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ABSTRACT 
 

NON-INVASIVE GENETIC SAMPLING IN THE ANLAYSIS OF WHITE-TAILED DEER  
POPULATION CHARACTERISTICS 

 
By 

 
Grant Montgomery Slusher 

 
 I evaluated the use of non-invasively collected hair samples from white-tailed deer 

(Odocoileus virginianus) in three contexts. First I assessed the effects of sampling interval and 

barb location on the probability of sample cross-contamination of hair snares. Six hair snares 

were installed on Presque Isle Park, Marquette Michigan from 11 May 2008 to 3 July 2008 and 

hair was collected from each daily. Probability cross-contamination increased from 12% to 28% 

during sampling intervals of two and seven days, respectively, but was unaffected by barb 

location. Second I assessed the benefits and costs of using non-invasive techniques for population 

estimation. I estimated abundance of the Presque Isle deer herd from genotype data derived from 

barbed-wire snared hair, and compared these estimates to drive counts performed during this 

study. Genotype-based estimates were greater than the drive counts, probably due to the genetic 

“capture” of animals that frequently move on and off the peninsula. This represents the first 

successful use of non-invasive genetic sampling for population estimation of ungulates. Third, I 

compared the amount of genetic differentiation and migration between two island-mainland 

systems in Lake Superior. Results differed from a standard biogeographical prediction that 

populations on larger islands closer to their mainland source population should have higher 

indices of genetic connectivity. The results of this research should be used to inform future 

studies that use non-invasive genetic sampling for ungulate population research. 
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CHAPTER 1: A TEST OF HAIR SNARE SAMPLING PROTOCOLS 

 

Introduction 

Conservation studies of wildlife depend on robust population estimates which themselves 

must accurately sample and identify individuals. Population size estimation often employs a 

capture-mark-recapture technique that allows statistical extrapolation of total population sizes 

from a subsample of individuals from that population. Researchers can use passively collected 

tissues as a source of DNA to minimize interactions between researchers and animals. (Phillips et 

al. 1993; Kohn et al. 1999; Mills et al. 2000). Passive genetic sampling techniques rely on the 

collection of hair, feathers, or scat as a source of DNA (Woods et al. 1999; Downey et al. 2007; 

Ruell & Crooks 2007). Three major benefits of noninvasive genetic sampling techniques are:  

1) they reduce stress to animals resulting from contact with researchers 2) the genetic profiles 

created as “tags” cannot be lost by the animal, and 3) the genetic profiles of individuals in a 

population provide information regarding the life history of animals in a population (Conner et al. 

1987; DeNicola & Swihart 1997). Therefore noninvasive genetic sampling and tagging offers an 

alternative means of population estimation and allows researchers to further investigate 

meaningful population genetic parameters like inbreeding coefficients and population structure 

(Morin et al. 1993)  

While scat and hair have been used as non-invasively collected sources of mammalian 

tissue, fecal DNA has proven problematic in analysis due to PCR inhibitors and a higher 

probability of degradation (Fernando et al. 2003; Nsubuga et al. 2004;).  Hair snares are another 

way to collect genetic tissue samples (McDaniel et al. 2000; Sloane et al. 2000; Beier et al. 

2005). Baited hair snares can reduce sampling effort by attracting animals to sampling sites where 
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hair is passively collected (McKelvey & Schwartz 2004). Hair snares have been successfully used 

to sample a variety of mammalian species, including lynx (Lynx canadensis), hairy-nosed 

wombat (Lasiorhinus krefftii), and brown bear (Ursus arctos) (Beier et al. 2005; McDaniel et al. 

2000; Sloane et al. 2000, respectively). The basic technique of using hair snares with large 

mammals involves luring animals to a barbed wire enclosure with an attractant (Mowat & 

Strobeck 2000; Belant et al. 2005). Animals approach the attractant and contact the barbed wire, 

leaving clumps of hair behind on the wire barbs. Field technicians can collect hair clumps from 

the wire barbs and use those hair clumps for later genetic analyses. Genotypes established from 

those hair samples can be used to estimate population sizes (Boulanger et al. 2004; Beir et al. 

2005; Belant et al. 2005; Bellemain et al. 2005) through standard capture-mark-recapture 

methods (see Chapter 2).    

Although non-invasive genetic sampling provides some benefits to wildlife studies, there 

are potential drawbacks that differ from drawbacks normally associated with traditional capture-

mark-recapture protocols. In particular, if genetic identification procedures are flawed, resulting 

population estimates will be incorrect. There are two potential causes for genetic 

misidentification: genotyping errors and hair sample cross-contamination. Genotyping error rates 

can be accounted for (see Chapter 2 for example), but cross-contamination of hair samples can 

create problems before genotyping takes place (Waits & Paetkau 2005). For instance, hair clumps 

containing tissue from more than one individual can return genotypes with three or more alleles 

per locus, or more problematically, they could make a homozygote look heterozygous. One way 

to avoid multiple-individual hair clumps is to use only single hairs for genotyping. However, past 

studies demonstrated that single hairs generally do not provide adequate templates for genotyping 

(Goossens et al. 1998; Sloane et al. 2000). The most reliable way to prevent cross-contamination 
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during DNA amplification from snared hair samples is to collect every hair sample immediately 

after it is snared. The trade-off for increased assurance of non-contamination is a concomitant 

increase in cost for field collection, diminishing the benefit of using passively collected DNA 

samples. 

My objective was to evaluate three questions regarding the collection of hair samples for 

studies of white-tailed deer (Odocoileus virginianus) that use non-invasive genetic sampling 

techniques: 1) what visitation frequency minimizes or eliminates cross-contamination of hair-

snare tissue samples, 2) do positional characteristics of barbs affect their probability of becoming 

cross-contaminated over time, and 3) what are the time and funding costs/benefits associated with 

increased sampling efforts at hair snares? Regarding researcher visitation frequency, I predicted 

that increasing the length of time between the researcher sampling visits would increase the 

probability of cross-contamination on snares. As to positional characteristics of barbs, since hair 

snares in most studies are designed with either a triangular or square shape around a lure pile 

(Belant et al. 2005; Belant et al. 2007), medial barbs of a snare line will be closer to the lure than 

barbs at the distal corners of the snare. I thus predicted that the frequency at which barbs are 

contacted by animals should decrease from medial to distal barbs on a snare line. Finally, I 

provide a cost-benefit analysis of the trade-offs that are associated with snare visitation schedules 

of varied levels of intensity. 
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Materials and Methods 

Presque Isle Park of Marquette 

Michigan, USA is a 1.31-km2 

(46º35’09.71”N, 87º22’55.75”W) 

peninsula located at the northern edge of 

the city of Marquette. Presque Isle Park 

includes hardwood forest types composed 

of maple (Acer spp.) white-birch (Betula 

papyrifera), and ironwood (Ostrya 

virginiana) with intermittent stands of 

white-pines (Pinus strobus) and eastern 

hemlock (Tsuga canadensis). Since April 

1999 a population of white-tailed deer 

(Ococoileus virginianus) has ranged from 

8 to 100 individuals on the peninsula (J. 

Bruggink, unpublished data).  

I installed six snares on Presque Isle Park on 11 May 2008. To evenly space snares across 

the study area I superimposed a rectangular grid composed of four 0.35 km by 0.20 km cells over 

a GoogleEarth© (Google Inc.) image of Presque Isle Park (Fig. 1). The grid was centered inside 

of the paved road that circumnavigates the park perimeter. I identified UTM coordinates of cell 

corners and then selected specific snare locations near these corners with evidence of deer and 

adequate groupings of trees (Fig. 1).    

