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The purpose of this study was to use machine learning (artificial neural network – ANN) to 
predict vertical ground reaction force (vGRF) from tibial accelerations in runners with various 
foot strike patterns and running speeds. Thirty-eight healthy runners ran at a pace at which 
they spent most of their training time (LSD), 15% faster than LSD (LSD15), and 30% faster 
than LSD (LSD30). vGRF and IMU-based accelerations from the tibia were collected during 
the last 30 seconds at each speed and were used to calculate the resultant tibial acceleration 
(RTA). Stance-phase vGRF and RTA from 34 subjects from all speeds were used to train the 
ANN. Trials from two males and two females were used to test the ANN. The prediction error 
of the ANN was 102.4 N (1.6 N/kg or 0.16 BW) across the entire stance phase of running. The 
ability to predict GRF with an ANN and only RTA as input appears to be practical and feasible. 
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INTRODUCTION: Running is a popular mode of exercise in the United States. Unfortunately, up 
to 79% of runners experience some type of running related injury every year (van Gent et al., 
2007). Ground reaction forces (GRF) and rate of loading (ROL) are measures that have been 
linked to running related injuries (Hreljac, 2004). These measures require force plates or 
pressure-instrumented treadmills to collect GRF and calculate ROL. This equipment can be 
expensive and often inaccessible for most clinicians.  
The GRF experienced by the body is a sum of the products of all segmental accelerations and 
their respective masses. Recent research suggests that data from up to six segments may be 
needed to accurately predict GRF during running with linear regression models (Verheul et al., 
2018). There is also evidence that a two-mass model can be used to sufficiently predict GRF 
during sprinting (Clark et al., 2017). However, these models use video data as input, which may 
require expensive motion capture systems and additional data processing. Wearable technology, 
like inertial measurement units (IMU), can collect segmental accelerations and may present an 
affordable alternative to calculate GRF (Wundersitz et al., 2013). 
Recently artificial neural networks (ANN) have been used to predict peak GRF during running 
from biomechanical data, which included IMU-based accelerations (Niemela et al., 2017). In 
addition, other authors used ANN to predict stance-phase GRF during running from either single 
or multiple IMU (Jie-Han et al., 2018 & Wouda et al., 2018). These results suggest that ANN can 
predict GRF with only a single-segment of tibial acceleration. It would be of interest, however, to 
determine if the prediction accuracy of ANN extends to different populations of runners (e.g., 
based on foot-strike pattern) and across different speeds. The purpose of this study was to train 
an ANN to predict vertical (vGRF) from tibial accelerations in male and female runners with 
different foot strike patterns and at different running speeds.  
 
METHODS: The current study was approved by the IRB at Marquette University. Participants 
were informed of the study’s purpose and signed an informed consent document before 
participation. Thirty-eight healthy runners (18 males and 20 females; age 23 ± 3 years; height 171 
± 9 cm; weight 64 ± 9 kg; reported average weekly mileage 52 ± 25 km/week) were recruited. All 
participants ran at least 16 kilometers per week, had no history of lower extremity surgery, and 
were free of musculoskeletal injury over the previous 6 months.  
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An IMU (Delsys Inc., MA, USA) was securely attached to the medio-distal tibia of the participant’s 
dominant leg and were asked to run on a pressure-instrumented treadmill (Noraxon Inc., AZ, 
USA) at the speed where they spend most of their training time (i.e., their long-slow distance pace 
– LSD). Participants were allowed a five-minute warm-up at their approximate LSD speed. 
Participants then ran at three different speeds: LSD, 15% faster than LSD (LSD15), and 30% 
faster than LSD (LSD30). Participants ran at each speed for approximately 2 minutes. vGRF and 
tibial accelerations were collected during the last thirty seconds of each speed. Data were 
acquired and synchronized through a Vicon motion capture system (Oxford, UK).  
Filter cutoff frequencies for vGRF and tibial accelerations were determined with residual analysis 
(Winter, 2009). Data were filtered with a dual-pass, fourth order low-pass Butterworth filter at 
cutoff frequencies of 13 Hz and 16 Hz, respectively. Triaxial accelerations of the distal tibia were 
used to calculate the resultant tibial acceleration (RTA – Equation 1). 

 𝑅𝑇𝐴 = √𝑋2 + 𝑌2 + 𝑍2 (Equation 1) 
The stance phase during running was defined as the interval between heel strike and toe-off, 
which were defined off a 10 N vGRF threshold. RTA and vGRF from the stance-phase of ten 
strides were time-normalized and averaged. 
A four-layer feed-forward ANN with sigmoid transfer functions between the input-hidden layer and 
hidden-hidden layer, and a linear transfer function between the hidden-output layer was 
developed with the Neural Network Toolbox in MATLAB (Mathworks Inc., MA, USA). Levenberg-
Marquardt backpropagation was used to adjust the network’s weights and biases. The training 

goal was set to the smallest worthwhile change squared (𝑆𝑊𝐶2 = (0.2 ∗ 𝑆𝐷𝑣𝐺𝑅𝐹)
2) and half of 

