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ABSTRACT
In this paper, we propose an efficient method for extracting
simple low-degree equations (e.g. quadratic ones) in addi-
tion to the linear ones, obtainable from the original cube
attack by Dinur and Shamir at EUROCRYPT 2009. This
extended cube attack can be successfully applied even to
cryptosystems in which the original cube attack may fail due
to the attacker’s inability in finding sufficiently many inde-
pendent linear equations. As an application of our extended
method, we exhibit a side channel cube attack against the
PRESENT block cipher using the Hamming weight leakage
model. Our side channel attack improves upon the previ-
ous work of Yang, Wang and Qiao at CANS 2009 from two
aspects. First, we use the Hamming weight leakage mod-
el which is a more relaxed leakage assumption, supported
by many previously known practical results on side channel
attacks, compared to the more challenging leakage assump-
tion that the adversary has access to the “exact” value of
the internal state bits as used by Yang et al. Thanks to
applying the extended cube method, our attack has also a
reduced complexity compared to that of Yang et al. Name-
ly, for PRESENT-80 (80-bit key variant) as considered by
Yang et al., our attack has a time complexity 216 and data
complexity of about 213 chosen plaintexts; whereas, that of
Yang et al. has time complexity of 232 and needs about 215

chosen plaintexts. Furthermore, our method directly applies
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to PRESENT-128 (i.e. 128-bit key variant) with time com-
plexity of 264 and the same data complexity of 213 chosen
plaintexts.

Categories and Subject Descriptors
E.3 [Data Encryption]: Code Breaking

General Terms
Security

Keywords
Algebraic cryptanalysis, cube attacks, extended cube,
PRESENT, side channel attacks

1. INTRODUCTION
The cube attack, put forth by Dinur and Shamir at EU-

ROCRYPT 2009 [16], is a generic type of algebraic attacks
that may be applied against any cryptosytem, provided that
the attacker has access to a bit of information that can be
represented by a “low-degree” multivariate polynomial over
GF(2) of the secret and public variables of the target cryp-
tosytem. Dinur and Shamir in [16] compared the cube attack
to some of the previously known similar techniques and s-
tated that the attack generalizes and improves some of those
methods. As some of the previously known similar attacks,
which exploit the vulnerability of ciphers with low-degree
polynomials, we refer to [36, 35].

The cube attack aims to derive low-degree (especially lin-
ear) implicit equations that can be exploited for constructing
distinguishers, e.g. [4], and/or key recovery attacks, e.g. [16,
4]. An interesting feature of the cube attack is that it on-
ly requires a black-box access to a target cryptosystem and
may be applied even if only a few output bits can be accessed
by an adversary. When using the original cube attack [16,
37], one tries to derive independent linear equations over
secret variables of the cryptosystem. This system of linear
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equations can be easily solved to recover the value of the se-
cret variables by using the well-known Gaussian elimination
method.

This Paper. Our work is motivated by the observation
that in most cases, for properly designed cryptographic algo-
rithms, it may not be possible to extract a sufficient number
of independent ‘linear’ equations using the (preprocessing
phase of the) original cube attack. In fact various potential
extensions of the cube attack were suggested to be consid-
ered for future research in [16]. One of the methods to gen-
eralize the original cube attack, left in [16] for future work
without further elaboration, is that one should try to find
and employ some additional low degree nonlinear equations,
e.g. equations of degree 2 or 3, provided that the system of e-
quations is simple (sparse and low degree) and solvable using
existing methods. In this paper we elaborate this idea and
develop an extension of the cube attack to extract such (low
degree) nonlinear equations. To demonstrate the applica-
tion of our extended cube method, we provide a side channel
cube attack against the PRESENT block cipher [10], which
improves upon the previous work of Yang, Wang and Qiao
at CANS 2009.

Side Channel Cube Attack. In attempting to apply
cube attacks to block ciphers, the main problem is that
the degree of the polynomial representing a ciphertext bit
grows exponentially with the number of rounds in the cipher.
Hence, the cube attack usually becomes ineffective after a
few rounds if one considers only the standard attack mod-
el that is used in the well-known statistical attacks, such
as the Differential and Linear attacks. Nevertheless, con-
sidering the practical implementations of the block cipher,
especially in resource limited systems such as smart cards,
there is a stronger attack model, namely the side channel
attack model, where the adversary is given more power by
having access to some“limited”information leaked about the
internal state of the cipher. This information leakage can be
via physical side channels, such as timing, electrical power
consumption, electromagnetic radiation, probing, etc.
We note that the idea of combining algebraic cryptanal-

ysis with side channel attacks was already introduced by
Bogdanov, Kizhvatov and Pyshkin at INDOCRYPT 2008
[8], and also recently investigated in several other works such
as [33, 17, 37]. Compared to the recent side channel cube
attack of Yang et al. [37], our attack in this paper offers two
improvements: it is based on a more relaxed leakage model;
namely, the Hamming weight leakage model, and it has a
better (i.e. reduced) complexity as well. The improved com-
plexity is due to applying the extension of the cube attack,
to derive simple low degree nonlinear (especially quadratic)
equations, which itself is of an independent interest, as the
primary contribution of our paper.

Comparing Side Channel Cube attack of [37] with
Our attack. The leakage model used by Yang et al. [37]
assumes that adversary has access to the exact value of some
of the internal state bits after each round. We note that ob-
taining the exact value of the internal state bits in practice
will require a probe station that allows the attacker to mon-
itor the value of a specific bit position in the internal state
during the encryption or decryption process. This implies
an intrusive physical measurement and is known to involve
a wide range of difficulties such as penetrating the device to
access its internals and guessing which bit position is being

recorded. To relax the leakage model, in contrast, we as-
sume the Hamming weight leakage as a more common side
channel leakage model, e.g. see [2, 7, 13, 14, 28].

