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The purpose of this study was to identify the potential of inertial sensor information to esti-
mate whole-body mechanical power (WBP) in running. We recorded three-dimensional 
(3D) whole-body kinematic and kinetic data of eleven male subjects by means of optoelec-
tronic motion capturing and an instrumented treadmill at speeds between 2.0 and 3.5 m/s. 
We simulated 3D acceleration and gyroscope signals for 15 segments of the whole body 
from marker trajectory data. We calculated one statistical model for each subject to esti-
mate WBP from a set of 279 predictor variables derived from simulated sensor signals. 
Overall, WBP was estimated with root mean square errors between 4% and 20%. This 
highlights the potential of inertial sensor signals to estimate WBP. Nonetheless, in its cur-
rent form, the method requires too many sensors for practical applications. 
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INTRODUCTION: Recent advances in wearable sensor technology provide new possibilities 
for biomechanical research. Especially for running, small size motion sensors allow for anal-
yses in the field of the athletes’ action.  
The methods in studies using these sensors range from rather simple approaches, e.g. to 
determine foot strike pattern by means of two foot-mounted accelerometers (Giandolini et al., 
2014) to more elaborate techniques and variables (Brahms, Zhao, Gerhard, & Barden, 2018). 
In these studies, the foot trajectory is calculated by means of combined gyroscope and accel-
erometer data from foot-mounted inertial measurement units (IMU).  
A biomechanical parameter, which is of interest for both research and applied sciences such 
as performance diagnostics, is mechanical whole-body power. In cycling, power is a well-es-
tablished objective parameter for athletic performance. In running, however, pace – measured 
by means of global navigation satellite system (GNSS) – is the most common performance 
metric. Nonetheless, pace does not consider changes in running style or the running environ-
ment (e.g. slope) that might affect the intensity of the run.  
There are several approaches to calculate power in running. Arampatzis et al. (2000) com-
pared four different methods regarding their accuracy. The most accurate methods were those 
taking the ground reaction forces (GRF) into account. Both, vertical and horizontal GRF were 
accurately estimated by means of IMU data (Neugebauer, Collins, & Hawkins, 2014; Thiel et 
al., 2018; Wouda et al., 2018). Thus, it seems possible to estimate the power in running from 
inertial sensor data, even though published research in this area is scarce.  
Therefore, this study aimed to identify the potential of wearable inertial sensors to accurately 
estimate mechanical whole-body power in running.  
 
METHODS: Eleven healthy male subjects (age: 27.1 ± 3.8 years, height: 182.1 ± 7.3 cm, mass: 
80.1 ± 11.0 kg, BMI: 24.1 ± 1.7 kg/m²) performed running trials on an instrumented treadmill 
measuring three-dimensional GRFs (1000 Hz, Treadmetrix, Park City, UT, USA). Kinematic 
data of the whole body was captured by means of a three-dimensional motion capturing sys-
tem (250 Hz, Vicon MX40, Vicon, Oxford, UK). Marker trajectories and GRFs were low-pass 
filtered with a cut-off frequency of 12 Hz.  
We analysed different running velocities (2.0, 2.5, 3.0 and 3.5 m/s) at a self-selected cadence 
as well as an increased (+10%) and decreased (-10%) cadence (only at 2.5 m/s), set by means 
of a metronome. We captured at least 30 consecutive strides for each condition.  
The least absolute shrinkage and selection operator (LASSO) as it is implemented in Matlab 
(R2018a, The Mathworks Inc., Natick, MA, USA) was used to compute the statistical models 
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to estimate whole-body power as the response variable from the predictor variables (Tibshi-
rani, 1996). The tuning parameter λ was chosen as it minimises the mean squared error after 
five-fold cross-validation.  
Since this was a proof of concept study, no physical IMU system was used. Instead, virtual 
acceleration and angular velocity signals were computed from kinematic data similar to Tong 
and Granat (1998). From the three-dimensional virtual IMU data, maximum, minimum and 
mean for each of the 15 segments of a rigid full body model over each stride were calculated. 
In addition, ground contact time, duty-cycle (i.e. ground contact divided by stride time), running 
speed, body mass and height were included, resulting in a total of 279 predictor variables.  
Absolute whole-body power was calculated from the sum of the dot products of joint moment 
and joint angular velocity vectors:  

𝑃 = ∑|𝑀𝑗
⃗⃗ ⃗⃗ ∙ 𝜔𝑗⃗⃗⃗⃗ |

𝑛

𝑗=1

 

in which 𝑀𝑗
⃗⃗ ⃗⃗  and 𝜔𝑗⃗⃗⃗⃗  are the moment and the angular velocity, respectively, of the j-th joint cal-

culated from inverse dynamics (Sanno, Willwacher, Epro, & Brüggemann, 2018). From this 
equation the mean power over each stride, i.e. the time between two consecutive right heel-
strikes, was calculated as response variable.  
Eleven statistical models were trained with the data of ten subjects always leaving out one 
subject. These models were separately validated using the data of the remaining subject. To 
determine the models’ accuracy, we calculated the root-mean-square error (RMSE), mean 
absolute deviation (MAD) and Bland and Altman’s limits of agreement (LoA) between meas-
ured power and the models’ estimates (Bland & Altman, 1986).  
 
