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ABSTRACT 

  
THE OVEREXPRESSION OF BASIGIN-3 IN GLIOBLASTOMA  

 
By 

Samantha Wightman 
 

 
Glioblastoma (GBM) is one of the most aggressive forms of brain tumor. With the 

current standard of care, survival prognosis for GBM patients is 15 months with a five-year 

survival rate of less than 3%. An increased understanding of the molecular mechanisms 

leading to cell growth and survival of GBMs may result in novel treatments to target and 

eradicate the disease. The protein Basigin-2 (aka EMMPRIN) induces the expression of 

matrix metalloproteinase (MMP) enzymes, and its expression level is positively correlated 

with GBM tumor grade. In 2011, Liao et al. reported that a splice variant of the basigin gene, 

called Basigin-3, may have an inhibitory function when bound to Basigin-2 in Human 

Hepatocellular Carcinoma (HHC) cells, as it decreases tumor growth, invasion and MMP 

expression. The goal of this study is to determine the effects of Basigin-3 overexpression in 

GBM cell growth. For this a recombinant fusion protein consisting of Basigin-3 and the red 

fluorescent protein mKate2 was overexpressed in a GBM cell line (LN229). RT-PCR and RT-

qPCR was used to measure MMP gene expression in Basigin-3/mKate2 expressing cells, 

and confocal microscopy used to confirm over-expression of Basigin-3 in the transfected 

populations. Our hypothesis that Basigin-3 overexpression would reduce MMP expression 

cells was not supported by our data suggesting that Basigin-3 in GBM does not as an 

inhibitor of Basigin-2 function in GBM cells.  
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LITERATURE REVIEW AND BACKGROUND 

 

INTRODUCTION TO GLIOBLASTOMA  

 

Glioblastoma (GBM) is the most aggressive and life threatening form of primary 

metastatic brain tumor in humans. GBMs makes up 17% of all brain tumors, 60-70% of all 

astrocytomas, and have an incidence of 6.04 per 100,000 people per year in the United 

States (Association, 2010).  Even with the use of standard treatment, the median survival 

rate for GBM  is only 12.5 to 15 months and the five-year survival rate is less than 3% 

(Shibahara et al., 2013; Stupp et al., 2009; Weller et al., 2009; Yang et al., 2013). Clearly, an 

improved understanding of the molecular mechanisms regulating cell growth and survival 

of GBMs is need and could lead to novel treatments used to target and eradicate the 

disease.  

GBM tumors are classified as gliomas; tumors that arise from the supporting cells of 

the central nervous system. More specifically, a GBM is a Grade IV astrocytoma, a tumor 

arising from astrocytes (Association, 2010).  Grade IV tumors are the most malignant and 

aggressive. This grading system was developed by the World Health Organization (WHO), 

and grade IV tumors are characterized by hypercellularity, pleomorphism (individual cells 

vary in shape and size), frequent mitosis, microvascular proliferation and necrotic tissues 

are found within the tumor  (Coons, 1996). There are many factors that can lead to the 

development of a malignant glioma including environmental, genetic, and other 

physiological factors, such as prior exposure to therapeutic doses of ionizing radiation and 

genetic predispositions including Li-Fraumeni syndrome, Neurofibromatiosis type 1 and 2, 

and tuberous sclerosis (Juratli, Schackert, & Krex, 2013).  
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TREATMENT OF GBM 

The standard treatment for GBM tumors is surgical resection, followed by combined 

radiation and chemotherapy with temozolomide. Even with this standard treatment nearly 

all GBMs recur after initial therapy. The median survival rate of a patient diagnosed with 

GBM is about 12.5 to 15 months with current standard of treatment (Weller et al., 2009).  A 

high rate of recurrence and few effective treatments are to blame for the low five-year 

survival rate of less than 3% (Stupp et al., 2009).   