 
Fig. 1. Map of Presque Isle Park of Marquette, MI 
with snare locations. © Google 2010 
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Using fencing staples, 15.5 gauge four-pronged barbed wire was attached to 3-4 trees 

about 70 cm above ground creating a polygon (Belant et al. 2007). In areas of uneven ground, 

soil was added or removed to maintain 70 cm height of the barbed wire. One liter of Buckjam© 

(Evolved Habitats) was poured over a small pile of sticks in the center of the enclosure and 

reapplied at two-week intervals. Information signs were stapled to each anchor tree facing out 

from the center of the snare.  

Deer hair was collected daily from barbs, beginning one day after installation (12 May 

2008) using a pair of flame-sterilized forceps and hair clumps were deposited into individually 

labeled 1.5mL micro centrifuge tubes. Date, snare number and barb number were recorded for 

each sample. A butane-lighter was used to burn away remaining tissue on barbs to prevent cross-

contamination of new samples on previously-used barbs. Collection continued until 17 June 

2008, after which all snares and signage were removed. All procedures were approved by 

Northern Michigan University Institutional Animal Care and Use Committee (IACUC #076) and 

the Marquette Parks and Recreation Committee. 

  Daily collection of samples from each barb allowed evaluation of the probability of cross-

contamination on single barbs over different intervals of time. Twenty five of the 310 barbs 

snared hair with a high enough frequency that they would have had sample cross-contamination if 

they had they been left without sample collection for seven days. These 25 barbs were the only 

ones included in this analysis. To determine the probability of a barb collecting hair from more 

than one individual within various sampling intervals, I used PASW 17.0 (SPSS Inc.) to perform 

a binary logistic regression with forward conditional model selection and Hosmer-Lemeshow 

post hoc test for goodness of model fit. Zero represented no cross-contamination event and one 

represented a cross-contamination event. The dependent variable was the probability of cross-
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contamination and the independent variables were sampling interval, barb location relative to 

center (a ranking of one being central and increasing rankings indicating more distal barbs), and 

snare. 

Results  

 The six snare set-ups 

across the study area contained a 

total of 310 barbs. Of these 310 

total barbs, 105 collected at least 

one hair clump and 51 barbs 

collected at least two hair clumps 

(Fig. 2). Twenty-five barbs 

collected at least two hair clumps 

within seven days, and these were 

used to assess potential cross-

contamination if un-sampled 

periods had lasted seven days. 

All hair clumps collected 

from any barb on a single day were 

assumed to be from single 

individuals. The probability of 

cross-contamination increased with 

sampling interval ([1/1+e-(-
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Fig. 2. Frequency histogram showing the number of barbs 
that collected different numbers of hair clumps. 
(SigmaPlot 9.0 © Systat Software Inc.)  
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2.337+0.210*sampling interval)], P < 0.001) while barb location (P = 0.874) and snare (P = 0.290) did not 

improve model fit. Data did not significantly deviate from the best-fitting model (Χ4
2 = 2.002, P = 

0.735). The relationship between the probability of cross-contamination and the sample collection 

interval was found to be significant (Χ1
4 = 14.836 P < 0.001). Probability of cross-contamination 

increased from 12.4% on day 2 to 28.8% on day 7 (Fig. 3). 

Discussion 

 Choosing snare locations and timing intervals for sample collection depends on study 

goals. In this study, snares had varying degrees of tissue collection success, but snare location did 

not influence probability of cross-contamination. Location of certain snares relative to 

preferential habitat caused them to collect more tissue than others. Variation between individual 

snare tissue-collection went undetected by the logistic regression analysis. Barb location relative 

to the bait pile also had no significant effect on the probability of cross-contamination, showing 

that distal barbs were just as likely to experience cross-contamination as medial barbs. 

Minimizing genotyping errors in hair snare studies of wildlife species is important 

(Taberlet & Luikart 1999; McKelvey & Schwartz 2004). Genotyping errors increase with 

decreasing numbers of hairs. For example, Goossens et al. (1998) found genotyping errors 

increased from 0.3% to 4.9% to 14% when DNA was extracted from ten, three and one hairs of 

alpine marmots (Marmota marmota), respectively. Genotyping errors also arise from the use of 

hair clumps with tissue from more than one individual (Sloane et al. 2000; Waits & Paetkau 

2004). Balancing these two error rates means balancing effort and resources invested into single 

hair extractions against increasing snare collection visits (Taberlet et al. 1996).  

 In this study, time and resource investments for genotyping analyses were greater than the 

investments required by field collection activities. A single sample collection visit to all snares on 
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Presque Isle took 1.5-2.0 hours every day during the collection period. In contrast, extraction of 

DNA and genotyping took seven hours per sample. When snares were visited every day, a 

maximum of 14 hours were dedicated to field collection per week and 48 hours were dedicated to 

extraction and genotyping of samples. By my collection model, daily visits would still result in 

12% cross-contamination of samples, but these would hopefully be identified in the genetic 

analysis through the appearance of spurious three-allele genotypes at some loci (an impossibility 

in a diploid organism, and therefore indicative of a contaminated sample). 

If snares were sampled only once a week, the investment in field collection would be 

reduced from 14 to two hours per week. To ensure non-contamination of collected hair samples, 

genotypes could be based on single-hairs DNA extractions as suggested by Goossens et al. 

(1998). This would require an initial 48 hours of laboratory genotyping analysis, but single-hair 

genotyping has a 14% error rate. To provide confident genotype data from single-hair extractions, 

re-amplification is required (Goossens et al.1998), which would conservatively require an extra 

three hours of amplification and 12 of visualization. Ultimately the 12 hours saved in the field is 

nullified by the extra 15 hours spent in the lab. Using multi-hair samples will reduce the need for 

extensive re-amplification of samples. Researchers can more confidently use multi-hair samples 

if the time between collections from a hair snare is shortened significantly enough to prevent 

cross-contamination. This study showed no incidents of potential cross-contamination on 

successive days (no barbs had hair clumps on successive days) so at a minimum, an every-other-

day collection interval should create a low probability of cross-contamination. Furthermore, many 

commercial labs that perform genotyping analyses require five or more hairs to reduce the effort 

required to genotype each sample (Wills 2008). Agencies that intend to use those labs for genetic 

analysis should obviously consider adopting field protocols that will reduce cross-contamination.  
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 The relatively high density of white-tailed deer on Presque Isle (averaging 22 deer/km2 

yearly since 1999) means that these estimates of cross-contamination are likely significantly 

higher than what would occur in more normal populations where the average deer density is 12 

deer/km2 (Smith 1991). Since the density of deer on Presque Isle nearly doubles that of other 

populations in similar habitat types, researchers wishing to minimize cross-contamination of hair 

snares should consider that white-tailed deer activity in lower-density populations would likely be 

lower than the rates described here. Populations of a higher density will require more snares to 

detect all individuals (Boulanger et al. 2004). Studies of wild black bear (Ursus americanus) 

populations that use hair snares for non-invasive genetic sampling have successfully avoided 

cross-contamination using 10-day sampling intervals when bear densities are below one bear/km2 

(Bellemain et al. 2005). Understanding that most populations of deer and other ungulates are less 

dense than the population used in this study means that applying sampling intervals of two days 

or greater could still effectively prevent significant sample cross-contamination. 