From time and data complexity viewpoints, we show that,
for PRESENT-80 (80-bit key variant of PRESENT), our
attack has time complexity of 216 and data complexity of
about 213 chosen plaintexts; whereas, the attack of Yang et
al. has time complexity of 232 and needs about 215 chosen
plaintexts. Also our method directly applies to PRESENT-
128 (i.e. 128-bit key variant) with time complexity of 264 and
the same data complexity of 213 chosen plaintexts, and is the
only attack in this model considered against PRESENT-128.

We should stress that both of these side channel cube at-
tacks against PRESENT, provided by Yang et al. in [37]
and our attack in this paper, need clean leaked data values
(i.e. the exact value of some internal state bits in the case
of [37] and the Hamming weight of the internal state in our
case). Hence, to the best of our knowledge these are only
of a theoretical interest, at the moment, and do not directly
impose any real threat to the security of PRESENT imple-
mentations in practice, where the side channel information
measurements (e.g. power traces, EM radiations, or timing)
are almost always noisy. We refer to [17, 33] for some relat-
ed discussions on the possibility of handling the noisy data
obtained from side channels when combined with the alge-
braic attacks. We note that, the current issue is that these
methods are very sensitive to measurement noise levels and
can only handle very low error rates than what may happen
in practice.

Organization of the Paper. In Section 2 and 4, respec-
tively, we review the cube attack and the construction of the
PRESENT block cipher. Section 3 and 5 contain the main
contribution of this paper, where we provide the notion of
an extended cube for extracting nonlinear equation of low
degree and the details of the improved side channel cube
attack on PRESENT. Section 6 concludes the paper.

2. A REVIEW ON THE CUBE ATTACK
The main point of the cube attack is that, the multivariate

“master” polynomial p(v1, · · · , vm, k1, · · · , kn), representing
an output bit of a cryptosystem over GF(2) of secret vari-
ables ki (key bits) and public variables vi (i.e. plaintext or
initial values), may induce algebraic equations of lower de-
grees, in particular linear equations. The cube attack pro-
vides a method to derive such lower degree (especially linear)
equations, given the master polynomial only as a black-box
which can be evaluated on the secret and public variables.

Let’s ignore the distinction between the secret and public
variables’ notations and denote all of them by xi, · · · , xℓ,
where ℓ = m + n. Let I ⊆ {1, ..., ℓ} be a subset of the
variable indexes, and tI denote a monomial term containing
multiplication of all the xis with i ∈ I. By factoring the
master polynomial p by the monomial tI , we have:

p(x1, · · · , xℓ) = tI · pS(I) + q(x1, · · · , xℓ) (1)

where pS(I), which is called the superpoly of tI in p, does not
have any common variable with tI , and each monomial term
tJ in the residue polynomial q misses at least one variable
from tI . A term tI is called a“maxterm” if its superpoly in p
is linear polynomial which is not a constant, i.e. deg(pS(I)) =
1.

The main observation of the cube attack is that, if we sum
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p over tI , i.e. by assigning all the possible combinations of
0/1 values to the xis with i ∈ I and fixing the value of all
the remaining xis with i /∈ I, the resultant polynomial equals
pS(I) (mod 2). More formally, a subset I of size s (where
s ≤ ℓ) defines a boolean cube CI containing 2s boolean
vectors which are formed by assigning all 2s values to the
xis with i ∈ I, and leaving all the remaining variables (i.e.
xis with i /∈ I) undetermined. For example, if I = {1, 2}
then

CI = {(0, 0, x3, · · · , xℓ), (0, 1, x3, · · · , xℓ), (1, 0, x3, · · · , xℓ),
(1, 1, x3, · · · , xℓ)}

Any vector w ∈ CI defines a derived polynomial p|w
with ℓ − s variables whose degree may be the same or low-
er than the degree of the master polynomial p. Summing
the 2s derived polynomials over GF(2) defined by the vec-
tors in the cube CI , we get a new polynomial pI defined by
pI ,

∑
w∈CI

p|w. The following theorem from [16] states
the main observation used by the cube attack.

Theorem 1. Given a polynomial p over GF(2) with ℓ vari-
ables, and any index subset I ⊆ {1, · · · , ℓ}, we have pI =
pS(I).

Given access to a cryptographic function with public and
secret variables, this observation enables an attacker to re-
cover the value of the secret variables (kis) in two steps,
namely the preprocessing and online phases, which are de-
scribed shortly.

Preprocessing Phase. During the preprocessing phase,
the attacker first finds sufficiently many maxterms, i.e. tIs,
such that each tI consists of a subset of public variables
v1, · · · , vm. To find the maxterms, the attacker performs a
probabilistic linearity test on pS(I) over the secret variables
ki ∈ {k1, · · · , kn} while the value of the public variables
not in tI are fixed (to 0 or 1). For example, the BLR test
of [9] can be used for this purpose. This test requires the
attacker to choose a sufficient number of vectors x, y ∈
{0, 1}n independently and uniformly at random representing
samples of n-bit key, and then for each pair of vectors x
and y, the attacker sums the polynomial p over tI to verify
whether or not each one of them satisfies the relation:

pS(I)[0] + pS(I)[x] + pS(I)[y] = pS(I)[x+ y] (2)

If all the vectors x and y satisfy the relation, with high
probability pS(I) is linear over the secret variables; that is,
tI is a maxterm. Then the next step is to derive linearly
independent equations in the secret variables kis from pS(I)

that are closely related to the master polynomial p, such
that, solving them enables the attacker to determine the
values of the secret variables.

Online Phase. Once sufficiently many linearly independen-
t equations in the secret variables are found, the preprocess-
ing phase is completed. In the online phase, the attacker’s
aim is to find the value of the right-hand side of each lin-
ear equation by summing the black box polynomial p over
the same set of maxterms tIs which are obtained during
the preprocessing phase. Now, the attacker can easily solve
the resultant system of the linear equations, e.g. by using
the Gaussian elimination method, to determine the values
of the secret (key) variables.