Surgical resection effectively reduces the size of the tumor, however complete 

resection is not possible due to the invasive nature of the tumors. To maximize the extent 

of tumor resection, intraoperative brain mapping and MRI along with 5-aminolevulinic acid 

(5-ALA) derived tumor fluorescence for intraoperative identification of malignant glioma 

tissue is used in some countries (Juratli et al., 2013). 5-ALA is a natural substrate of the 

heme synthesis pathway in mammalian cells were it is metabolized to produce the 

intermediate compound called protoporphyrin-IX (PpIX). PpIX is normally converted to 

heme by inserting the ferrous iron through the ferrochelatase enzyme within the 

mitochondria.  In malignant tissue the amount of ferrochelatase is decreased and causes 

the accumulation of PpIX in cancer cells (Duffner F., 2005).  PpIX is a photoactive 

compound and its accumulation in tumor cells makes it possible to visualize the cancerous 

cells within the brain when exposed to violet-blue light. In this way, cancer cells can be 

visualized by their fluorescence allowing for more complete resection of the tumor. 

Patients are given 5-ALA orally to increase the amount of 5-ALA in their system. The use of 

the 5-ALA treatment during tumor resection is helpful in removing majority of the tumor. 
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Because GBMs are diffuse tumors this resection technique still may not remove all of the 

tumor cells and leaves the chance for tumor reoccurrence (Eljamel, Goodman, & Moseley, 

2008).  

Radiation therapy uses high-energy radiation to damage cellular DNA in order to 

induce cell death in rapidly growing cells. Radiation therapy has been shown to be effective 

in the treatment of GBMs and increases the median survival rate from five to nine months 

compared to surgery alone.  Glioma tumors are made up of a heterogeneous mixture of cell 

types, with some cells being more resistant to radiation therapy than others. Thus, after the 

full dosage of radiation has been applied, some of the tumor may still be present (Juratli et 

al., 2013).  Radiation therapy causes double strand DNA breaks. It is possible for these 

breaks to be repaired by non-homologous end joining and is prone to error. Unrepaired 

double strand breaks trigger apoptosis, explaining why radiation is used as a treatment to 

kill cancerous cells (Roos & Kaina, 2006).  

Chemotherapy is also used to treat various types of cancer by damaging the DNA in 

rapidly reproducing cells. The use of chemotherapeutics to treat GBMs has been difficult. 

Systemic chemotherapy approaches generally do not work for GBMs because the 

chemotherapeutic agents cannot pass the blood-brain or blood-tumor barrier (Juratli et al., 

2013). There are a few chemotherapy agents that can cross the blood brain barrier or can 

be administered during surgery. In addition, GBMs can accumulate mutations that allow 

them to be better repair DNA damage caused by this therapeutic technique (Lawrence  J. E., 

2015).  



4 
 

There are two groups of chemicals that are used for chemotherapy and can cross the 

blood-brain barrier: alkylating agents and nitrosources (Juratli et al., 2013). The most 

widely used chemotherapy agent to treat GBMs is temozolomide (TMZ), an alkylating agent 

that is taken orally and can pass the blood brain barrier (Juratli et al., 2013; Lawrence  J. E., 

2015). TMZ is a prodrug and is converted into the active drug, 5-(3-methyltriazen-1-

yl)imidazo-4-carboximide (MTIC). MTIC methylates the DNA most commonly on the N7 

position of guanine and N3 position of adenine. The O6 position of guanine can be 

methylated as well but is less common. The addition of these methyl groups are toxic to the 

cell and will induce apoptosis if not repaired (Lawrence  J. E., 2015). Tumor resistance to 

alkylating agents is a clinical problem caused by an overexpression of DNA repair enzymes. 

Alkylating agents add chemical groups to DNA which inhibit the cell cycle and stops cell 

growth (Juratli et al., 2013). The MGMT protein repairs the DNA by removing the chemical 

group, for example this protein can remove the methyl groups added by MTIC repairing the 

altered amino acids making them no longer cytotoxic  (Juratli et al., 2013; Lawrence  J. E., 

2015). If the chemical group is left on the DNA and not repaired by the MGMT protein, the 

chemotherapy lesion induces cell apoptosis (Juratli et al., 2013). 