Conclusion 

The use of non-invasive genetic sampling is increasing in the fields of population ecology, 

conservation genetics and wildlife management. Hair snares are commonly used to passively 

collect genetic samples from mammals, but the costs and benefits of varying snare visitation by 

researchers have remained unknown, especially for ungulates. For sampling the relatively dense 

population of deer on Presque Isle the snare location relative to preferential habitat had no 

significant effect over the probability of cross-contamination. Barb location relative to the lure 

can also be ignored as a contributor to increasing cross-contamination probabilities. To diminish 

the probability of cross-contamination of hair samples, field collection protocols should decrease 

the time between snare collection visits. With this study, 12% of multi-hair samples could have 
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experienced cross-contamination if collected from snares every two days. This study suggests that 

increasing field effort can greatly diminish the costs that would otherwise be required if 

genotyping is being performed based on the more error-prone single hare analysis (Goossens et 

al. 1998). In considering these cross-contamination rates to the design of studies on other 

populations, protocols should obviously consider other important characteristics like the 

preferential habitat use of the study species and the population density of the specific area under 

investigation. The density of the population examined in this research is unusually high (22 

deer/km2) compared to more normal white-tailed deer population densities (Smith 1991). For a 

sparser population of white-tailed deer two- or three-day sampling intervals could effectively 

reduce cross-contamination at snares. This is further supported by hair snare studies of bears 

where cross-contamination was absent when sampling every ten days in population densities of 

less than one bear/km2.
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CHAPTER 2: COMPARING NON-INVASIVE GENETIC SAMPLING POPULATION 

ESTIMATES TO A DIRECT DRIVE COUNT OF WHITE-TAILED DEER 

 

Introduction 

Non-invasive genetic sampling (NGS) paired with capture-mark-recapture (CMR) 

modeling can provide benefits not realized with traditional capture-recapture techniques (Mowat 

& Paetkau 2002; Belant et al. 2005; Soldberg et al. 2006). Traditional CMR methods require 

considerable investments of labor and time to tag and track individual animals. These investments 

can be reduced in NGS studies that use passive collection of tissue samples for DNA 

fingerprinting (Kohn et al. 1999; Boulanger et al. 2004). Non-invasive genetic sampling 

techniques may be less costly for researchers, and may be less prone to other technical pitfalls of 

traditional CMR studies (e.g., researcher-animal interaction, loss of tag or radio collar; Woods et 

al. 1999). The reduction in field time and effort and assignment of permanent individual 

identifiers (i.e, genotypes) are advantages of noninvasive genetic techniques in studies of wildlife 

populations. 

However, NGS studies of wildlife populations are also prone to pitfalls not associated 

with traditional CMR studies. Although behavioral variability of animals can positively or 

negatively bias population estimates (Otis et al. 1978), genotyping errors are perhaps the most 

odious of possible problems for CMR studies that depend on genetic data. An assumption in 

CMR modeling is that animals are marked and recorded accurately during each sampling session 

(White 1982). Analogous to the accidental failure to mark a caught individual, if a genetic sample 
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fails to be genotyped accurately for some reason, that animal will go unmarked. The “marks” 

used in a genetic “capture” methodology are the microsatellite genotypes of individual animals, 

and this allows for the possibility of genotyping errors to lead to different individuals being 

identified (and thus “marked”) with the same genotype across a given set of loci. Indeed each 

individual (other than identical twins) should have its own unique genotype, but it is possible that 

the loci sampled from two different individuals would have the same alleles at the limited number 

of loci sampled in the study. These duplicate genotypes (called “shadow” genotypes) can arise 

during a microsatellite study because of low variability of markers or from a panel composed of 

too few markers (Paetkau 2003; McKelvey & Schwartz 2004). 

The probability of identity (P(ID)) gauges the diagnostic and analytical power of the 

marker set used for a population by describing the chance that two individuals in a population 

will share identical genotypes (Waits et al. 2001; Valière 2002). The P(ID) value for a set of 

microsatellite markers indicates whether or not the analysis will resolve individuals of a 

population or if more variable markers are needed. After determining that a marker set has 

acceptable P(ID) values (≤0.0001) researchers can then proceed with CMR modeling with 

confidence that multiple individuals will not share a genotype (Valière 2002). 

Allelic dropout is a different type of analytical problem that arises when one allele at a 

locus is sporadically unamplified in polymerase chain reaction (PCR)-based analyses. For 

example, if the same individual is sampled twice, but PCR analysis of one sample of the 

individual happens to suffer from an allelic dropout event, then the two samples will appear to be 

from two individuals that differ by one allele. This is a clear violation of the assumption made 

during CMR modeling that no misidentifications are made during capture and recapture. Most 

commonly, when allelic dropout occurs and is detectable, a heterozygous genotype is 
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misidentified as a homozygote (due to the “dropout” of one allele). The appearance of this “new” 

homozygote in the data set will inflate the number of first time captures, while simultaneously 

reducing the number of recaptures. A high number of new “marks” will inflate the population 

estimate and broaden confidence intervals as the recapture of marked individuals decreases 

(Paetkau 2003; McKelvey & Schwartz 2004; Lukacs & Burnham 2005). 

Non-invasive genetic sampling methods have been applied to coyote (Canis latrans), 

black bears (Ursus americanus), and brown bears (Ursus arctos) (Goossens et al. 1998; Belant et 

al. 2005; Bellemain 2005). With each genetic capture-mark-recapture study researchers passively 

collected either feces or hair as a source tissue. Each sample was then assigned a date of 

collection and a location of origin. Ultimately each study concluded with an estimate of 

population density for the specified area. For example Kohn et al. (1999) estimated 38 coyotes 

(CI = 36 – 40) for a region of the Santa Monica Mountains, CA. Using the date of collection and 

global positioning system coordinates, Kohn et al. (199) used genotyped scat to perform CMR 

analysis for this estimate. Hair snares provided a means of passively identifying individual black 

and brown bears with genotypes, which were subsequently used to estimate population sizes and 

densities in different geographic regions (Belant et al. 2005; Bellemain et al. 2005). 

Although NGS has been used to estimate carnivore population sizes, only one study has 

successfully evaluated this method as a tool to estimate ungulate populations (Ebert et al. 2010) .  

My objective was to use noninvasive genetic sampling to estimate the size of a white-tailed deer 

(Odocoileus virginianus) population that is regularly monitored through drive counts. My design 

used noninvasive hair snares to collect tissue from individual deer and then assemble capture 

histories for incorporation in a capture-mark-recapture model. I then compared my population 

estimate to drive counts of the population. The counts provided a means of validating my 
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Fig. 4. Snare locations on Presque Isle Park, 
Marquette, MI. © Google 2010 

estimates and determining whether or not noninvasive genetic sampling can be effective in 

estimating population sizes.  

 
Materials and Methods 

Presque Isle Deer Population 

Presque Isle Park of Marquette Michigan, 

USA is a 1.31-km2 (46º35’09.71”N, 

87º22’55.75”W) peninsula located at the northern 

edge of the city . Presque Isle Park includes 

hardwood forest types composed of maple (Acer 

spp.) white-birch (Betula papyrifera), and ironwood 

(Ostrya virginiana) with intermittent stands of 

white-pines (Pinus strobus) and eastern hemlock 

(Tsuga canadensis).  Since April of 1999 a 

population of white-tailed deer (Ococoileus 

virginianus) has ranged from 8 to 100 individuals 

on the peninsula (J. Bruggink, unpublished data).  

I installed six snares in Presque Isle Park before two sampling sessions: 8 February 2008 

to 11 April 2008 and 11 May 2008 to 17 June 2008. For the February 2008 session I installed 

snares in places intended to avoid interference from the public and intended to make them easily 

accessible by footpath. For the May 2008 session I evenly spaced snares across the study area by 

superimposing a rectangular grid composed of four 0.35km by 0.20km cells over a GoogleEarth© 
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(Google Inc.) image of Presque Isle Park (Fig. 1). The grid was centered inside of the paved road 

that circumnavigates the perimeter of the park. I identified UTM coordinates of each of the lateral 

corners of the four cells and used them to identify each site in the field. I then selected specific 

locations based on sign or presence of deer and whether there were adequate groupings of trees 

(Fig. 4).  

