets. Not
only do they require multiple iterations but the output is also
difficult to interpret. It may result in a huge tree whereby
the nodes and levels cannot be visualized effectively. In the
traditional hierarchical clustering, each instance is in its own
cluster at the lowest level of the hierarchy. Therefore, to
examine all of the clusters for a large dataset in the hierarchy
would be a difficult task. This problem has been highlighted
by Chen et al [7] by clustering a large protein sequence
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database. They have proposed an approach to summarize the
hierarchy by flattening the homogeneous clusters according to
some statistical criteria, resulting in fewer non-leaf nodes and
has more matches against the target clusters, protein families
defined in the InterPro.

Another type of hierarchical structure used in knowledge
discovery is concept hierarchy. Concept hierarchy according to
Han and Kamber [8] is a structure that can be used to represent
domain knowledge such that attributes and attribute values
are organized into different level of abstractions. Concept
hierarchy is also used in Michalski’s conceptual clustering
model following the concept of knowledge organization in
human learning [9]. In the model, knowledge is represented
in a concept hierarchy where instances are classified in top-
down fashion where top signifies more general concepts and
is more specific towards the bottom of the hierarchy. Al-
though conceptual clustering organizes knowledge in a form
of hierarchy similar to other hierarchical clustering techniques,
the structure is different as each node in the hierarchy has
a conceptual description allowing easier interpretation of the
cluster. This is the most important feature of conceptual
clustering that distinguishes the method from the others. The
use of conceptual description in classification model is also
useful in order to discover profiles and to better understand
how the system arrives at a particular solution.

Acknowledging the importance of hierarchy in knowledge
discovery, in this paper, a method to generate concept trees
from GSOM is proposed and investigated. The building of
the concept tree from GSOM has several advantages. Firstly,
a hierarchical structure can be obtained from GSOM without
having to re-run the hierarchical algorithm on the data set.
Secondly, the hierarchy is also summarized (as GSOM clus-
ters), thus, the visualization and cluster interpretation process
is made easier since SOM-based clusters are an accepted data
visualization technique. Thirdly, by constructing the hierarchy
from the GSOM we get both advantages of cluster visualiza-
tion based on self-organizing map and also the hierarchical
clusters. This will help analyst to better understand about the
structure of the data as well as the relationship between the
clusters.

In the next section, we present the detail of GSOM algo-
rithm followed by the building of the concept tree process in
Section 3. In Section 4, experimental results are described.
Section 5 will conclude this paper.

II. GROWING SELF-ORGANIZING MAP

The learning of GSOM is similar to SOM, however GSOM
starts with four nodes and continue adding more nodes when it
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Fig. 1. The process of growing nodes in GSOM

is presented with input. Figure 1 shows the growing of nodes
in GSOM. The topology of GSOM could be rectangular or
hexagonal [5]. GSOM has a parameter called spread factor
(SF) which can be used to control the spread of the map. The
SF value (ranged from 0 to 1) is determined by the analyst
before the training begins. A low SF value will give a less
spread map whereas a high SF value gives a more spread map.
If the analyst wants to observe a finer cluster or subclusters,
a higher SF value can be used.

The growing of nodes in GSOM is actually attributed to the
growth threshold (GT), which utilizes the SF value. The GT
value is calculated as follows.

GT = −D × ln(SF ) (1)

where D is the dimension.
There are three learning phases in GSOM process; initializa-

tion, growing and smoothing phase. In the initialization phase,
weight vectors of the initial nodes are initialized with random
values (0 to 1). The growing phase starts with presenting an
input vector to the network. The weight adaptation at iteration
t is described as follows.

Δwij (t) =

{
α (t)LR (t) (xi (t) − wij (t)) , j ∈ Nt

0, j /∈ Nt
(2)

where α (t) and LR (t) are the learning rate and the neighbor-
hood function at iteration t, respectively. In GSOM algorithm,
the learning rate decay is based on the total number of nodes
at iteration t. The learning rate is reduced as shown in the
following equation.

LR (t+ 1) = α× ψ (n) × LR (t) (3)

where α is the learning rate decay, LR (t) is the learning
rate at iteration t and ψ(n) is a function that takes n, the
current number of nodes. The error values of the winner that
is the difference between the input vector and the weight
vector will be accumulated over iterations. An example of error
accumulation for node i is described as follows.

TEi =
∑
Hi

D∑
j=1

(xi,j − wi,j)
2 (4)

where Hi is the number of hits, D is the dimension of the
data, xi,j and wi,j are the jth dimension of input and weight
vectors of node i respectively. The total error value is used to
indicate the node growth in GSOM.