Nitrosources are used to induce the alkylation to inhibit DNA replication. 

Carmustine can cross the blood-brain barrier and it is also effective against malignant 

glioma cell lines in vitro. However, it is also very toxic which is why systemic treatment 

with carmustine is limited. Carmustine wafers are also a form of alkylating chemotherapy 

where the drug-impregnated wafers are placed directly into the tumor resection, usually 

placed during a second surgery after the original resection. Since the wafers are used in a 
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second surgery, this treatment is usually reserved for younger patients with resectable 

tumors (Juratli et al., 2013).   

CANCER 

Cancer is defined as a group of diseases that is characterized by unregulated cell 

growth, invasion, and spread of cells (Pecorino, 2012).  This change in cell growth and 

invasion can be caused by an accumulation of mutations within the genome as a result of a 

genetic disorder passed down from parent to progeny, exposure to environmental 

carcinogens, or by random mutations that occur throughout a person’s life. The most 

common mutations resulting in tumor formation are mutations to either proto-oncogenes 

or tumor suppressor genes. Proto-oncogenes have a normal role in controlling cell growth 

or differentiation. When proto-oncogenes experience mutations resulting in elevated 

activity of the gene product, they become ‘oncogenes’ which promote cell growth and the 

formation of cancer. Tumor suppressor genes code for genes that negatively regulate cell 

growth. When these genes are altered in tumor cells they are changed in a way that 

decreases or abolishes their function.  For a tumor to develop it usually is a result of the 

combination of multiple mutations but there are a few specific mutations that increase the 

chance of developing a tumor (Medicine, 1992).  Several examples of the types of mutations 

that can promote cancer formation are outlined on the following pages. 

Li-Fraumeni syndrome 1 is a rare autosomal dominant disorder that is 

characterized by an early onset of tumors. The most prevalent mutation associated with 

this syndrome is to the p53 gene on chromosome 17p13.1 (Bachinski, 2005). The p53 gene 

codes for a tumor suppressor protein called p53 which acts as a transcription factor for a 
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large number of genes whose gene products function in cellular growth arrest, DNA repair, 

apoptosis regulation, and anti-angiogenic proteins. When the p53 gene is mutated, like in 

Li-Fraumeni syndrome, the p53 protein loses its ability to act as a transcription factor for 

these genes. Without the function of the p53 protein there is a loss in cell growth control 

leading to an overall increase in cell proliferation. Li-Fraumeni syndrome is not the only 

instance where p53 is mutated. The mutation can occur spontaneously and is commonly 

found in many types of cancers, including GBMs (Weinburg, 2007).  In a review of the 

molecular alterations that occur within different GBMs Dunn et al. demonstrated that p53 

was mutated in 42% of the tumor samples. In this work they used the Cancer Genome Atlas 

Research Network to explore somatically mutated genes in GBMs (Dunn et al., 2012).   

GENETICS OF GBM 

Cancer is the product of many mutations and epigenetic modifications that build on 

each other (Weinburg, 2007). There are many signaling pathways that are altered in GBMs, 

including the WNT, Ras, and PI3K pathways as described above (Brems, 2009; Ferner, 

2007; Tee, Manning, Roux, Cantley, & Blenis, 2003). The modification of signaling pathways 

in GBMs makes the understanding and treatment of GBMs very difficult (Zhu et al., 2009). 

Like other cancers, GBMs result from various mutations that can alter gene expression 

within a cell. Some genes tend to be more commonly mutated than others, including the 

genes p53, NF1, PTEN, and EGFR (Dunn et al., 2012).  

Neurofibromatosis is also an autosomal dominant disorder within the NF1 gene. 