I used fencing staples to attach  15.5 gauge four-pronged barbed wire  to 3-4 trees about 

70 cm above ground to create a polygon around a scented lure (Belant et al. 2007). In areas of 

uneven ground, soil was added or removed to maintain a consistent 70 cm height for the barbed 

wire. I poured one liter of Buckjam© (Evolved Habitats) was poured over a small pile of sticks in 

the center of the enclosure as a lure, and refreshed it at regular two week intervals. Bright yellow 

information signs were stapled to each anchor tree facing out from the center of the snare.  

I collected deer hair from barbs every two to three days for the February 2008 session and 

daily for the May 2008 session beginning one day after installation. Hair clumps were collected 

from barbs using a pair of flame-sterilized forceps and then deposited into individually labeled 

1.5mL micro centrifuge tubes. Date, snare number and barb number were recorded for each 

sample. A butane-lighter was used to burn away remaining tissue on barbs to prevent cross-

contamination of new samples on previously used barbs. Collection continued until 17 June 2008, 

after which I removed all snares and signage. All procedures were approved by Northern 

Michigan University Institutional Animal Care and Use Committee (IACUC #076) and the 

Marquette Parks and Recreation Department. 

DNA Extraction and Microsatellite Amplification 

Collected samples were stored at 4˚C until DNA extraction was performed using DNEasy 

Tissue Kits® (Qiagen) according to manufacturer’s directions. DNA was suspended in the AE 
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buffer and stored at -20°C until PCR amplifications. Genotyping of the DNA samples was 

performed using a suite of loci that consisted of: two loci derived from mule deer (Odocoileus 

hemionus: OhD, OhN; Paetkau unpublished), two loci derived from domestic cattle (Bos taurus: 

BM4107, BM6506; Bishop et al. 1994), and one locus designed for caribou (Rangifer tarandus: 

RT24; Wilson et al. 1997). PCR amplifications were performed using Bullseye HS Taq (Midsci) 

and a three-primer CAG-tailing system (Schuelke 2000). Amplification of each sample was 

performed in 15µL reaction volumes containing 10-50ng of genomic DNA template, 1X HS 

Buffer II (with 2.0mM MgCl2), 0.2mM of dNTPs, 0.2mM forward primer with CAG tail, 0.5mM 

fluorescently labeled CAG primer, 0.7mM reverse primer and 0.5 units Taq polymerase 

(Schuelke 2000). A negative control was included with each set of reactions to identify potential 

contamination of the mastermix. The three fluorescently labeled primers used in the three-primer 

CAG-tailing system were 6-FAM, PET, and VIC (Applied Biosystems). 

Loci OhD, OhN, BM4107, and BM6506 were amplified using the following 

thermoprofile: 15 minute hot start at 95˚C followed by: five cycles of 95˚C for 15 seconds, 55˚C 

for 30 seconds, and 72˚C for 1 minute. This was followed by a 6-cycle annealing temperature 

touchdown sequence, where annealing temperatures were dropped from 54˚C to 48˚C in one-

degree decrements. The following 29 cycles consisted of a 95˚C for 15 seconds, 48˚C for 30 

seconds and 72˚C for 1 minute. A final elongation at 72˚C for five minutes was performed before 

storing samples at 4˚C. The fifth locus, RT24, was amplified using the following thermoprofile: a 

hot start at 95˚C for 15 minutes followed by; ten cycles of 95˚C for 15 seconds, 58˚C for 30 

seconds, and 72˚C for 1 minute. This was followed by a 4-cycle annealing temperature 

touchdown sequence where the annealing temperatures were dropped from 57˚C to 53˚C in one-
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degree decrements. The final 34 cycles included denaturation at 95˚C for 15 seconds, annealing at 

53˚C for 30 seconds, and elongation at 72˚C for 1 minute. All PCR reactions were run either in a 

MasterCycler® Gradient thermocycler (Eppendorf) or MyCycler® (Bio-Rad) thermocycler. 

Genotype Scoring 

Alleles at all loci were sized using polymer-based electrophoresis on an ABI 3100-Avant 

Genetic Analyzer equipped with a 50cm capillary array and POP-6 polymer (Applied 

Biosystems). Loci were divided into two different panels for allelic sizing by the ABI 3100-Avant 

Genetic analyzer: PanelA consisting of RT24/6-FAM, BM4107/VIC, BM6506/PET and PanelB 

consisting of OhD/VIC, OhN/PET. Amplification products were loaded onto the ABI 3100-Avant 

Genetic Analyzer in multiplex cocktails. Cocktail panels were created by mixing 5µL of the 

amplification products from each individual locus in a new tube. A small amount (1µL) of this 

multiplex mixture was combined with 11.5µL of Hi-Di Formamide and 0.5µL LIZ-600 internal 

size standard (Applied Biosystems). Before loading onto the genetic analyzer the mixture was 

heated to 95˚C for two minutes cooled at 4˚C until subjected to electrophoresis. Allele sizes were 

scored using GeneMapper 3.5 (Applied Biosystems), which compares migration distances of 

fluorescently labeled amplicons to migration distances of known LIZ-600 (Applied Biosystems) 

size standard fragments. Fragment sizes were recorded as basepair lengths. After initial basepair 

sizes were assigned, electropherograms were visually inspected to reconcile poor size calls, and 

to mark fragment peaks that were initially ignored during GeneMapper analysis. The sex of each 

sample was determined using a PCR-based protocol with  CerZFXYf and CerZFXYr primers 

(Lindsay & Belant, 2008).  
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Summary Statistics 

 The frequency of null alleles (non-amplified “dropout” alleles) per locus was estimated 

using Micro-Checker (Van Oosterhout et al. 2004). Loci with high rates of estimated null allele 

occurrence were used to evaluate the apparent uniqueness of individual genotypes. Two 

genotypes that differed only by single allele differences at one or two loci with high rates of 

estimated null allele frequencies were considered to be the same individual. The set of genotypes 

that includes genotypes “corrected” for null allele dropout is referred to as the “allelic-dropout 

corrected dataset.” Probability of identity (P(ID)) per marker and similarity levels between 

genotypes were determined using GIMLET (Valiere, 2002). 

Population estimates 

To estimate total population size from genotypes of both spring and winter sampling 

sessions I used closed models in Program MARK (White & Burnham 1999; Pledger 2000). The 

low number of deer visiting the snares suggests that there was a behavioral response resulting in 

trap shyness, so models that included behavioral responses were considered among different 

closed models. Multiple models were run using a combination of closed, closed heterogeneity, 

and full closed heterogeneity models. The best model was chosen based on the lowest Akaike 

Information Criterion (AIC) value that differed from the AIC values from other models (∆AIC) 

by at least a value of 2. I performed separate MARK population analyses for winter and spring 

sampling sessions. 
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Results 

Hair Collection, Probability of Identity, and Null Alleles 

 I collected 387 samples during both sampling sessions. Of those, 139 contained at least 

five hairs for extraction and amplification (Wills 2008). Five microsatellite loci had sufficient 

power so that only 0.7% of full siblings would have the exact same genotypes (Valiere 2002). 

Unbiased estimate of P(ID) was 0.0000008 (Table 1); estimates for dropout-corrected genotypes 

were P(ID)unbiased = 0.0000004, P(ID)sibs =  0.007. 

After one round of PCR, 37 of the 139 samples composed of five or more hairs returned fully 

resolved genotypes across five loci. A second round of PCR was performed on loci of samples 

that failed to amplify at a given locus. After this second round of PCR there were  70 complete 

five-loci genotypes, and 67 of those 70 were unique. The sexing reactions identified 16 males, 

and 46 females. Five samples that returned a full five-locus genotype failed to yield sexing 

results. After analyzing these 67 distinct genotypes in Micro-Checker I determined that loci OhN, 

RT24, and BM6506 exhibited significant frequencies (≥0.05) of null alleles (Table 2).  