RESULTS: After checking for outliers, a total of 2829 strides from the 11 participants were 
included with at least 30 strides for each participant in each condition. The measured power 
ranged between 4.09 W/kg and 10.97 W/kg with a mean of 6.97 W/kg. The accuracy varied 
considerably between models. The model trained for subject 4 showed the highest agreement 
with the measured values (LoA: ±0.43 W/kg, RMSE: 0.31 W/kg, MAD: 0.18 W/kg, compare 
table 1). Estimates with the lowest accuracy were present for the subject 6 (LoA: ±1.16 W/kg, 
RMSE: 0.65 W/kg, MAD: 0.50 W/kg) and subject 5 (LoA: ±0.80 W/kg, RMSE: 1.15 W/kg, MAD: 
0.34 W/kg) respectively. The RMSE of the most accurate model (subject 4) was 4.2%, while 
the RMSE of the least accurate model (subject 5) was 20.1% of the measured mean power 
values. 
The minimum number of predictor variables ranged between 206 and 269. BMI, height, stride 
duration, mean acceleration of the left thigh and velocity were most frequently present in the 
five highest normalized coefficients, thus having the highest impact on the model estimates. 
For all models at least one signal of each of the 15 simulated IMUs was present in the predictor 
subset.  

Table 1 Root mean square error (RMSE), mean absolute deviation (MAD) and limits of agreement (LoA) of the 
differences between measured values (M ± SD) and model estimates for all models as absolute values [W/kg] and 
percentage of measured mean power [%] 

Model 
for  

Subject 

Measured 
Power 
[W/kg] 

LoA 
[W/kg] 

LoA  
[%] 

RMSE 
[W/kg] 

RMSE 
[%] 

MAD 
[W/kg] 

MAD 
[%] 

LoA  
Rank 

RMSE  
Rank 

MAD  
Rank 

Predictor 
Variables 

1 7.51 ± 1.42 0.49 6.5 0.88 11.7 0.20 2.7 4 8 3 229 
2 7.93 ± 1.30 0.76 9.6 0.91 11.5 0.29 3.7 7 9 7 257 
3 6.94 ± 1.36 0.53 7.6 0.32 4.6 0.22 3.2 5 3 5 220 
4 7.43 ± 1.27 0.43 5.8 0.31 4.2 0.18 2.4 1 2 1 258 
5 5.71 ± 1.02 0.80 14.0 1.15 20.1 0.34 6.0 8 11 9 259 
6 6.99 ± 1.32 1.16 16.6 0.65 9.3 0.50 7.2 11 6 11 251 
7 7.31 ± 1.33 0.47 6.4 0.34 4.7 0.21 2.9 2 4 4 252 
8 7.07 ± 1.14 0.49 6.9 0.30 4.2 0.20 2.8 3 1 2 206 
9 6.17 ± 1.09 0.80 13.0 0.48 7.8 0.32 5.2 9 5 8 223 
10 7.70 ± 1.36 1.05 13.6 0.84 10.9 0.43 5.6 10 7 10 218 
11 6.13 ± 1.06 0.63 10.3 1.12 18.3 0.25 4.1 6 10 6 269 
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Figure 1: Correlation between measured power and model estimated power (left) and Bland-Altman difference plot 
(right) for model for subject 4 (estimates with the highest accuracy)  

 
DISCUSSION: The purpose of this study was to explore whether it is possible to determine 
mechanical whole-body power in running solely by means of wearable sensors. Our results 
indicate that the accuracy of the estimated power values varies considerably among subjects. 
The measured range of our power values are in good accordance with those measured by 
other authors (Arampatzis et al., 2000).  
Studies with a similar purpose used a certain number of subjects to train the models and mul-
tiple remaining subjects to validate the accuracy (e.g. Goulermas et al. 2005 used n=6 for 
training and n=2 for validation). However, for a small number of participants this can lead to 
randomly choosing unrepresentative subjects and over- or underestimate the overall capabili-
ties of such a statistical model. With our approach we tried to reveal the overall possible range 
of accuracy for a small sample.  
The high impact of running velocity on the model estimate can be attributed to the study design. 
Only level running was performed at different speeds and cadences. Early studies already 
revealed a strong correlation of running velocity and power (Fukunage, Matsuo, & Ichikawa, 
1981). Uphill or downhill running might increase the relevance of other predictor variables.  
Interestingly, both the most and the least accurate models were validated with subject data of 
two subjects with similar measured relative power, subject 4 and 6 respectively. However, 
subject 4 showed the lowest BMI and subject 6 the second highest. This could indicate a too 
high impact of the predictor variable BMI on the model estimate.  
We found that the models require a high number of predictor variables, which makes the prac-
tical application difficult, since a high number of IMU sensors would need to be attached to the 
body. This would potentially impair the movements of runners and would increase the effort 
and time needed for data collection and monitoring.  
Nonetheless, the model accuracy might be further improved and the number of sensors 
needed decreased by using more elaborate predictor variables or hybrid approaches which 
combine algorithms like the LASSO or artificial neural networks (ANN) and a biomechanical 
model (Ancillao, Tedesco, Barton, & O’Flynn, 2018).  
This is especially important since the results of this study were based on simulated sensor 
signals. In practical applications, using actual sensors, the signals would be subject to noise, 
which would further negatively affect the accuracy of the estimates.  
 
CONCLUSION: This study demonstrates that estimation of mechanical whole-body power in 
running without the use of direct methods to measure the GRF is possible with satisfying ac-
curacy. However, for practical applications, improved models and methods are necessary to 
reduce the number of sensors needed and the results of this study need to be confirmed by 
studies using actual sensors.  
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