This gene codes for the protein neurofibromin that functions as a tumor suppressor by 

inhibiting the Ras and WNT pathways. Neurofibromin is normally found in neuroglial cells 
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such as schwann cells. Patients afflicted with neurofibromatosis produce decreased 

amounts of neurofibromin, thus allowing uncontrolled cell growth and the formation of 

tumors within the nervous system (Brems, 2009; Ferner, 2007). In a review of the 

molecular basis of GBMs, an analysis of tumors from the cancer Genome Atlas Network, 

NF1 is one of the genes most commonly found mutated in GBMs at 21% of the tumors 

analyzed (Dunn et al., 2012).  

Phosphatase and Tensin Homolog (PTEN) is a tumor suppressor gene that is found 

on chromosome 10p23 (S. I. P. Wang, J.; Li, J.; Bruce, J. N.; Cairns, P.; Sidransky, D.; and 

Parsons, R., 1997). A common mutation found in over 90% of primary GBMs is the 

hemizygous or homozygous deletion of the PTEN gene (Gont, 2013).  PTEN is a 

phosphatase enzyme that converts the second messenger molecule phosphatidylinositol 

3,4,5 triphosphate (PIP3) to its inactive precursor phosphatidylinositol 3,4 bisphosphate 

(PIP2).  As stated previously, the phosphoinositol-3-kinase (PI3K) signaling pathway 

regulates cell growth and proliferation by stimulating the formation of PIP3 in response to 

cell stimuli. Because The PI3K and PTEN enzymes have opposing functions, with the loss of 

PTEN increasing the production of PIP3 by PI3K. This results in increased cell survival and 

cell growth within GBM tumors (Gont, 2013; Pezzolesi, Zbuk, Waite, & Eng, 2007).  

Epithelial Growth Factor Receptor (EGFR) is located on chromosome 7p11.2 and is 

mutated in nearly 50% of all GBMs (Brennan et al., 2013; Dunn et al., 2012; K. Wang, 

Yamamoto, Chin, Werb, & Vu, 2004; Zhu et al., 2009). EGFR and its ligand have a variety of 

functions in normal cells that are altered in cancer. For example, the amplification of the 

EGFR gene resulting in multiple copies of the gene increases cell proliferation due to 
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increased expression of EGFR. Another common EGFR mutation is an in-frame deletion of 

exons 2-7. This deletion produces a protein product called EGFRvIII that functions as a 

ligand-independent receptor (Zhu et al., 2009). These GBM mutations initiate early tumor 

development, sustain tumor growth, promote tumor infiltration, and resistance to therapy 

(K. Wang et al., 2004; Zhu et al., 2009). 

Epigenetic alterations can also affect gene expression leading to GBM formation 

(Weinburg, 2007). An important epigenetic factor for the treatment of GBMs is DNA 

methylation.  DNA methylation is the addition of a methyl group to the cytosine base of 

double-stranded DNA. This covalent addition also recruits proteins that bind to the methyl-

cytosine group to alter the structure of the DNA (Alberts, 2008).  One example of this type 

of epigenetic alteration in GBMs is the methylation of the O6-methylguanine-DNA-

methyltransferase (MGMT) gene promoter region. MGMT promoter methylation prevents 

MGMT gene expression and thus blocks MGMT function. MGMT is a DNA repair protein that 

removes chemical adducts from the O6 position on guanine, and in doing so targets the 

MGMT protein for degradation. The silencing of this gene by promoter methylation results 

in a loss of MGMT gene expression preventing MGMT-mediated DNA repair. Because the 

MGMT enzyme functions to remove chemical adducts from DNA in response to alkylating 

chemotherapeutics, the silencing of this gene by methylation can increases the 

effectiveness of current chemotherapy treatments (Rivera et al., 2010).  This is a prime 

example of the kind of information generated by basic research that can be taken 

advantage of in the treatment of GBM tumors. 
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Cancer cells that accumulate mutations from various genetic or environmental 

factors can alter their local tumor microenvironment through the proteins they produce. In 

other words, the proteins that the tumor cells produce can affect surrounding cells to 

support tumor survival and growth. For example, cells can release proteins from the cell 

surface through microvesicles or the secretion of soluble proteins. Interestingly, cancer 

cells produce elevated levels of some proteins and can stimulate surrounding stromal 