 
Table 1 Values of expected and observed heterozygosities, along with the probability of 
identity values for each locus (P(ID)unbiased, and P(ID)sibs). 

Marker HExp/HObs P(ID)unbiased P(ID)sibs 

BM6506 0.85/0.66 3.21E-02 3.33E-01 

OhD 0.84/0.81 1.14E-03 1.13E-01 

OhN 0.75/0.63 9.05E-05 4.48E-02 

BM4107 0.75/0.72 8.37E-06 1.79E-02 

RT24 0.73/0.54 8.24E-07 7.35E-03 
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I found that eight genotype pairs differed from one another by one allele, and 20 genotype 

pairs differed from one another by one allele at one or two loci. These problematic genotype pairs 

differed such that one genotype was homozygous for one allele while the other was a 

heterozygote where one allele of the heterozygote was the same as the allele in the homozygote). 

Based on the high probability that these slight differences between genotype pairs resulted from 

allelic dropout and did not represent truly novel genotypes, each pair was considered a single 

genotype that was “captured” and “recaptured.” This set of genotypes with pairs that were 

collapsed based on presumed allelic dropout comprises the “allelic dropout corrected genotypes.” 

 
Table 2 Null allele frequencies for each of the five loci calculated in Micro-checker. The 
five columns associated with each locus show different statistical estimations of null allele 
frequencies, as in Van Oosterhout (2004) The three loci with significant frequencies of null 
alleles are noted with an “*”. 
Locus Oosterhout Chakraborty Brookfield 1 Brookfield 2 

OhD 0.0108 0.0168 0.0151 0.0151 

OhN* 0.0756 0.0845 0.0671 0.0671 

BM6506* 0.0896 0.1049 0.0877 0.0877 

RT24* 0.2004 0.2594 0.1609 0.1609 

BM4107 0.0121 0.0120 0.0102 0.0102 
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Table 4 Rank of population models in MARK for white-tailed deer in Presque Isle Park, 
Marquette MI during spring. 

Model AICc ∆ AICc Parameters Deviance 
               SE 

Mbh 48.81 0.00 4 45.69 927 1751.50 
Mb  52.16 3.35 3 51.07 55 17.19 
Mo  52.44 3.63 2 53.38 179 82.57 
Mh  56.50 7.68 4 53.38 179 82.57 
Mth  60.43 11.62 18 28.11 854 1506.14 
Mtbh  63.27 14.45 19 28.80 38 3.83 
Mtb  63.57 14.75 17 33.38 38 3.64 
Mt  64.07 15.25 16 36.01 173 79.33 
 

Table 3 Model selection results from mark-recapture estimates of white-tailed deer in Presque 
Isle Park, Marquette MI during winter. 

Model AICc ∆ AICc Parameters Deviance  SE 

Mo  37.12 0.00 2 28.88 45 22.02 
Mb  39.22 2.09 3 28.87 50 94.94 
Mh  39.22 2.10 3 28.88 45 22.02 
Mtb  42.06 4.93 12 11.19 16 0.17*-003 
Mt  43.33 6.21 9 19.65 42 20.09 
Mbh  43.51 6.39 5 18.65 50 94.93 
Mtb  44.64 7.51 10 18.61 17 3.92 
Mth 66.08 28.96 18 19.65 42 20.09 
       

 

 

Population Estimates 

 After correcting the genotypes for allelic dropout the number of distinct individuals 

decreased from 67 distinct individuals captured to 51. Two of these individual genotypes were 

identified twice within the same day. For winter, the closed model without time dependence, 

individual heterogeneity and behavioral response, (Mo) ranked highest as being supported by data 
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with an estimate of 45 (CI = 24 – 125) animals (Table 3). For spring, the model including 

individual heterogeneity in capture probability and behavioral response (Mbh) ranked highest.   

 

Discussion  

 This was the first attempt to derive a population estimate for ungulates using non-invasive 

genetic sampling and capture-mark-recapture modeling (Ebert et al. 2010). The population 

estimate for the winter sampling period ( = 45: 95% CI = 24-125) that took place from 8 

February–11 April 2008 was reasonably similar to the 40 animals counted on the deer drive 

performed on 29 March 2008. However, the population estimate for the spring sampling period 

(  = 55: 95% CI = 41-124) that took place from 11 May – 17 June 2008 was considerably higher 

than the 31 animals counted on the deer drive performed on 6 December 2008. Implausibly low 

standard error estimates suggested that my data were too sparse to support this model, and other 

models containing heterogeneity, and that its ranking was spurious. Thus, I selected the 

behavioral model (Mb) as the most appropriate for estimating population size ( = 55 CI = 41-

124).  In the rankings created by MARK (Mb) had a higher AIC value than (Mo), but the 

different in AIC values between Mb and Mo (∆AIC) values suggest equal support for each. 

While there was equal support for both models, (Mb)’s estimate was more reasonable than (Mo)’s 

(  = 179 CI = 86-446). The low recapture probability (c = 0.013) shows that deer entering the 

snare once were unlikely to reenter the snare suggesting trap shyness as an issue. The estimates 

derived from the genotyping data are larger than the drive count data, but this would be expected 

because the genetic sampling occurred over winter and spring periods that lasted two months and 

one month long, respectively. The drive counts probably provide accurate counts of deer on the 
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Fig. 5. Map of isthmus connecting Presque Isle Park to 
the mainland of Marquette County, MI. © Google Earth 
2010 

peninsula on the day that they occur, but the hair snares were collecting samples from deer that 

were present on the island over the course of many days. In leaving hair snares set up for weeks 

or months, I was able to sample deer that presumably move in or out of the park via the narrow 

isthmus. In this case, non-invasive genetic sampling provided a mechanism to detect deer that 

used the park habitat but were not present in the park on the day of the drive counts. 

Confidence Intervals 

The broad confidence intervals for 

each estimate could be explained by 

sampling effort, genotyping errors, 

behavioral response, or simply sparse data. 

Otis et al. (1978) suggested CMR studies 

use four sampling sites for every home 

range. Presque Isle has a radius much 

smaller than the seasonal average home range of white-tailed deer (1.6 km: Smith 1991). It is 

possible that deer move through the residential and industrial barriers onto the mainland 

suggesting that Presque Isle is a small portion of larger home ranges used by individual deer (Fig. 

5). Due to the (now illegal) supplemental feeding of deer in the park it is reasonable to believe 

that deer treat it as a seasonal territory with a stable food source.  If we consider Presque Isle a 

territory for resident deer, then the six sampling sites was adequate per Otis et al.’s (1978) 

recommendation.   

Genotyping errors can bias population estimates. As suggested previously, quality control 

measures should be taken to prevent misidentifying individuals (Paetkau 2003; McKelvey & 

Schwartz 2004). I addressed misidentification by “shadow effect” by determining the P(ID) for my 
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marker set (Valière et al. 2002). This ensured a low likelihood that distinct individuals would 

share identical genotypes (P(ID)sibs =  0.008) leading to a negative bias in the CMR estimates. Null 

alleles that lead to “allelic dropout” necessarily create an inflated number of new individuals. 

Through an analysis of null allele frequencies, I was able to account for this positive bias by 

correcting genotype misidentifications attributable to allelic dropout. Post hoc analysis of allele 

frequencies showed three loci had excessive homozygosity, which suggests a high rate of allelic 

dropout (Van Oosterhout et al. 2004). Pairwise comparisons between all genotypes suggested that 

some “unique” genotypes only differed from other genotypes by one or two alleles. These 

genotypes were subsequently considered the same genotypes (and thus captures and recaptures), 

which diminishes the possibility of allelic dropout leading to positive bias in these CMR 

estimates. 