3. EXTENDED CUBE: DERIVING LOW DE-
GREE EQUATIONS

3.1 The Main Observation
Based on the the output of the BLR linearity test [9],

which is used in [16] during the process of finding a max-
term; i.e. tI with associated linear superpoly pS(I), we can
distinguish the following cases:

1. If the test output is “success”, i.e., all (tested) vectors
x and y satisfy relation (2) then we have either:

• a superpoly that is constant 1 ; i.e. pS(I) = 1,
which trivially satisfies relation (2) for any pair
of vectors x and y.

• a non-exist superpoly, which may happen if tI is
neither a monomial nor a common subterm of
some monomials in the master polynomial p, and
hence cannot be factored out. This makes pI = 0
for any pair of vectors x and y, and hence both
sides of equation (2) evaluate to 0.

• a linear superpoly, which is the case if neither of
the previous two cases (i.e. constant 1 or non-
exist case) happens.

2. If the test output is “fail”, i.e., at least one pair of
vectors x and y is found not satisfying relation (2)
then the superpoly pS(I) is nonlinear.

Note that the above observation is the basis for construct-
ing a distinguisher as shown in [4], which was then formal-
ized as Lemma 1 in [1] as shown below.

Lemma 1 ([1]). Let p be a given (black-box) master polyno-
mial over GF(2) in ℓ variables x1, · · · , xℓ; I ⊆ {0, 1, · · · , ℓ};
s = |I|, and tI denote the multiplication of xis with i ∈ I.

Let pI ,
∑

w∈CI
p|w be the derived polynomial obtained by

summing p over the cube CI (cf. Sec. 2). tI exists in p, either
as a monomial or as a common subterm of some monomi-
als, if and only if there exist at least a vector x ∈ {0, 1}ℓ−s

which gives pI [x] =
∑

w∈CI
p|w[x] = 1.

Next, we propose an efficient method for deriving non-
linear equations of low degree. We introduce the notion of
extended cube to efficiently extract nonlinear equations of
degree D as follows.

Definition 1. Adopting the notion of a boolean cube CI (cf.
Sec. 2), where I ⊆ {1, · · · , ℓ} is the index subset and s = |I|,
an extending cube CK indexed by a subset K ⊆ {1, · · · , ℓ} of
size r (i.e. r = |K|) such that I ∩K = ϕ, can be combined
with the cube CI to construct a larger extended cube as CI∪K

consisting of 2r+s boolean vectors formed by assigning 2r+s

values to xis with i ∈ I ∪ K, and leaving all the remaining
variables (i.e. xis with i /∈ I ∪K) undetermined.

To illustrate Definition 1, let I = {1, 2} and K = {3}, then

CI∪K = {(0, 0, 0, x4, · · · , xℓ), (0, 0, 1, x4, · · · , xℓ), · · · , (1, 1, 1,
x4, · · · , xℓ)}

Any vector w ∈ CI∪K defines a derived polynomial p|w with
ℓ− (r+ s) variables whose degree may be the same or lower
than the degree of the master polynomial p. Summing the
2r+s derived polynomials over GF(2) defined by the vectors
in the extended cube CI∪K , we get a new polynomial p(I∪K)
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defined by p(I∪K) ,
∑

w∈CI∪K
p|w. Thus, we can revise the

notion of tweakable master polynomial p in equation (1) as

p(x1, ..., xℓ) = tI ·XK · pS(I∪K) + q(x1, ..., xℓ) (3)

where tI is a subterm of size s over xis with i ∈ I; XK is
a subterm of size r over xis with i ∈ K, and pS(I∪K) is the
superpoly of tI · XK in p. Note that since we factored out
both subterms tI and XK from p, the superpoly pS(I∪K)

does not contain any common variable with tI and XK , and
each term tJ in the residue polynomial q misses at least
one variable from tI · XK . Now using the main theorem
of the cube attack (namely, Theorem 1), if we sum p over
‘tI · XK ’, by assigning all the possible combinations of 0/1
values to the xis with i ∈ I ∪ K and fixing the value of all
the remaining xis with i /∈ I ∪K, the resultant polynomial
equals to pS(I∪K) (mod 2); i.e. p(I∪K) = pS(I∪K).
This observation enables the attacker to derive nonlinear

superpoly equations of degree D over the secret variables kis
in two steps; namely the preprocessing and online phases, as
described in the following.

3.2 Attack Phases
Preprocessing Phase. During the preprocessing phase to
derive polynomial equations pS(I)s of degree D, the degree d
of the master polynomial p should be estimated in some way
such as through the known structure of the cipher or using
a variant of the random walk as proposed in [20]. Knowing
the degree d of the master polynomial enables the attacker
to know the size of tI (i.e. s = d − D) in order to find the
nonlinear superpoly of degree D. Next, the attacker finds
many monomials tIs, such that each tI consists of a subset
of public variables v1, · · · , vm, and the corresponding super-
poly pS(I) is a polynomial of degree D. To find those tIs,
the attacker chooses a monomial tI of size s one at a time
and performs the generalized version of the BLR test as pro-
posed by Dinur and Shamir in [16] on pS(I) over the secret
variables k1, · · · , kn, while the value of the public variables
vis with i /∈ I are fixed (to 0 or 1). For example, if one uses
this generalized version of the BLR test to capture the su-
perpoly pS(I) of degree 2, κ sets of vectors x,y, z ∈ {0, 1}n
, representing samples of n-bit secret keys, are chosen inde-
pendently and uniformly at random, and then for each pair
of vectors x, y and z the attacker sums the polynomial p
over tI to verify whether or not each one of them satisfies
the relation:

pS(I)[0] + pS(I)[x] + pS(I)[y] + pS(I)[z] + pS(I)[x+ y]+

pS(I)[x+ z] + pS(I)[y+ z] = pS(I)[x+ y+ z] (4)