(normal) cells to express additional factors to reduce environmental constraints allowing 

for proliferation and metastasis of the tumor (Biswas C., 1995; Tsai et al., 2013).  One 

example of a protein that can stimulate surrounding stromal cells is the cell surface 

glycoprotein basigin-2 (also called EMMPRIN). High-grade astrocytomas overexpress this 

protein and the expression level positively correlates with WHO grades for astrocytomas 

suggesting that the overexpression of this protein plays a role in the tumors increased 

ability to survive  (Tsai et al., 2013).  Furthermore, the release of basigin-2 from tumor cells 

stimulates the expression of MMP enzymes in the surrounding normal tissue. MMPs 

catalyze the degradation of the extracellular matrix within tissues allowing for the growth 

and metastasis of tumors. Developing an understanding of the mechanisms and molecules 

mediating tumor-stromal cell interactions is important in the development of treatments 

and diagnostic strategies for metastatic cancers(Belton, Chen, Mesquita, & Nowak, 2008). 

BASIGIN GENE  

 

The basigin gene produces four variants that belong to the immunoglobulin 

superfamily of cell surface glycoproteins.  Basigin is a pleiotrophic molecule which means 

that it is under control of a single gene but has several distinct and unrelated effects on the 

cell’s phenotype.  Basigin plays critical roles in spermatogenesis, lymphocyte activation, 
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and expression of monocarboxlyate transporters, however basigin’s best characterized 

function is its ability stimulate the expression of matrix metalloproteinases (MMPs) in 

stromal cells (Belton et al., 2008; Iacono, Brown, Greene, & Saouaf, 2007; Weidle, 2010).  

Basigin is known by other names such as Extracellular Matrix Metalloproteinase Inducer 

(EMMPRIN), M6 Leukocyte Activation Antigen (M6) and CD147 Antigen (CD147) 

(McKusick and Converse).  The basigin gene is found on Chromosome 19, the specific 

cytogenic location is 19p13.3 and the gene contains ten exons (McKusick and Converse).   

There are four basigin isoforms (basigin-1, -2, -3, and -4) that possess a shared 

cytoplasmic and transmembrane domain but vary in their extracellular domains (Belton et 

al., 2008; Iacono et al., 2007).  The best known and most common basigin protein is isoform 

2 (basigin-2 or EMMPRIN). The transcriptional regulation, expression profiles and 

functions that distinguish the isoforms from each other are not well known. The basigin-1 

transcript is found exclusively in the retina and is distinguished by possessing three 

immunoglobulin (Ig)-like domains in the extracellular portion of the protein. Basigin-2 is 

the predominant variant and is distinguished by having two Ig-like domains. Basigin-3 is a 

short isoform containing one Ig-like domain that interacts with the internalized basigin-2 

during receptor-mediated endocytosis in an unknown manner (Belton et al., 2008). Little is 

known about the function of isoforms-3 or -4, but studies using hepatocarcinoma cells 

suggest that basigin-3 might function as an inhibitor of basigin-2(Liao et al., 2011).  The 

basigin gene  is widely expressed in normal cells, although there has not been extensive 

studies on the functions of basigin isoform 3 and 4, there have been many functions 

associated with basigin-2. Basigin-2 is the most highly expressed isoform and has been 

shown to be involved in different cellular mechanisms such as inducing the expression of 
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MMP,  and the recruitment of monocarboxylic acid transporters (MCTs) and ABC 

transporters to the cell membrane (Bleau, Huse, & Holland, 2014; T., 2003).  

Matrix malloproteinases are enzymes that break down elements of the extracellular 

matrix such as collagen, laminin, and fibronectin. Matrix degradation enzymes are activated 

by three different control mechanisms: local activation, confinement by cell-surface 

receptors, and secretion of inhibitors. Local activation is the mechanism by which 

proteases are secreted as inactive precursors that can be activated locally when needed. 