We observed low recapture rates, possibly attributable to deer having little need for 

minerals at this time of year. Indeed the BuckJam© provided a scent (sweet apple) to initially 

draw deer to the lure, but the more persistent substance was a concentrated mineral salt not 

necessarily attractive to deer on Presque. To lure deer repeatedly to the snares, a more attractive 

food lure might have been preferable, but park regulations prevented supplemental feeding of 

deer. Bear studies with similar goals have successfully used food consumables as a lure, drawing 

animals to the snares for both captures and recaptures to a greater degree than this study 

(Boulanger et al. 2004; Triant et al. 2004). 

I hypothesized behavioral model (Mb) would best describe data for winter and spring. 

This was true for spring, when Mb ranked highest in AICc analysis (Table 4). Winter data was 

best described by the simple closed model (Mo) which is often chosen in the case of sparse data 

(Lancia et al. 2005) (Table 4). It is reasonable to assume that trap shyness occurred in both 
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sessions, regardless of Mo ranking highest for winter. Similar bear studies have used 

heterogeneity models (Mh) to derive population estimates (Boulanger et al. 2004; Bellemain et 

al. 2005). This contrasts with my study in that behavioral response to baited snares, or passive 

fecal collection was not an issue.  

Finally the sparseness of my data, specifically in the number of recaptures, probably 

contributed the most to the broad confidence intervals. For the spring (Mb) and (Mo) ranked 

equally in AIC. Lancia et al. (2005) suggests that (Mo) will rank high when the amount of data is 

limited. I justified using the estimates from the highest ranked (Mb) because the low recapture 

rates (c = 0.013) suggest deer became trap shy for some reason (i.e. unattractiveness of the lure). 

The sparseness of data created a strong positive bias in the (Mo) ( = 179 CI = 86-446) relative 

to the two drive counts bracketing this study while (Mb) accounted for low recapture rates when 

deriving population estimates. Ultimately a larger number of recaptures would have increased the 

precision of the MARK analysis. 

Sex Ratios 
 

A final component of this study was an investigation of the sex ratio of this deer 

population. The molecular genetic sexing data showed there is a female bias of 3.27 females for 

every male. Other work with a western Pennsylvanian population that was subjected to low 

harvest rates (like the Presque Isle Park population) showed a sex ratio of nearly 1:1 (Woolf & 

Harder 1979). The female-biased sex ratio in Presque Isle Park is perhaps attributable to the 

restricted geographic area of the park (a peninsula) and the social behavior of white-tailed deer. 

In white-tailed deer, females are more likely to remain part of matrilineal territories and later 

establish their own territories close by their natal territory (Kilpatrick & Spohr 2000). Males older 
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than one year of age are less likely to remain with the matrilineal groups and often disperse alone. 

Thus, I would expect to identify large numbers of resident females and few males in a small 

geographic area. In certain contexts social pressures from matriarchs force yearling bucks out into 

peripheral territory (Hawkins et al. 1971; Ozoga and Verme 1985) which could explain the low 

number of males detected. The pressure exerted by females could be compounded by the limited 

area of Presque Isle Park as males forced to disperse would have to traverse the residential and 

industrial barrier (Fig. 5). Once across the isthmus, without an equal pressure to return to the 

island, I would not predict males would cross this barrier from the mainland. The limited area of 

Presque Isle Park is also not ideal for males since they generally use larger home ranges than 

females (Gavin et al. 1984). Presque Isle Park is more than likely occupied by one or several 

matrilineal groups of related females and their associated yearling male fawns, and less-

frequently visited by several transient adult male deer. 

Conclusion 

 This study was the first to use a baited hair snare technique to non-invasively collect 

genetic samples from a wild population of ungulates. These samples were genotyped using five 

variable microsatellite loci, taking into account genotyping errors due to the dropout of null 

alleles. These genotypes were then used in a “capture-mark-recapture” analysis, where the first 

instance of a genotype appearing was considered its initial “capture and mark” and any repeated 

occurrence of that genotype was considered its recapture. The unattractiveness of the lure to deer 

probably reduced the likelihood of recapture and this broadened overall confidence intervals. My 

estimates of population size were larger than the drive counts of deer in the Park that occurred 

before and after my sampling periods. Drive counts only record deer present on the peninsula on 

the day of the drive count, whereas the hair snares sampled the deer in the Park for a period that 
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spanned five months. The longer time period for this study, and the ability of deer to move on and 

off the peninsula via the connecting isthmus could explain the larger genotype-derived estimates, 

as more deer were likely to have been both moving onto and off the island and be sampled and 

identified. Molecular sex-identification of hair samples revealed a 3.27:1 female bias sex ratio in 

the Presque Isle population. The residential and industrial barriers of Presque Isle could 

encourage the movement of males off the peninsula while discouraging other males from entering 

from the mainland. Ultimately the use of non-invasively collected genetic material proved useful 

in analyzing both population size and sex ratio in this study. 
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CHAPTER 3: GENETIC STRUCTURING IN ISLAND POPULATIONS OF WHITE-

TAILED DEER 

 

INTRODUCTION 

Heterogeneous distribution of individuals of wildlife species can create genetically 

subdivided populations. These subdivided populations consist of subpopulations which are 

interbreeding groups of individuals exchanging genes and groups of subpopulations comprise a 

metapopulation. The genetic connectedness between subpopulations will theoretically depend on 

the geographic distance between subpopulations and on the amount of migration between them 

(Barton & Slatkin 1986). Smaller subpopulations separated by longer distances have the potential 

for a high degree of genetic differentiation (Madsen et al. 1996; Saccheri et al. 1998; Eldridge et 

al. 1999). The amount of gene flow between subpopulations is a product of raw geographic 

barriers and distance (MacArthur & Wilson 1967). 

Populations of white-tailed deer (Odocoileus virginianus) can be divided into smaller 

subpopulations separated by geographic and behavioral barriers (Donnelly & Townson 2000; 

Gerlach & Musolf 2000; Pálsson 2000). Behavior contributes to genetic structure among these 

subpopulations, but generally geographic barriers create a much more influential obstacle to 

genetic migration (Mathews & Porter 1993). While vagility of white-tailed deer can reduce 

differentiation between subpopulations, extreme spatial separation has been shown to create 

genetic differentiation (Purdue et al. 2000; Miller et al., 2010). This study focuses on the 

influence of water as a geographic barrier to geneflow in white-tailed deer rather than distance 

alone. 
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Genetic Structure in Metapopulations 

Metapopulation genetic structure can range from a situation where all subpopulations 

have the same allele and genotype frequencies (“panmixia”) to a situation where each 

subpopulation is unique in its allelic and genotypic composition. The degree of similarity 

between subpopulations can be measured in several ways. First as a measure of genetic 

connectedness among subpopulations, the observed heterozygosities of subpopulations can be 

compared to the expected global heterozygosity of the metapopulation (FST) (Mills & Allendorf 

1996; Balloux & Goudet 2002; Conner & Hartl 2004). FST  measures can then be used to estimate 

genetic migration of individuals per generation (Nm) between populations (Barton & Slatkin, 

1986). Population differentiation can also be identified by comparing allele frequencies within 

subpopulations to allele frequencies of the total population (Weir & Cockerham, 1984; Bohonak, 

1999; Balloux & Goudet, 2002).  