Note that, the relation will capture all polynomials of de-
gree D ≤ 2. Hence, to obtain only the polynomials of degree
2, one should filter the linear, constant 1 and non-exist su-
perpolys during the test. Having all κ sets of vectors x, y
and z satisfying the relation (4), one can tell that the super-
poly pS(I) (of the monomial tI) is of degree at most 2, after
repeating the test sufficiently many times, that is using a
sufficient number of samples κ.
To derive efficiently a nonlinear equation pS(I) of degree

D over secret variables kis, one should identify the sub-
set S ⊆ {1, · · · , n} that consists of the secret variable in-
dexes within pS(I), in which each ki with i ∈ S is either
a term or a subterm of pS(I). To do this, the subterm
XK (cf. equation (3)) is assigned with each secret variable
ki ∈ {k1, · · · , kn} one at a time while the subterm tI is fixed

Algorithm 1.

INPUT : n; // the total number of secret key variables
tI ; // the monomial in which deg(pS(I)) = D

OUTPUT : S; // the set of secret variable indexes
within pS(I)

repeat
assign XK (cf. equation (3)) with a secret variable
ki ∈ {k1, · · · , kn} which has not been considered;
choose κ vectors x ∈ {0, 1}n−1 independently and
uniformly at random;
repeat
choose one of κ vectors x which has not been used
to represent n− 1 secret variables ki /∈ XK ;
compute p(I∪K)[x] =

∑
w∈CI∪K

p|w[x];

until p(I∪K)[x] = 1 or all κ vectors x have been used;
if p(I∪K)[x] = 1 is the case then
consider XK as a variable within the superpoly
pS(I) of degree D;

endif
until all n secret variables kis have been considered;

Figure 1: Finding secret variables within a super-
poly equation

to the monomial in which its superpoly pS(I) is of degree
D, and all public variables vis with i /∈ I are fixed to 0 or
1. For each assignment of XK , we choose κ sets of vector
x ∈ {0, 1}n−1 representing samples of n− 1 secret variables
kis with i /∈ K independently and uniformly at random, and
verify that XK (or similarly the secret variable ki that is as-
signed to XK) exists as a variable in the superpoly pS(I) if
p(I∪K)[x] =

∑
w∈CI∪K

p|w[x] = 1 for at least an instance
vector x due to Lemma 1. This procedure is shown by Al-
gorithm 1 in Fig. 1.

Having the set of secret variables kis with i ∈ S of the
nonlinear superpoly pS(I) of degree D enables the attacker
to derive the nonlinear equation over the secret variables by
finding all terms of degrees 0, 1, · · · , D within the superpoly
equation.

Lemma 2. The monomial tI (cf. equation (1)) is a term
in polynomial p if and only if fixing all variables xi /∈ tI to
zero results in pI =

∑
w∈CI

p|w = 1. On the other hand, the

monomial XK (cf. equation (3)) is a term in the superpoly
pS(I) if and only if fixing all variables xi /∈ tI · XK to zero
results in p(I∪K) =

∑
w∈CI∪K

p|w = 1.

Proof. If tI is a term in the polynomial p, assigning all
xi /∈ tI to zero will make tI become the only remaining term
in p; that is, the value of the superpoly pS(I) is evaluated
to 1. From the fact that pI = pS(I) due to Theorem 1, we
have pI = 1 which shows the existence of tI as a term in
p. On the other hand, if XK is a term in the superpoly
pS(I), assigning all variables xi /∈ tI ·XK to zero will make
tI ·XK become the only remaining term in the polynomial
p. Hence, the value of the superpoly pS(I∪K) of tI · XK is
evaluated to 1. Since p(I∪K) = pS(I∪K) (cf. Sec. 3.1) then
p(I∪K) = 1, which shows the existence of tI ·XK as a term
in p. Hence, the existence of tI ·XK as a term in p implies
that XK exists as a term in the superpoly pS(I) because XK

(factored out from the superpoly pS(I)) is a subterm of the
term tI ·XK .

299



Algorithm 2.

INPUT : S; // a set of indexes for secret variables kis in
a superpoly pS(I)

D; // the degree of the superpoly pS(I)

T ; // a set of cube indexes for monomials of
degree 1 until D over kis with i ∈ S

N = |S|; // the number of secret variables kis
in pS(I)

tI ; // in which deg(pS(I)) = D
r = 0; // the initial size for terms in pS(I)

OUTPUT: pS(I)s; // the derived low degree nonlinear
equations

repeat
increase the size r by 1;
repeat
assign XK with a monomial from T of size r which
has not been considered;
assign all variables vi, ki /∈ tI ·XK to 0s;
if p(I∪K) =

∑
w∈CI∪K

p|w = 1 then

write XK as a term in superpoly pS(I);
endif

until all (Nr ) terms have been considered;
until r = D;
assign public variables vis with i /∈ I and secret
variables k1, · · · , kn to 0s;
if pI =

∑
w∈CI

p|w = 1 then

write ‘1’ as a constant in superpoly pS(I);
endif

Figure 2: Deriving a nonlinear superpoly equation
of degree D

Suppose N = |S| is the number of secret variables kis
with i ∈ S of the superpoly pS(I) of degree D. To derive
pS(I), firstly we assign the subterm XK one at a time with a
monomial indexed by a subsetK ∈ T where T is a set of cube
indexes of monomials constructed from all combinations of
kis from degree 1 until degree D with i ∈ S. For example,
if S = {1, 2, 3} and the degree of the superpoly pS(I) is 2,
then T = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.
In each assignment, all vi, ki /∈ tI · XK are set to zero.