This activation method is used for more specific MMPs. Some MMPs are less specific and 

are more likely to be activated by the confinement of cell-surface receptors. This 

mechanism confines the enzymes to more specific areas where it is needed (Alberts, 2008).  

 There are four MCT isoforms (MCT1-4) and they have been shown to catalyze the 

transport of monocarboxylates (lactate, pyruvate, acetoacetate) across the cell membrane 

(Kirk P., 2000).  The transport of monocarboxylates is very important for cell metabolism, 

especially the transport of lactic acid, an acidic byproduct of glycolysis, out of the cell (Kirk 

P., 2000; Le Floch et al., 2011). Glycolysis occurs in all cells and is most commonly used in 

hypoxic situations. Basigin-2 has been shown to be a chaperone for MCT1 and MCT4 to the 

cell membrane and is necessary for the function of these MCTs (Kirk P., 2000; Le Floch et 

al., 2011).   

 ABCG2 is a half-transporter of the G subfamily of ATP binding cassette (ABC) 

transporters (Bleau et al., 2014; Jin et al., 2009; Zhou et al., 2013). ABC transporters use 

ATP to transport small molecules across the membrane. This movement helps detoxify the 

cell of cytotoxic agents, including drugs used to induce cell death (Bleau et al., 2014). In 
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order for ABCG2 to be active it needs to form dimers or oligomers, which is where basigin-

2 comes in. There is evidence that basigin-2 co-localizes with ABCG2 and can regulate 

ABCG2’s dimerization this allows the transporter to become active (Zhou et al., 2013).  

ABCG2 is upregulated in many different tumor types and its ability to transport drugs out 

of the cell causes the cell to develop a multidrug resistance (Jin et al., 2009).  

 

BASIGIN FUNCTION IN CANCER 

 

MMPs are found in abundance at the boundary between the tumor and the 

surrounding stromal tissue. The stromal cells are stimulated to express and secrete MMPs 

into the tumor microenvironment by the tumor cells (Weinberg, 2007). The most abundant 

tumor-related MMPs are interstitial collagenase (MMP-1), stromelysin-1 (MMP-3), 

stromelysin-3 (MMP-11), and gelatinase A (MMP-2) (Sameshima, 2000).   

Analysis of numerous tumors has revealed that the elevated expression of basigin in 

tumor cells is correlated with an increasingly aggressive tumor phenotype (lacono et al., 

2007).  This overexpression of basigin-2 sets in motion an increase in many of basigin-2’s 

functions in cell survival. An increase in basigin-2 has also shown an increase in MCT 

expression. The tumor microenvironment is hypoxic due to the rapid cell growth. The lack 

of available oxygen for the rapidly growing tumor cells cause them to rely on fermentative 

glycolysis to survive. Lactic acid is byproduct of this type of metabolism but the 

accumulation within the cell is toxic. The increase of MCTs raises the amount of lactic acid 

the cell can transport across the membrane increasing the cell’s chance of survival (Kirk P., 

2000; Le Floch et al., 2011).  
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 Cancer cells overexpress basigin-2 and shed microvesicles containing basigin 

proteins. This increase of basigin-2 increases the stimulation of MMPs and decreases 

physiological inhibitors in the extracellular matrix, allowing the tumor to metastasize 

(Belton et al., 2008; Iacono et al., 2007).  Basigin-2 forms a homo-oliomer, a prerequisite to 

become fully functional, to stimulate MMPs secretion from surrounding stromal cells (Liao 

et al., 2011). Basigin-3 has also shown increased expression in cancer cells but is not 

expressed as highly as basigin-2. In a study done by Liao et al. involving human 

hepatocellular carcinoma, cells that overexpressed basigin-2 grew at the highest rates 

where cells that over-expressed basigin-3 grew at the lowest. These results suggest that 

basigin-2 promotes proliferation in cancer cells while basigin-3 inhibits proliferation. In 

human hepatocellular carcinoma lines basigin-3 interacts with basigin-2 to form a hetero-

oligomer. This interaction may regulate basigin-2 stimulation of MMP (Liao et al., 2011).  