The smoothing phase in GSOM is the fine tuning of the
quantization error in the network whereby no nodes will be
grown and only weight adaptation process is carried out.

III. BUILDING THE CONCEPT TREE

GSOM algorithm is used as the starting point to cluster
all the instances in the initial dataset. Once the map has
been generated, clusters from GSOM are identified by using
the cluster identification method as in [4]. The identification
method is carried out by clustering the hit nodes on the map
with the k-means algorithm. The k-means algorithm will be
run from k=2 to k=

√
N , where N is the total number of

hit nodes from the map. The best k is selected by using
the Davies-Bouldin (DB) index. The identified clusters from
GSOM become the children of the root, creating the first
level of the tree. The statistics of each cluster in the level
are calculated and stored, becoming the feature or concept
for that cluster. The statistics are obtained from the hit nodes
in the cluster including number of hit nodes mapped to the
cluster as well as the average, sum and sum of square of value
for each dimension. These clusters are refined further to get
the subsequent levels of the tree. To get the second level, the
following algorithm is performed for each cluster (c1i) in the
first level.

A. Refining Clusters at Level 1

In this step, following the minimum spanning tree algorithm
(MST) each hit node in the cluster are linked to the node that
is closest, using the Euclidean distance. We may find groups of
nodes that are linked together forming a set of new clusters.
These clusters will be used to form level two of the initial
concept tree. However, if there is only one hit node in the
cluster passed from level one, the previous step will not be
performed, instead, the hit node itself will directly becomes
the child of cluster c1i in the tree. If the cluster c1i does
not break up into clusters at level 2 (all hit nodes in cluster
c1i link to each other), we make all the hit nodes as children
to cluster c1i. This means the hit nodes have formed a tight
cluster which does not need to be refined further in the next
step. We do not create the new cluster, c2i in level 2 for c1i

to avoid one to one cluster mapping between cluster c1i and
c2i. The algorithm to refine the first level of the tree is shown
in Algorithm 1.

B. Refining Clusters at Level 2

After clusters at level two of the tree have been obtained,
they will be refined by using RefineClusterLevelTwo algorithm
(refer Algorithm 2). In this process, the distance value of
the hit node and its closest node (edge distance) is used to
determine whether the link can be cut off, forming the new
sub clusters. To break the clusters, an outlier detection concept
is used which separate the clusters such that only nodes that
are very close to each other are linked together. There are many
methods that can be used to detect outliers. Han and Kamber
[8] have categorized the methods into four; statistics, distance-
based, density-based local outlier and the deviation based. In
statistics, a simple way to detect outliers is by using quartiles
or box plot method [10]. Another technique is based on the
observation in normal distribution that is, 68% of observation
in normal distribution falls within σ of the mean μ, 95% within
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Input: cluster c1i

Output: sub clusters for c2i at Level 2

if no. of hit nodes in c1i > 1 then
Calculate distance for each node to other nodes in
cluster c1i;
Link each node in c1i to its closest node;
Create a new cluster, c2i in Level 2 such that all
nodes in c2i are linked together in a network-like
connection based on the closest node;
if no. of sub clusters for c1i > 1 then

foreach sub clusters for c1i, c2i to c2n do
Make c2i as a child to c1i;
RefineClusterLevelTwo(c2i)

end
else

Make all hit nodes in c1i as children to c1i;
end

else
Make the single node as child to the cluster c1i;

end
Update statistics for all clusters in Level 2;

Algorithm 1: RefineClusterLevelOne(c1i)

2σ and 99.7% within 3σ of the mean [11]. If data distribution
is assumed normal, points which lies more than 3σ are likely to
be outliers. In RefineClusterLevelTwo algorithm, we present
a technique to refine the cluster by using this concept. The
data points in this case would be all the edge distance values
of the nodes in the cluster. A data point, d is an outlier if
d ≥ kσ + μ or d ≤ −kσ + μ, where k is a positive constant
value, μ is mean and σ is standard deviation. The value of
k need to be supplied by the user to determine the extent of
which distance value can be considered an outlier. All new
clusters from this process become the third level and all the
hit nodes associated to that cluster will be assigned as the
children. Refining clusters at level two completes building of
the concept tree.