Then to verify the existence of the monomial XK ∈ T as a
term in pS(I), we compute p(I∪K) =

∑
w∈CI∪K

p|w. If the
value of p(I∪K) is equal to 1, then with probability 1, XK is
a term in the superpoly pS(I) due to Lemma 2. Finally, we
determine whether there also exists a constant term (i.e. a
term of degree 0) in the superpoly pS(I) by setting all public
variables vis for i /∈ I and all secret variables k1, · · · , kn to
zero, and computing pI =

∑
w∈CI

p|w. Similarly, if the value
of pI is equal to 1, then with probability 1, a constant term
exists within the superpoly pS(I) due to Lemma 2. Thus, the
procedure for finding all terms in the nonlinear superpoly
pS(I) of degree D requires (N1 ) + (N2 ) + ...+ (ND) + 1 number
of computations. The procedure is shown by Algorithm 2 in
Fig. 2. The total complexity to deduce a nonlinear equation
of degree D using Algorithm 1 and Algorithm 2 is

κn2d−D+1 +

D∑
i=0

2d−D+i(Ni )

addRoundKey

plaintext

sBoxLayer
pLayer

ciphertext

key register

update

generateRoundKeys()
for i = 1 to 31 do

addRoundKey(STATE,Ki)
sBoxLayer(STATE)
pLayer(STATE)

end for
addRoundKey(STATE,K32) sBoxLayer

pLayer
update

addRoundKey

Figure 3: A top-level algorithmic description of 31-
round PRESENT encryption.

Table 1: Specification of PRESENT S-box.
i 0 1 2 3 4 5 6 7

S[i] C 5 6 B 9 0 A D

i 8 9 A B C D E F
S[i] 3 E F 8 4 7 1 2

Online Phase. Once sufficiently many equations in the se-
cret variables kis have been found, the preprocessing phase
is complete. In the online phase, the attacker’s aim is to
find the value of the right-hand side of each of the equation-
s (both linear and nonlinear ones) by summing the black
box polynomial p over the same set of tIs obtained during
the preprocessing phase. Now, the attacker can solve the
resultant system of equations, e.g. by using the standard
linearization method, a SAT solver [6], etc., to determine
the values of the secret variables.

4. A BRIEF DESCRIPTION OF THE PRE-
SENT BLOCK CIPHER

PRESENT [10] is a block cipher with a 64-bit block. The
recommended key length is 80 bits, but a 128-bit key variant
is also proposed. PRESENT produces a ciphertext after iter-
ating a Substitution-Permutation Network (SP-Network) 31
times. In each round, a 64-bit round key ki = κ63κ62 · · ·κ0,
for 1 ≤ i ≤ 32 is introduced to the current state b63 · · · b0
using addRoundKey as follows:

bj → bj ⊕ κi
j

for 0 ≤ j ≤ 63. The round key K32 is used for post-
whitening after the final round. The addition of round key
ki using the addRoundKey in each round always follows by
sBoxLayer (i.e. a nonlinear substitution layer) and pLayer
(i.e. a linear bitwise permutation). The graphical represen-
tation of PRESENT is shown in Fig. 3.

PRESENT uses a single 4-bit S-box S as shown in Table
1, which is applied 16 times in parallel in each round. The
4-bit nibble i at the input of an S-box is substituted by the
4-bit S[i] in output, i.e. S : F4

2 → F4
2.

The pLayer which provide linear bitwise permutation is
shown in Table 2. During the permutation, each bit i of

300



Table 2: Specification of the PRESENT permuta-
tion layer.

i 0 1 2 3 4 5 6 7
P (i) 0 16 32 48 1 17 33 48

i 8 9 10 11 12 13 14 15
P (i) 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23
P (i) 4 20 36 52 5 21 37 53

i 24 25 26 27 28 29 30 31
P (i) 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39
P (i) 8 24 40 56 9 25 41 57

i 40 41 42 43 44 45 46 47
P (i) 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55
P (i) 12 28 44 60 13 29 45 61

i 56 57 58 59 60 61 62 63
P (i) 14 30 46 62 15 31 47 63

state is moved to bit position P (i).
The difference between the 80-bit key and the 128-bit key

variants of PRESENT is on the key schedule.
For the 80-bit key variant, the user-supplied key that is

stored in key register K is represented as k79k78 · · · k0. The
64-bit round key Ki = κ63κ62 · · ·κ0 consists of the leftmost
bits of the current contents (i.e. at round i) of register K.
Thus the round key at round i can be depicted as:

Ki = κ63κ62 · · ·κ0 = k79k78 · · · k16

For each round i, after applying addRoundKey, the key reg-
ister K is updated as in the following steps:

1. [k79k78 · · · k1k0] = [k18k17 · · · k20k19]

2. [k79k78k77k76] = S[k79k78k77k76]

3. [k19k18k17k16k15] = [k19k18k17k16k15]⊕round_counter

For the 128-bit key variant, the user supplied key that
stored in a key register K is represented as k127k126 · · · k0.
Similarly, the 64-bit round key Ki = κ63κ62 · · ·κ0 consists
of the leftmost bits of the current contents (i.e. at round i)
of register K. Thus the round key at round i for 128-bit key
variant can be depicted as:

Ki = κ63κ62 · · ·κ0 = k127k126 · · · k64

After applying addRoundKey in each round, the key register
K is updated as in the following steps:

1. [k127k126 · · · k1k0] = [k66k65 · · · k68k67]

2. [k127k126k125k124] = S[k127k126k125k124]

3. [k123k122k121k120] = S[k123k122k121k120]

4. [k66k65k64k63k62] = [k66k65k64k63k62]⊕round_counter

5. SIDE CHANNEL CUBE ATTACK ON
PRESENT

In this section, we explain our side channel cube attack a-
gainst PRESENT using the Hamming weight leakage model
and our extended cube method.