SWC2 (558.8 and 279.4, respectively). The minimum performance gradient was set to SWC/100 
(0.237). Initial mu was set at 0.001, with a decrease factor of 0.1, increase factor of 10, and 
maximum value of 110. Training was allowed for 1000 epochs and no time limit. Maximum 
validation fail was set to 20 epochs. The number of neurons in the hidden layers were 
systematically changed from five to 20 in increments of five. A total of 12 network configurations 
were thus developed and tested. 
Average stance-phase vGRF and RTA from 34 subjects (16 males and 18 females; height 171 ± 
8.6 cm; weight 64.1 ± 9.2 kg; 24 rearfoot strike runners; LSD speed 2.97 ± 0.49 m/s) at all three 
speeds were used to train the ANN. Trials from two males and two females, who exhibited 
different foot-strike patterns, were used to test the ANN. Each ANN configuration was trained ten 
times to account for the random initiation of the network weights and biases. The ANN was then 
tested on the trials from the four runners who were withheld for testing (table 1). The performance 
of the network was assessed by the root mean squared error (RMSE) between test subjects’ 
predicted and actual vGRF for each of the 120 neural networks. Data from the ANN that yielded 
the lowest RMSE during testing was reported and used for further analysis. The correlation 
coefficient between the actual and predicted vGRF was calculated, differences between test 
subjects’ actual and predicted peak vGRF from each speed were assessed with a related samples 
t-test, and percent differences between subjects’ actual and predicted peak vGRF were calculated 
and reported. 
 

Table 1: Test Subject Demographics 

Subject Sex 
Height 
(cm) 

Weight 
(kg) 

Dominant 
Leg 

Footstrike 
Pattern 

LSD Speed 
(m/s) 

LSD15 Speed 
(m/s) 

LSD30 Speed 
(m/s) 

1 Female 159 52.16 R Rearfoot 2.73 3.13 3.53 

2 Female 160 52.62 R Midfoot 2.37 2.73 3.08 

3 Male 173 55.79 R Rearfoot 3.22 3.71 4.2 

4 Male 173 69.4 R Forefoot 3.04 3.49 3.93 

 
RESULTS: LSD, LSD15, and LSD30 speeds were 2.95 ± 0.48, 3.39 ± 0.56, 3.84 ± 0.62 m/s, 
respectively. The ANN with ten hidden nodes in both hidden layers and a training goal of half of 
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SWC2 produced the smallest test RMSE (training RMSE: 77.8 N; validation RMSE: 127.7 N; 
testing RMSE: 102.4 N). Strong linear correlations between actual and predicted vGRF were 
found for training (r: 0.974; p < 0.01) and testing (r: 0.967; p < 0.01) (figure 1) subjects. No 
significant differences (t = -0.23; df  = 11; p = 0.82; d = -0.07) were found between test subjects’ 
actual and predicted peak vGRF, and the average difference between actual and predicted peak 
vGRF were 0.25 ± 0.19 BW (13.9 ± 11.7 percent error). 

 
Figure 1: Predicted vGRF (red), actual vGRF (blue), and RTA (magenta) of test subjects 1 (top 
row), 2 (second row), 3 (third row), and 4 (last row) during LSD (first column), LSD15 (second 

column), and LSD30 (last column). 

 
DISCUSSION: The purpose of this study was to train an ANN to predict vertical (vGRF) from tibial 
accelerations in male and female runners with different foot strike patterns and at different running 
speeds. The goal of this study was to create an ANN that could generalize to different types of 
runners (e.g., different foot strike patterns). The prediction error of the ANN was 102.4 N (1.6 N/kg 
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or 0.16 BW) across the entire stance phase of running. The magnitude of this error is small, as 
compared to other studies of slow- and moderate-speed running where errors of 1-3 N/kg were 
reported based on predictions from full-body segment accelerations (Verheul et al., 2018). In 
addition, the average difference between actual and predicted peak vGRF (0.25 ± 0.19 BW) is 
slightly larger compared to other predictions of peak vGRF from ANN that used only discrete 
variables as inputs (Niemela et al., 2017), which suggests that the current ANN performed on par 
with other GRF prediction models reported in the literature. 
The way in which subjects are grouped may have large influence on the performance of a neural 
network. A study by Jie-Han and colleagues used a two-layer feed-forward neural network to 
predict vGRF from uniaxial foot accelerations with high accuracy (Mean RMSE: 0.015 BW; 
average r: 0.99) (Jie-Han et al., 2018). However, Jie-Han et al. (2018) randomly chose validation 
and testing data, where there were 90 vGRF time-series per subject, which means that their 
network was both trained and tested on GRF profiles from the same subjects. A network with an 
exclusive testing data set may decrease the prediction performance, but may also be more 
practical for predicting vGRF of new subjects in a clinic or lab. 
Using a population with large variability as a source for the training data set may also limit the 
prediction accuracy of the neural network. A study by Wouda et al. (2018) used IMUs from the 
sacrum and both tibias to predict vGRF of both legs with the use of an ANN. When the network 
was tested on a representative subject, accuracy of the network (Left and Right leg RMSE: 0.26 
and 0.32 BW; r: 0.978 and 0.950) decreased when compared to a subject-specific neural network 
(Left and Right leg RMSE: 0.10 and 0.09 BW; r: 0.997 and 0.997). While a generalizable network 
may be more convenient for quick vGRF estimation, a network trained on data only from the 
subject being tested will provide greater accuracy. 
 
CONCLUSION: The ability to predict GRF with an ANN and only RTA in a population with large 
variability appears to be practical and feasible. The use of only one IMU allows quick and easy 
predictions of vGRF in large-group training settings. However, a model with large generalizability 
may also increase prediction errors, which may not be ideal for clinical assessments, such as 
return-to-sport testing. Future studies may want to determine if subject-specific models improve 
the accuracy of vGRF prediction and validate these models in over-ground running. 
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