C. Measuring the Quality of the Tree

To confirm the reliability of the tree and that the tree
can represent concepts from the data, a quality measure is
employed. The validation of the cluster or partition quality
can be carried out using an external criteria which compares
the match between a clustering structure, C and other partition
(or target structure), P drawn independently from the same set
of data, X [12]. This will gives a measure on how good the
structure is as compared to the expected structure. To obtain
the degree of match, statistical indices such as Rand statistic
[13] and Jaccard’s coefficient [14] can be utilized.

We employed external criteria as used by Widyantoro [15] to
measure the quality of the tree. The method uses Jaccard’s co-
efficient to check the similarity, conceptually and structurally
between clusters in both clustering structures. The conceptual
match CMatch, and structural match, SMatch values will
then be used to get a single value for the hierarchy quality.
CMatch is defined as

Input: cluster c2i

Output: sub clusters at Level 3 for c2i

Get the edge distances for all nodes in c2i;
if edge distance > threshold then

Break the link between the nodes in c2i;
end
Make a new cluster, c3i for nodes that have been
disconnected from the other nodes in c2i;
if no. sub clusters for c2i > 1 then

foreach sub clusters for c2i, c3i to c3n do
Make c3i as a child to c2i;
Put all hit nodes in each cluster c3i as children to
cluster c3i;

end
else

Make all hit nodes in the c2i as children to c2i;
end
Update statistics for all clusters in Level 3;

Algorithm 2: RefineClusterLevelTwo(c2i)

CMatch (NT , NL) =
|ε(NT ) ∩ ε(NL)|
|ε(NT ) ∪ ε(NL)| (5)

where NT εHT and NLεHL are nodes in the target hierarchy,
HT and the concept tree, HL, respectively while ε(N) are the
set of observations (instances) that are descendants of node
N . The degree of structural match, SMatch is

SMatch (NT , N∗L) =

CMatch (Parent(NT ), Parent(N∗L)) (6)

where N∗L is the node in HL that best match with the node
NT in HT as follows.

N∗L = max {CMatch (NT , NL)}
(NL∈HL)∧(NL �=Root)

(7)

The degree of match between HT and HL is defined as

HMatch(HT , HL) =
∑

CMatch(NT , N∗L) ×
SMatch(NT , N∗L) (8)

The maximum score for HMatch is based on the number
of nodes in the target hierarchy, HT . To get the hierarchy
quality measure in term of accuracy or percentage of match
between the target clusters and their best matched clusters
in the concept tree HL, the following quation is used. This
equation takes only distinct target clusters in HT .

Accuracy(TC , HL) =∑
TCi∈TC |ε (TCi) × CMatch(TCi, N∗L)|

|DATA| (9)

where TCiεTC is the ith target cluster in the set of target
cluster TC and DATA is the number of all observations such
that DATA = ∪i ε (TCi) for ∀TCi ∈ TC and ε(TCi) ∩
ε(TCj) = φ.
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Fig. 2. Tree built from GSOM map at SF 0.5

Fig. 3. Tree built from GSOM map at SF 0.9

IV. EXPERIMENTAL RESULTS

A. Data Preparation and Parameter Setting

Zoo data set from UCI machine learning repository [16] is
used to demonstrate the concept tree. The GSOM algorithm
has been run for 30 iterations for both training and smoothing
phases as from the earlier observation, convergence can be
achieved before 30th iteration. GSOM algorithm has been
run for multiple SFs (high and low spread) to investigate the
formation of the tree at different map spread. In the building
of the concept tree, threshold for refining clusters at level two
is set to 1.5.

B. Evaluation of the Tree from Different SF Values

Different SFs give a different formation of trees as for
each SF value, different number of nodes and different weight
values will be generated. The first level of the tree is formed
by clusters obtained from the cluster identification process.
As the lower level will be formed from the upper level, the
number of cluster determined in the first level can also have an
effect on the formation of the tree. The DB Index values across
spread factors from 0.1 to 0.99 are shown in Table I. We show
two concept trees with a high and a low SF to compare the
effect of the SF value to the tree quality. The concept trees
constructed from GSOM map at SF 0.5 and 0.9 are shown
in Figures 2 and 3, respectively. These trees are built such
that the first layer contains clusters which partition gives the
lowest DB index value among the k number of clusters for a
particular SF. As can be seen from the figures, each SF value
gives a different structure of tree. There is not much difference
in the number of hit nodes between the GSOM maps at SF
0.5 and 0.9 with 24 nodes in SF 0.5 map and 28 nodes in SF
0.9. However, map of SF 0.9 spreads more than SF 0.5 and
more detailed nodes have been obtained.