Hamming Weight. Let B = bβ−1 · · · b0 be the binary string
of length β bits, representing the internal state of the cipher.
The Hamming weight of B is the number of bits with value
1 in the binary representation of B, which can be comput-
ed as HW (B) =

∑β−1
j=0 bj and has a value between 0 and

β. Clearly, the Hamming weight can also be viewed as a
boolean vector mapping HW : {0, 1}b → {0, 1}xlog2 by+1,
where the first bit of HW (B), i.e. the least significant bit
(LSB), is the XOR of all bits from B; the MSB of HW (B)
is the AND of all bits from B; and each bit in between is a
boolean function whose degree increases as the bit position
gets closer to the MSB.

5.1 Application to the PRESENT Block
Cipher

The difference between the two variants of PRESENT is
in the key schedule algorithm as described in Sec. 4. Note
that, at each round i the addition of the round key ki to
the internal state using addRoundKey is performed before
updating the key register K. Therefore, the first 64 bits of
the secret key for both variants (i.e. k79 · · · k16 for the 80-bit
key variant PRESENT-80 and k127 · · · k64 for the 128-bit key
variant PRESENT-128) are applied directly to the internal
state at the first round. Hence, both variants are equally
susceptible to any attack that can recover the first 64 bits
of the secret key, e.g. by considering the Hamming weight
leakage after the first round as is the case for our attack.

Assuming access to the value of the Hamming weight of
the internal state after the first round, which can be repre-
sented as a byte, we consider all bits starting from the LSB
position towards the MSB position (of the 8-bit binary repre-
sentation of the Hamming weight). To search for maxterms,
we use various cube sizes which increase as we consider more
bits towards the MSB. We follow the technique which is a
variant of the random walk [20] as used also in [16] to find
the implicit degree d of the master polynomial p. Knowing
the degree d of the master polynomial enables us to find
the maxterms easily, as the maxterms are expected to be
found when we choose the cube of size s = d− 1. To know
whether a particular selected monomial tI is a maxterm,
we apply the BLR test by choosing 100 pairs of vectors x,
y ∈ {0, 1}n (where n is the length of the secret key which
is either 80 for PRESENT-80 or 128 for PRESENT-128),
and verify tI as a maxterm only if all the 100 pair of vec-
tors (x, y) satisfy relation (2). The linear equation is then
derived by finding all terms within the equation. To find
whether a secret variable ki is a term of the linear equation,
we check whether the value of pI =

∑
w∈CI

p|w will change
if we change the value of ki to either 0 or 1, while setting all
other variables (i.e. secret and public variables) which are
not in the monomial tI to fixed values. If changing the value
of the secret variable ki changes the value of pI , one can tell
that ki is a term in the linear equation. To check whether a
constant term exists in the equation, we set all the variables
not in the monomial tI to zero and compute pI and check if
it is equal to 1 that indicates the existence of the constant
term in the equation.

301



We ran our simulation for several weeks to find maxterms;
i.e., tIs with“linear” superpoly. However, it was not possible
to find enough linearly independent equations. Then, using
the extended cube method, we continued finding some ad-
ditional quadratic equations. To do this we chose the cube
of size s = d − 2. This time, to know whether a particular
monomial tI which we select has a superpoly pS(I) of degree
2, we apply the generalized BLR test (cf. Sec. 3.1) by select-
ing 100 samples of vectors x, y, z ∈ {0, 1}n and verify that
pS(I) is of degree at most 2 only if all the 100 samples of
vectors x, y, z satisfy relation (4). The quadratic equation
is then derived using two steps. First, we find the secret
variables kis that exist within the quadratic equation using
Algorithm 1 where we choose 300 (i.e. κ = 300) samples of
vector x independently and uniformly at random (cf. Lem-
ma 1 and Algorithm 1 for more detail). Secondly, we derive
all terms of degree 0 ( constant terms), degree 1 and degree
2 within the quadratic equation using Algorithm 2.
After searching for nonlinear superpoly equations of de-

gree 2, we have been able to find 62 simple quadratic equa-
tions, which combined with 32 independent linear equation-
s (among the previously obtained set of linear equations),
can provide a unique solution for all the 64 secret key vari-
ables. The system of equations can then be easily solved by
linearizing the system and solving it using the well-known
Gaussian elimination method. Table 3 and Table 4, which
are provided in the Appendix, show the sets of equations
which can provide the unique solution for the 64 secret key
variables, respectively, for PRESENT-80 and PRESENT-
128.
Having this set of equations, the preprocessing phase is

completed and the attacker during the online phase should
find the value of the right-hand side of each equation by
summing the master polynomials (corresponding the second
and third bits of the Haming weight) over each cube which
is listed in Table 3 and Table 4. Since we have 2 cubes of size
2, 62 cubes of size 4 and 30 cubes of size 8, then we require
2 × 22 + 62 × 24 + 30 × 28 ≈ 213 chosen plaintexts to find
the value of right-hand side of all 94 equations. Considering
that we have been able to find a unique solution for all the
64 secret key variables, the total time complexity to find the
correct 80-bit key and 128-bit key reduces to 216 and 264

respectively.

6. CONCLUSIONS
We showed an extension to the cube attack to efficiently

derive low degree nonlinear superpoly equations to help im-
prove the success level in a key recovery attack, especially in
the cases that only limited number of maxterms can be found
by the original cube attack. We also investigated the securi-
ty of the PRESENT block cipher against side channel cube
attack, assuming the Hamming weight leakage model and
applying our extended cube attack. Our attack improves up-
on the previous attack of Yang et al. on PRESENT-80, from
both leakage model and complexity viewpoints. Improving
the attack against PRESENT-128, e.g. by combining more
leakage information from several other rounds of the cipher,
and investigating the applicability of the proposed extend-
ed cube attack to other ciphers, especially in the tradition-
al cryptanalytical framework (without side channel leakage
assumptions), are proposed as interesting works for future
research.
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APPENDIX

Table 3: Hamming weight bit position, cube indexes
and the superpoly equations for PRESENT-80 from
the leakage after the first round.

