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Athletes’ movement biomechanics are of high interest to predict injury risk. However, 
using a standard optical measurement set-up with cameras and force plates influences 
the athlete’s performance. Alternative systems such as commercial IMU systems are still 
jeopardised by measurement discrepancies in the analysis of joint angles. Therefore, this 
study aims to estimate hip, knee and ankle joint angles from simulated IMU data during 
the execution and depart contact of a maximum effort 90° cutting manoeuvre using a 
feed-forward neural network. Simulated accelerations and angular rates of the feet, 
shanks, thighs and pelvis as input data. The correlation coefficient between the measured 
and predicted data indicates strong correlations. Hence, the proposed method can be 
used to predict motion kinematics during a fast change of direction.  
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INTRODUCTION: The biomechanical analysis of motion during sports is of high interest, 
either to increase performance or to prevent the athlete from injuries (David et al., 2017, 
2018; Elliott & Alderson, 2007). Besides the analysis of motion inside the laboratory, in-field 
analysis becomes more and more relevant to incorporate external factors (e.g. opponents, 
noise, tactics) and also internal factors (e.g. fatigue and attentiveness) to the analysis. By the 
application of inertial sensors to motion analysis, this kind of technique becomes feasible. 
Unfortunately, these systems are still jeopardised by measurement discrepancies in the joint 
angles that can be mainly attributed to the anatomical model that is used by the IMU 
systems. The linear acceleration and angular rate is measured by an IMU in its sensor frame 
of reference, which is not related to an anatomical frame (Figure 1). Different – more or less 
sophisticated approaches – are used to align the sensor frame to the anatomical frame either 
based on calibration movements or postures. In many cases, the magnetometer readings of 
the IMU are used to determine the orientation of each sensor in a global reference frame. 
Unfortunately, the magnetometer readings are influenced by the surrounding magnetic field, 
which might errors in the orientation estimation. Conversely, the potential of the 
measurement technology as such could be shown (Mundt et al., 2018). Therefore, it seems 
eligible to use the data measured by IMUs but to apply a different method for the analysis.  

Figure 1 The orientation of the IMU sensor frame (red) is not aligned with the anatomical frame 
(blue). This leads to discrepancies in the calculation of joint angles. 
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Different machine learning approaches have shown their feasibility – amongst others – for 
applications in biomechanics. Applications on fast changes of directions aimed to overcome 
the dependency on force plates (Johnson et al., 2017, 2018) or to classify different 
movement strategies during a fast cutting manoeuvre (Richter et al., 2018). For the 
regression task, partial least squares regression was used to predict the ground reaction 
force time series based on marker trajectories achieving strong correlations between the 
measured and predicted values of r>0.95 (Johnson et al., 2017, 2018). In the classification 
task, an accuracy of more than 80% was achieved in distinguishing different movement 
strategies (Richter et al., 2018). 
Based on these promising results, we applied a feed-forward neural network to predict the 
3D joint angles of the hip, knee and ankle joint based on simulated linear accelerations and 
angular rates of the feet, shanks, thighs and pelvis during the execution and depart contact 
of a maximum effort 90° cutting manoeuvre. We hypothesise, that this method is able to 
achieve a comparable or even higher accuracy than the standard method based on an 
anatomical model and calibration postures or movements.   
 
METHODS: The dataset used for training the feed-forward neural network contained 818 
execution and depart contacts of 58 subjects that were normalised to 100% stance phase. 
More information on the participants and study design can be found in (David et al., 2017, 
2018). The study was approved by the Ethics Committee of the German Sport University and 
all participants gave written consent.  
The input data – linear acceleration and angular rate of the segments – is simulated from the 
marker trajectories collected by the optical motion capture system. As a first step, an 
anatomical model defining the segment coordinate systems based on the recommendation of 
the International Society of Biomechanics is set up (Wu et al., 2002). All orientations are 
defined for each time step as quaternions. To determine the angular rate of each sensor, the 
numerical quaternion derivative of each segment orientation is calculated. The segment 
orientations, which are defined in the joint origins, are translated to the position of the 
simulated IMU sensor that was defined based on a pilot study. Based on this position, the 
linear acceleration of the sensor is determined by calculating the numerical derivative of this 
trajectory twice. To keep the sequence lengths constant, forward/backward differences are 
used (Solà, 2017; Atkinson, 2005). 