To check the hierarchy quality, we use the hierarchical
clustering algorithm (average linkage) to build the target
hierarchy. Part of the example output using this algorithm is
shown in Figure 4. The hierarchy has been cut into several

levels in order to measure the match at different depth or
granularity. Results presented in Table II. For both SF 0.5 and
0.9, the hierarchy quality is increased for the cut towards the
upper level of the hierarchy. The result shows that the higher
the cut level, more matches in between distinct clusters can be
obtained. It is also the ”summarized structure” compared to
hierarchical clustering in Figure 4. The similarity of instances
between the nodes in the concept tree and the target tree is
further observed to confirm the result for the HQuality measure
(Table III). The nodes are grouped together according to their
parents as shown in Figure 3. It is apparent that most of the
nodes have similar animal type and clear separation of the
animals can be observed. For example, birds populate node
44, 88, 80, 55, 77, 22, 72 and 76 and the nodes have been
combined into a common parent in the tree. Mammals also
have been found to be grouped into distinct nodes according to
their specific features. For instance, node 85 and 99 consist of
mammals which are herbivores whereas node 94 and 66 mostly
are carnivorous mammals. Porpoise, dolphin, seal and sealion
are grouped together in node 102 and share the same parent
with node 110 that contains platypus. Most of the leaf nodes
contain instances that are similar to the concept tree’s nodes.
At cut level 3, there are four large groups; bird, insect and
aquatic animals, aquatic animal together with fish, amphibian
and reptile; and lastly mammal. These groups can be found
at the first level of the concept tree in Figure 3, for instance,
mammals in node 85 to 110 (read from the left to the right
side of the tree), birds in node 44 to 76, aquatic animals and
fish in node 96 to 74, insects and aquatic animals in node
82 to 116, and finally amphibian and reptiles in node 42 and
26. At cut level 2, more detailed branches have been obtained.
Mammals have been separated into three groups with platypus
in one; porpoise, dolphin, seal and sealion in one; and all other
mammals in another. The mammals are separated further in cut
level 1 and 0. At the lower cut, the carnivorous and herbivorous
mammals have been separated which is similar to the mammal
nodes in the concept tree.

V. CONCLUSIONS

In this paper, we have shown that concept tree can be built
from GSOM map. The technique proposed is useful especially
when data set is large and hierarchical structure is needed in
visualizing the multi-level relationship between the clusters.
The formation of the tree from different SF values has also
been investigated and the quality of discovered concepts as
well as the hierarchical structure is found to be reliable with
acceptable accuracy. The generation of summarized hierarchy
from the GSOM map is valuable especially for dataset that
continue to increase in size over time. GSOM algorithm that
works well with large datasets can be employed to obtain the
2-dimensional topological map view of the data and after that
its hierarchical structure can be constructed. The conceptual
description in each node ensures that cluster profiles can be
obtained, facilitating the process of knowledge discovery from
the clusters.
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TABLE I
AVERAGE OF DB INDEX VALUES FOR DIFFERENT SF AND k = 2 TO k =

√
N (k IS NUMBER OF CLUSTERS)

k Spread factor
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

5 - - - - - 0.6042 0.5260 0.6066 0.5178 0.5342
4 - - 0.5733 0.5322 0.6549 0.5993 0.5675 0.6303 0.7074 0.5632
3 0.4263 0.7582 0.6479 0.6673 0.6802 0.7399 0.7354 0.7124 0.7567 0.7480
2 0.5396 0.7165 0.7891 0.6934 0.7779 0.8067 0.8328 0.8063 0.7696 0.8240

TABLE II
HIERARCHY MATCH (HMATCH) AND QUALITY OF DISTINCT CLUSTERS (HQUALITY) FOR THE CONCEPT TREES OF SF 0.5 AND SF 0.9. (THE NUMBER IN

SQUARE BRACKET IS THE MAXIMUM VALUE FOR THE HMATCH)

Spread factor Measure CutLevel 0 CutLevel 1 CutLevel 2 CutLevel 3

0.5 HMatch 20.030 [97] 15.378 [45] 10.392 [24] 2.588 [6]
HQuality(%) 48.727 66.127 79.099 93.105

0.9 HMatch 28.785 [97] 17.462 [45] 11.608 [24] 2.786 [6]
HQuality (%) 60.505 68.723 79.631 91.012

0 1 2 3Cut Level

Fig. 4. The identified mammals group in the hierarchy built using the average
linkage algorithm
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