HW Cube Indexes Superpoly Equation
Bit

2 {59,58} k72 + k75
2 {63,60,55,54} k79 + k78 + k69+

k79k69 + k78k69 + 1
2 {63,61,10,8} k77k28
2 {63,61,11,9} k77k25
2 {63,61,15,12} k77 + k77k31+

k77k30
2 {63,61,15,13} k77k29
2 {63,61,18,16} k77k36
2 {63,61,19,17} k77k33
2 {63,61,2,0} k77k20
2 {63,61,23,20} k77 + k77k39+

k77k38
2 {63,61,23,21} k77k37
2 {63,61,26,24} k77k44
2 {63,61,27,25} k77k41
2 {63,61,3,1} k77k17
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Table 3: (continued)

HW Cube Indexes Superpoly Equation
Bit

2 {63,61,31,28} k77 + k77k47 + k77k46
2 {63,61,31,29} k77k45
2 {63,61,34,32} k77k52
2 {63,61,35,33} k77k49
2 {63,61,39,36} k77 + k77k55 + k77k54
2 {63,61,39,37} k77k53
2 {63,61,42,40} k77k60
2 {63,61,43,41} k77k57
2 {63,61,47,44} k77 + k77k63 + k77k62
2 {63,61,47,45} k77k61
2 {63,61,50,48} k77k68
2 {63,61,51,49} k77k65
2 {63,61,55,52} k77 + k77k71 + k77k70
2 {63,61,55,53} k77k69
2 {63,61,57,56} k77 + k77k76
2 {63,61,59,57} k77k73
2 {63,61,7,4} k77 + k77k23 + k77k22
2 {63,61,7,5} k77k21
2 {63,62,1,0} k77 + k20 + k77k20 + 1
2 {63,62,11,10} k77 + k25 + k77k25 + 1
2 {63,62,15,12} k77 + k31 + k30+

k77k31 + k77k30 + 1
2 {63,62,15,14} k77 + k29 + k77k29 + 1
2 {63,62,18,16} k36 + k77k36
2 {63,62,19,18} k77 + k33 + k77k33 + 1
2 {63,62,23,20} k77 + k39 + k38+

k77k39 + k77k38 + 1
2 {63,62,23,22} k77 + k37 + k77k37 + 1
2 {63,62,25,24} k77 + k44 + k77k44 + 1
2 {63,62,27,26} k77 + k41 + k77k41 + 1
2 {63,62,3,2} k77 + k17 + k77k17 + 1
2 {63,62,31,28} k77 + k47 + k46+

k77k47 + k77k46 + 1
2 {63,62,31,30} k77 + k45 + k77k45 + 1
2 {63,62,33,32} k77 + k52 + k77k52 + 1
2 {63,62,35,34} k77 + k49 + k77k49 + 1
2 {63,62,39,36} k77 + k55 + k54+

k77k55 + k77k54 + 1
2 {63,62,39,38} k77 + k53 + k77k53 + 1
2 {63,62,42,40} k60 + k77k60
2 {63,62,43,42} k77 + k57 + k77k57 + 1
2 {63,62,47,44} k77 + k63 + k62+

k77k63 + k77k62 + 1
2 {63,62,47,45} k61 + k77k61
2 {63,62,50,48} k68 + k77k68
2 {63,62,51,49} k65 + k77k65
2 {63,62,55,52} k77 + k71 + k70+

k77k71 + k77k70 + 1
2 {63,62,55,53} k69 + k77k69
2 {63,62,55,54} k77 + k69 + k77k69 + 1
2 {63,62,57,56} k77 + k76 + k77k76 + 1
2 {63,62,59,58} k77 + k73 + k77k73 + 1

Table 3: (continued)

HW Cube Indexes Superpoly Equation
Bit

2 {63,62,7,4} k77 + k23 + k22+
k77k23 + k77k22 + 1

2 {63,62,7,5} k21 + k77k21
2 {63,62,9,8} k77 + k28 + k77k28 + 1
2 {63,62} k76 + k79
3 {63,62,61,60,57,52,51,49} k73 + k74 + 1
3 {63,62,61,60,58,52,51,49} k72
3 {63,62,61,60,59,57,11,9} k27
3 {63,62,61,60,59,57,12,10} k24
3 {63,62,61,60,59,57,12,9} k25 + k26 + 1
3 {63,62,61,60,59,57,15,13} k31
3 {63,62,61,60,59,57,19,17} k35
3 {63,62,61,60,59,57,20,17} k33 + k34 + 1
3 {63,62,61,60,59,57,20,18} k32
3 {63,62,61,60,59,57,23,21} k39
3 {63,62,61,60,59,57,27,25} k43
3 {63,62,61,60,59,57,28,25} k41 + k42 + 1
3 {63,62,61,60,59,57,28,26} k40
3 {63,62,61,60,59,57,3,1} k19
3 {63,62,61,60,59,57,31,29} k47
3 {63,62,61,60,59,57,35,33} k51
3 {63,62,61,60,59,57,36,33} k49 + k50 + 1
3 {63,62,61,60,59,57,36,34} k48
3 {63,62,61,60,59,57,39,37} k55
3 {63,62,61,60,59,57,4,1} k17 + k18 + 1
3 {63,62,61,60,59,57,4,2} k16
3 {63,62,61,60,59,57,43,41} k59
3 {63,62,61,60,59,57,44,41} k57 + k58 + 1
3 {63,62,61,60,59,57,44,42} k56
3 {63,62,61,60,59,57,47,45} k63
3 {63,62,61,60,59,57,51,49} k67
3 {63,62,61,60,59,57,52,49} k65 + k66 + 1
3 {63,62,61,60,59,57,52,50} k64
3 {63,62,61,60,59,57,55,53} k71
3 {63,62,61,60,59,57,7,5} k23

Table 4: Hamming weight bit position, cube index-
es and the superpoly equations for PRESENT-128
from the leakage after the first round.