 

Figure 2: Violin plot displaying the distribution of the correlation coefficient for all joints and 
motion planes. In the sagittal plane all data is accumulated around 1, while in the non-sagittal 
planes outliers can be found. 
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Different feed-forward neural network architectures were implemented using Python 
supported by the Tensorflow library. All architectures were tested on their performance in 
estimating the joint angles of the executing leg [3 joints x 3 motion planes x 101 time frames] 
based on the simulated IMU data of all segments of the lower body [7 segments x [3 angular 
rates + 3 linear accelerations] x 101 time frames]. The number of hidden layers were varied 
between one and three, the number of neurons within each layer between 800 and 6000. 
The architecture that performed best was one hidden layer with 3000 neurones. For 
regularisation, dropout and early stopping were used. The dataset was divided into a training 
(80%), validation (10%) and test set (10%). It was ensured that no data of any subject were 
split across datasets. To compare the results, the RMSE, the nRMSE, the RMSE normalised 
to the range of each joint angle measured, and the Pearson correlation coefficient were 
calculated. 
 
RESULTS: Especially in the sagittal plane angles the mean correlation coefficient indicated 
very good results (rhip = 0.996, rknee = 0.992, rankle = 0.979). In both other planes the 
correlation was worse (frontal plane: rhip = 0.812, rknee = 0.855, rankle = 0.799; transverse 
plane: rhip = 0.913, rknee = 0.846, rankle = 0.817). However, the violin plot displaying the 
distribution of the correlation coefficient (Figure 2) indicates that most samples are 
accumulated around the mean, but there are outliers, mainly in the non-sagittal planes. 
The same behaviour can be found in the RMSE and nRMSE values (Figure 3). The RMSE 
values are smaller than 5.3° in all joints and motion planes, but the normalisation of the 
RMSE to the range shows mean deviations of up to 34.3%. In the sagittal plane, the mean 
nRMSE ranges between 3.9 and 7.4%. 
  

 
Figure 3 Violin plots of the RMSE and the normalised RMSE for all joints and motion planes. 
Although the mean RMSE values are all below 5.3°, this results in mean differences in the 
nRMSE values of up to 34.3 %.  

 
DISCUSSION: The results of this study reveal that it is possible to use a feed-forward neural 
network to estimate the joint angles based on the linear acceleration and angular rate of the 
different segments. Thereby, the IMU system becomes independent of a constant magnetic 
field strength – because no magnetometer data is used – and of any kind of calibration 
movement or posture. The metrics for the accuracy show similar or even better results 
compared to different studies (Mundt et al., 2018; Nüesch et al., 2017; Robert-Lachaine et 
al., 2016). Since the calculation of the normalised RMSE is not standardised in the literature, 
differences in this value might occur. Additionally, none of the studies evaluated the 
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measurement accuracy of the IMU system for fast movements such as cutting manoeuvres. 
In previous work, we have shown that it is possible to predict joint moments from joint angles 
during gait (Mundt et al., 2018a). If it is possible to get reliable joint angles from IMU 
systems, this method can also be applied for fast changes of directions and thereby increase 
the possibilities of unrestricted measurements of such fast motion. Additionally, it needs to be 
evaluated to directly predict the joint moments from IMU data. The proposed method relies 
on data that was simulated from optical data. One limitation of this method is that 
measurement inaccuracies due to soft tissue artefacts, which will affect a real IMU sensor, 
are excluded. Additionally, the simulated sensor position is similar for all participants and 
trials in this study. The robustness of the neural network against different sensor positions 
and orientations needs to be further evaluated. It can be assumed that a larger dataset is 
necessary to further improve the prediction accuracy of the algorithm.   
 
CONCLUSION: The method proposed here shows its feasibility in estimating joint angles 
from linear accelerations and angular rates of the different lower body segments. The data 
used here was simulated from optical data. Since the markers undergo different soft tissue 
movements than real IMU sensors, the simulated data differs to some degrees from real IMU 
data. Additionally, these data do not experience any drift, as the gyroscope does. In future, 
there needs to be a verification of the method using real IMU data. Afterwards, the method 
can also be applied to in-field motion analysis. It might also be possible to use a recurrent 
neural network for this prediction task, so that a real-time application becomes possible.  
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