In extreme cases of geographic isolation (i.e., large bodies of water, or mountain ranges) 

deer populations could potentially show subpopulation genetic structure that is best described by 

an island biogeographic model. In an island biogeographic model, genetic differentiation between 

populations on the island and the mainland is proportional to the distance of an island from the 

mainland (MacArthur & Wilson 1967; LeCorre & Kremer 1998; Conner & Hartl 2004; 

Abdelkrim et al. 2005). Furthermore, once colonized, larger islands (which presumably support 

larger populations) should be able to maintain higher levels of the original genetic variation that 

was present in the source mainland population (Conner & Hartl 2004). This study evaluated these 

two predictions from island biogeographic theory using white-tailed deer populations on two 

islands of Lake Superior. Oak Island and Grand Island have different geographic characteristics 
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Fig. 7 Map of the locations of snares installed 
on Grand Island and in PRNL. © Google Earth, 
2010 

 
Fig. 6 Map of Oak Island and its relative proximity 
to the Bayfield Peninsula of Wisconsin. © Google 
Earth, 2010 

which could contribute to the genetic 

differentiation of white-tailed deer 

populations on each. Given the 

relatively longer distance from the 

mainland and smaller size, I predicted 

that the deer population on Oak Island 

will have higher inbreeding statistics, 

fewer alleles and a lower number of 

generational migrants to the mainland 

when compared to the population of the 

larger Grand Island which is closer to the 

mainland. A third study site, Presque Isle 

Park, is a large island-like land mass 

connected to the mainland by a thin 

isthmus of land (see chapters 1 and 2 for 

more details). Since Presque Isle Park is 

directly connected to the mainland, I 

predicted that it should show the lowest measures of isolation (inbreeding, rare alleles, migration) 

of all three study sites.  

Materials and Methods 

Study Sites 
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Oak Island has a total land area of 21km2 and is located 2.12km from the nearest mainland 

of Bayfield County, Wisconsin (Fig. 6). The forest over story is dominated by mixed hardwood 

and hemlock forests consisting of red oak, eastern hemlock, balsam fir, sugar maple, and yellow 

birch (Taber 1990). White-tailed deer genetic samples (and genotypes) were available from Oak 

Island (46º56’13.75”N, 90º43’41.67”W) and the adjacent Bayfield Peninsula of Wisconsin 

(46º48’11.80”N, 90º45’46.70”W), through collection by another study (Belant, unpub. data) that 

used harvested individuals and hair snares. Grand Island (46º29’13.68”N, 86º40’06.70”W) is a 

58-km2 island located 0.63km off the the nearest mainland shore of Pictured Rocks National 

Lakeshore in Michigan’s upper peninsula (46º31’04.21”N, 86º24’32.44”W) (Fig. 7) (Silbernagel 

et al. 1998). Pictured Rocks National Lakeshore (PRNL) is composed of deciduous forests and 

spruce (Picea spp.), tamarack (Laryx laricina) and Northern white-cedar (Thuja occidentalis) 

wetlands (Metzger & Schultz 1981). Study sites used for sampling deer were located in habitat 

that can support deer during the spring. Seven genetic sampling sites were set up on Grand Island 

and six sites were set up on the adjacent mainland of PRNL (Fig 7). Sites were chosen no less 

than 15m away from road or footpath. Presque Isle Park of Marquette County, Michigan is a 

peninsula that terminates in a large, ovate land mass jutting into Lake Superior, connected to the 

mainland by a thin strip of land (Fig. 5). Presque Isle Park snare locations were chosen to be 

separated by no less than 300m.  

Installing Snares  

Using fencing staples, 15.5 gauge four-pronged barbed wire was attached to 3-4 trees 

about 70 cm above ground creating a polygon (Belant et al. 2007). In areas of uneven ground, 

soil was added or removed to maintain a consistent 70 cm height of the barbed wire. One liter of 

Buckjam© (Evolved Habitats) was poured over a small pile of sticks in the center of the 
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enclosure, and it was refreshed at regular two-week intervals. Bright yellow information signs 

were stapled to each anchor tree facing out from the snare.  

Tissue Collection and DNA Extraction 

Weekly sampling from Grand Island and Pictured Rocks took place from May 24th 2008 

to July 3rd 2008 while daily sampling on Presque Isle Park took place from February 9th 2008 to 

June 17th 2008. At Presque Isle Park, I collected hair samples every 2-3 days during winter (8 

February-19 April) and daily during spring (12 May-17 June) periods. I removed hair from barbs 

using flame-sterilized forceps and deposited hair into individually labeled 1.5mL microcentrifuge 

tubes. Date, snare number, and barb number were recorded for each sample. To prevent 

contamination, I used a butane-lighter to destroy any remnant tissue on barbs. Collected samples 

were stored at 4˚C until DNA extraction using DNEasy Tissue Kits® (Qiagen) according to 

manufacturer’s directions. DNA was suspended in the AE buffer and stored at -20°C until genetic 

analysis was performed. 

Microsatellite Amplification and Genotype Scoring 

Mirosatellites were amplified and genotypes were scored using the same techniques as are 

outlined in Chapter 2. All Oak Island and Bayfield Wisconsin genotypes included the same five 

loci used to genotype Grand Island, PRNL, and Presque Isle samples. 

Population Genetic Analyses 

 I used FSTAT v. 2.9.3 (Goudet, 2001) to estimate FST values among subpopulations, 

under the stepwise mutation model that assumes each locus is selectively equivalent and that 

alleles can mutate to another allelic class. This program assigns weights to alleles to 

accommodate for sample size variation and uses bootstrap replications to obtain confidence 
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Table 4 Population differentiation parameters calculated for the two island-mainland 
population pairs and for all populations (including Presque Isle Park) compared to one 
another. 
Population FST 95% CI SE 

Oak Island/ Bayfield Peninsula -0.0170 -0.027- -0.007 0.006 

Grand Island/ Pictured Rocks 0.0347 0.022-0.048 0.006 

All Populations 0.1040 0.065-0.146 0.018 

 
 

intervals for each locus across the entire population (Weir & Cockerham, 1984). I also used 

FSTAT to calculate inbreeding statistics (FIS) at the subpopulation level and assumed all 

populations descended separately from a single ancestral population that was in Hardy-Weinberg 

and linkage equilibrium. I used GENEPOP 4.0 (Rousset, 2007) to estimate Nm by the private 

alleles method (Barton & Slatkin 1985), also under the assumption that each subpopulation had 

reached equilibrium between genetic drift and immigration. 

Results 

Hair Collection 

 I collected 61, 123, and 383 hair samples from Grand Island, PRNL and Presque Isle 

Park, respectively. Eleven hair samples were collected from the seven snares installed around 

Marquette County, Michigan, but none returned adequate genotypes for analysis. All samples  

successfully amplified at four to five loci were included in population genetic analysis, resulting 

in 11, 21, and 69 genotypes from Grand Island, PRNL, and Presque Isle Park, respectively. 

Additionally, 47 genotypes from Bayfield County and four genotypes from Oak Island were 

included in this analysis. 
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Table 6 Number of migrants shared by subpopulations 
per generation as calculated in GENEPOP 4.0 (Rousset 
2007).  
 
Population Nm 

Oak Island/Bayfield Peninsula 2.136 

Grand Island/Pictured Rocks 1.222 

All Populations 2.559 

 

 
Table 5 Inbreeding statistics for each of the different 
subpopulations. 
 

Subpopulation FIS 

Oak Island, WI -0.071 

Bayfield Peninsula, WI -0.043 

Grand Island, MI 0.220 

Pictured Rocks, MI 0.153 

Presque Isle, MI 0.160 

 

 
Population Genetic Statistics 

 Neither of the island 

populations showed significant 

differentiation from their 

mainland counterparts. 