HW Cube Indexes Superpoly Equation
Bit

2 {63,62,25,24} k125 + k92 + k125k92 + 1
2 {63,62,27,26} k125 + k89 + k125k89 + 1
2 {63,62,3,2} k125 + k65 + k125k65 + 1
2 {63,62,31,28} k125 + k95 + k94+

k125k95 + k125k94 + 1
2 {63,62,31,30} k125 + k93 + k125k93 + 1
2 {63,62,33,32} k125 + k100 + k125k100 + 1
2 {63,62,35,34} k125 + k97 + k125k97 + 1
2 {59,58} k120 + k123
2 {63,60,55,54} k127 + k126 + k117+

k127k117 + k126k117 + 1
2 {63,61,11,9} k125k73
2 {63,61,15,12} k125 + k125k79 + k125k78
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Table 4: (continued)

HW Cube Indexes Superpoly Equation
Bit

2 {63,61,15,13} k125k77
2 {63,61,18,16} k125k84
2 {63,61,19,17} k125k81
2 {63,61,2,0} k125k68
2 {63,61,23,20} k125 + k125k87 + k125k86
2 {63,61,23,21} k125k85
2 {63,61,26,24} k125k92
2 {63,61,27,25} k125k89
2 {63,61,3,1} k125k65
2 {63,61,31,28} k125 + k125k95 + k125k94
2 {63,61,31,29} k125k93
2 {63,61,34,32} k125k100
2 {63,61,35,33} k125k97
2 {63,61,39,36} k125 + k125k103 + k125k102
2 {63,61,39,37} k125k101
2 {63,61,42,40} k125k108
2 {63,61,43,41} k125k105
2 {63,61,10,8} k125k76
2 {63,61,47,44} k125 + k125k111 + k125k110
2 {63,61,47,45} k125k109
2 {63,61,50,48} k125k116
2 {63,61,51,49} k125k113
2 {63,61,55,52} k125 + k125k119 + k125k118
2 {63,61,55,53} k125k117
2 {63,61,57,56} k125 + k125k124
2 {63,61,59,57} k125k121
2 {63,61,7,4} k125 + k125k71 + k125k70
2 {63,61,7,5} k125k69
2 {63,62,1,0} k125 + k68 + k125k68 + 1
2 {63,62,11,10} k125 + k73 + k125k73 + 1
2 {63,62,15,12} k125 + k79 + k78+

k125k79 + k125k78 + 1
2 {63,62,15,14} k125 + k77 + k125k77 + 1
2 {63,62,18,16} k84 + k125k84
2 {63,62,19,18} k125 + k81 + k125k81 + 1
2 {63,62,23,20} k125 + k87 + k86+

k125k87 + k125k86 + 1
2 {63,62,23,22} k125 + k85 + k125k85 + 1
2 {63,62,39,36} k125 + k103 + k102+

k125k103 + k125k102 + 1
2 {63,62,39,38} k125 + k101 + k125k101 + 1
2 {63,62,42,40} k108 + k125k108
2 {63,62,43,42} k125 + k105 + k125k105 + 1
2 {63,62,47,44} k125 + k111 + k110+

k125k111 + k125k110 + 1
2 {63,62,47,45} k109 + k125k109
2 {63,62,50,48} k116 + k125k116
2 {63,62,51,49} k113 + k125k113
2 {63,62,55,52} k125 + k119 + k118+

k125k119 + k125k118 + 1
2 {63,62,55,53} k117 + k125k117
2 {63,62,55,54} k125 + k117 + k125k117 + 1
2 {63,62,57,56} k125 + k124 + k125k124 + 1
2 {63,62,59,58} k125 + k121 + k125k121 + 1
2 {63,62,7,4} k125 + k71 + k70+

k125k71 + k125k70 + 1

Table 4: (continued)

HW Cube Indexes Superpoly Equation
Bit

2 {63,62,7,5} k69 + k125k69
2 {63,62,9,8} k125 + k76 + k125k76 + 1
2 {63,62} k124 + k127
3 {63,62,61,60,57,52,51,49} k121 + k122 + 1
3 {63,62,61,60,58,52,51,49} k120
3 {63,62,61,60,59,57,11,9} k75
3 {63,62,61,60,59,57,12,10} k72
3 {63,62,61,60,59,57,12,9} k73 + k74 + 1
3 {63,62,61,60,59,57,15,13} k79
3 {63,62,61,60,59,57,19,17} k83
3 {63,62,61,60,59,57,20,17} k81 + k82 + 1
3 {63,62,61,60,59,57,20,18} k80
3 {63,62,61,60,59,57,23,21} k87
3 {63,62,61,60,59,57,27,25} k91
3 {63,62,61,60,59,57,28,25} k89 + k90 + 1
3 {63,62,61,60,59,57,28,26} k88
3 {63,62,61,60,59,57,3,1} k67
3 {63,62,61,60,59,57,31,29} k95
3 {63,62,61,60,59,57,35,33} k99
3 {63,62,61,60,59,57,36,33} k97 + k98 + 1
3 {63,62,61,60,59,57,36,34} k96
3 {63,62,61,60,59,57,39,37} k103
3 {63,62,61,60,59,57,4,1} k65 + k66 + 1
3 {63,62,61,60,59,57,4,2} k64
3 {63,62,61,60,59,57,43,41} k107
3 {63,62,61,60,59,57,44,41} k105 + k106 + 1
3 {63,62,61,60,59,57,44,42} k104
3 {63,62,61,60,59,57,47,45} k111
3 {63,62,61,60,59,57,51,49} k115
3 {63,62,61,60,59,57,52,49} k113 + k114 + 1
3 {63,62,61,60,59,57,52,50} k112
3 {63,62,61,60,59,57,55,53} k119
3 {63,62,61,60,59,57,7,5} k71
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