However, of the island-

mainland pairs, Grand Island 

and PRNL were more similar 

(Fst = -0.0170) than Oak 

Island/Bayfield Peninsula (Fst = 

0.0347) (Table 4). Moderate 

differentiation was observed 

between all populations (FST = 

0.1040). Intrapopulation 

inbreeding statistics (FIS) were 

determined on a per subpopulation basis to see if any region displayed excess homozygosity. All 

three Michigan subpopulations showed significant levels of inbreeding (FIS > 0.05), and Grand 

Island showed the highest level of inbreeding (FIS = 0.220) of the three Michigan subpopulations 

examined here. Oak Island and the Bayfield Peninsula shared 2.1 migrants per generation, while 

Grand Island and Pictured Rocks shared 1.2 migrants per generation (Table 6). There were 2.6 

genetic migrants per generation shared between all subpopulations. 
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Discussion 

Differentiation per Subpopulation 

 The population FST values for both of the Lake Superior island-mainland pairs examined 

in this study are low enough to doubt any significant level of differentiation (FST <0.05). While 

differentiation between populations was not significant the varying levels are worth considering 

in relation to each of their respective island-mainland population relationships. These data 

suggest that the degree of difference in the distance to the mainland does not result in a distinct 

pattern in differentiation (FST). If distance were the dominant factor shaping genetic structure, 

Oak Island should have showed the greatest degree of differentiation from its mainland 

counterpart, but it did not. There was no significant differentiation between Oak Island and 

Bayfield County subpopulations (FST = -0.0170). All alleles of Oak Island genotypes occurred at 

least once in the mainland population of Bayfield, Wisconsin. Grand Island and PRNL are twice 

as close to one another as Oak Island and Bayfield County are to one another. Grand Island-

PRNL populations showed a higher level of genetic differentiation than the Wisconsin 

populations although both were still non-significant. 

Apart from distance to the mainland, the size of the island and time since colonization of 

deer also suggest that Oak Island should have shown a higher degree of differentiation. The force 

of genetic drift is stronger in smaller populations, so larger islands (like Grand Island compared 

to the smaller Oak Island) should sustain larger populations which would help maintain rare 

alleles. Larger islands should maintain higher levels of genetic variability and heterozygosity than 

smaller islands. The longer a population is isolated from its source population with limited 

migration the more likely it would be that unique alleles would be isolated in small populations 
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Fig. 8 Map of Apostle Island National 
Lakeshore (Bayfield County, WI) with 
Oak Island circled. © Google Earth, 
2010 

and move to fixation (Balloux & Goudet, 2002). Another simpler explanation for the lack of 

differentiation between populations could be that the water isn’t a barrier preventing deer from 

moving between subpopulations. The capacity for deer to cross during ice over, or swim during 

warmer weather could negate any population differentiation for the island populations (Michael 

1965). 

Inbreeding in Subpopulations 

The Oak Island (FIS = -0.071) deer 

population showed non-significant levels of 

inbreeding, while Grand Island population 

showed the highest levels of inbreeding (FIS = 

0.220) (Table 5). In both cases the island 

exhibited higher inbreeding coefficients than the 

mainland counterpart (Table 5). Given the 

smaller population sizes and limited dispersal 

distances, islands are more prone to encouraging 

non-random mating among relatives, which leads to high inbreeding statistics (Conner & Hartl, 

2004). Presque Isle Park showed moderate levels of inbreeding (FIS = 0.160) even though it is 

connected to its mainland counterpart by a narrow isthmus (Table 5). The population of deer in 

Presque Isle Park has experienced two bottlenecks which could contribute to high inbreeding. 

The first bottleneck occurred as a result of the release of deer from the Presque Isle Park Zoo 

which led to few founding deer contributing to the local deer genepool in the park (J. Bruggink 

personal comm.). The second bottleneck occurred in 2001 when the Presque Isle Park deer herd 

was culled from 100 to 15 deer. Either of these coupled with a relatively insulated population 
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with little immigration from the mainland, would serve to increase the inbreeding coefficients on 

this island (Abdelkrim et al. 2005).  

Migrants between Subpopulations 

 The low estimates of Nm along with the low FST values could be indicative of low 

population sizes for each of the islands. Since Nm is a measure of the proportion of migrants 

contributing to the gene pool, two deer migrating to Oak Island would reduce differentiation to 

zero if only 20 deer inhabited the island (Conner & Hartl 2004). In some cases one migrant per 

generation can drastically reduce FST values regardless of the population size (Mills & Allendorf 

1996). When compared to the low FST values the lack of differentiation could also be due to a 

recent expansion to these islands, implying that these subpopulations are the result of relatively 

recent emigrations from the mainland. If subpopulations are divided, a low proportion of migrants 

per generation can reestablish panmixia. Perhaps more significantly, low levels of migration 

(m>0.05) can maintain genetic homogeneity between subpopulations that were once continuous 

(Conner & Hartl 2004). Estimates of migration rates for Oak Island were nearly twice those of 

Grand Island (Table 6). Oak Island is exposed to the mainland at its southwest shoreline, while 

the rest of its contiguous shoreline is separated by six other islands belonging to the archipelago 

by an average distance of 2.94km (min = 2.19km, max = 3.94) (Fig. 8). Oak Island could exhibit 

reduced differentiation as result of migration from the mainland to Oak Island but also as a result 

of emigration and immigration to and from the other six peripheral islands. While none of the six 

islands immediately surrounding Oak Island has permanent populations of deer, there are records 

of temporary populations on some of these islands. In contrast, Grand Island only receives 

migrants from its mainland counterpart, PRNL. During the winter Oak Island and Grand Island 

generally each experience complete ice cover of the surrounding waters of Lake Superior 
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(NOAA, Great Lakes Environmental Research Laboratory, Ann Arbor, MI), which could 

conceivably provide ice bridges for deer to cross between islands and mainland. Migration across 

the winter ice bridges would still be affected by the total distance to the island which means the 

same relationship between distance and Nm would apply.  

The proportion of migrants per generation among all subpopulations was high relative to 

migrants per generation exhibited between the two island/mainland scenarios (Table 6). This is a 

result of using the private alleles mathematical model to determine Nm (Barton & Slatkin 1986). 

In expanding a dataset to include more samples there is the increased chance of capturing 

individuals from different subpopulations with a shared rare allele at a locus. The more broadly 

samples are collected from a metapopulation, the more likely it is that rare alleles will be shared 

among individuals.  

Conclusion 

 Neither of the island populations of white-tailed deer examined in this study showed 

significant levels of differentiation from their corresponding mainland population. However, 

Grand Island showed higher levels of inbreeding than did the smaller Oak Island. Although Oak 

Island is further from the Wisconsin mainland than Grand Island is from PRNL, it is likely that 

some geographic characteristics in the Wisconsin system – specifically the number of 

surrounding islands – creates a “stepping-stone” effect for migration and this lowers the 

inbreeding levels on the island. Oak Island is farther from the mainland than Grand Island is, but 

there are more island “stepping stones” connecting it to the mainland. Oak Island may also itself 

be a stepping-stone island for deer that move between the mainland and the more peripheral 

islands of the Apostle Islands archipelago. If Oak Island is a stepping stone then it would 

experience a higher amount of migration to and from its shores and thus lower its inbreeding 
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coefficient. Identifying long term trends of inbreeding and population differentiation for not only 

Oak Island but also the other source island populations could clarify the complete migration 

picture of the archipelago. The only source for immigrants to Grand Island is the mainland (there 

is no comparable island archipelago. The higher level of inbreeding on Grand Island relative to 

Oak Island supports the possibility that there simply are too few immigrants maintaining 

heterozygosity in this population. It is also possible that the low levels of differentiation for all 

locations are a result of ineffective geographic barriers failing to prevent migration of deer within 

these systems. It is certainly possible that deer swim from island to mainland (or reverse) during 

the spring and summer and cross the ice during the winter, maintaining genetic panmixia. A long 

term genetic study could potentially reveal differences between mutli-island archipelagoes versus 

single island populations. 
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