SUMMARY 

The mechanisms used by cancer cells to proliferate and metastasize are a result of 

accumulated genetic changes within the cancer cells and are not yet fully understood. 

Mutations in cancerous cells contribute to the production of abnormal amounts or 

functionally altered proteins which can change how the cell functions and interacts with its 

surrounding environment. Members of the basigin gene isoforms have be found to be 

overexpressed in different types of tumors, with basigin-2 (EMMPRIN) overexpression 

strongly correlated with tumor grade. One of its more studied functions is the ability to 

induce the expression and secretion of MMPs from surrounding tissues, promoting the 

ability of the tumor to grow and metastasize. The function of basigin-3 is not well known 

but there is evidence supporting that it plays a role in competitively binding to Basigin-2 
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inhibiting basigin-2’s role in stimulating MMP secretion and decreases proliferation. 

Studying the localization of basigin-3 expression within glioblastoma (GBM) tumors and 

the changes in expression of proteins associated with basigin-2 stimulation could lead into 

more extensive studies of its functions and influences within cancer cells.  
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OBJECTIVES AND HYPOTHESES 

 

The objective of this project was to study the effects of basigin-3 overexpression in 

GBM cell lines. The function of basigin-3 is not known, but there is evidence supporting its 

role in competitively binding to Basigin-2 and inhibiting basigin-2’s ability to stimulate 

MMP expression. Measuring the effects of basigin-3 overexpression within glioblastoma 

(GBM) cell lines would lead into more extensive studies of its functions and influences 

within cancer cells.  

 

Hypothesis: Basigin-3 overexpression in GBM cell lines will reduce MMP gene expression 

levels. 

Aim 1: Generate stably-transfected GBM cell lines expressing a basigin-3/mKate2 fusion 

protein. 

Aim 2: Demonstrate basigin-3 overexpression in GBM cell lines   

Aim 3: Measure changes in MMP1, MMP2, MMP3 expression in cells overexpressing 

basigin-3.  
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METHODS 

 

PLASMID AMPLIFICATION 

 

All plasmids were purchased from Origene Technologies (Rockville, MD). The 

plasmids were transformed into DH5alpha E. coli competent cells according to standard 

procedures. The basigin-3, basigin-2, and mKate2 expression vectors were selected with 

ampicillin, and single bacterial colonies from each plate were selected and used to 

inoculate 5mL of LB broth for amplification. Subsequently, the 5mL cultures were used to 

inoculate 100mL LB broth cultures for large scale amplification. All cultures were grown in 

LB broth with ampicillin at 37°C on a shaker table at 200 RPM. Plasmids were purified from 

the bacterial cultures using Qiagen Plasmid mini and maxi kits (Valencia, CA). After 

purification, DNA concentration and purity were determined by UV spectrometry using a 

Nanodrop spectrophotometer (Thermo Fisher, Waltham MA). Restriction enzymes and 

agarose gel electrophoresis were used to verify plasmid identity. The restriction enzymes 

used for analysis of the plasmids were Mlu1 and AsisI. 

 

SUBCLONING OF BASIGIN-3 INTO MKATE2 EXPRESSION VECTOR 

 

The open reading frame (ORF) of basigin-3 was amplified using the high fidelity 

Phusion DNA polymerase purchased from ThermoFisher (Waltham MA). Primers were 

designed to generate novel restriction sites on the amplicon in order to preferentially clone 

the genes in correct orientation. Primer information can be found in Table 1. Once the gene 

inserts were amplified by PCR, the ends were digested with the appropriate restriction 

enzymes. The gene inserts were verified and purified by agarose gel electrophoresis. The 

digested PCR product band was excised from the agrose gel and purified using QIAquick gel 
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extraction kit from Qiagen (Valencia, CA). The mKate2 expression vector was digested 

using Mlu1 and Asis1 and was also purified through gel electrophoresis. The basigin-3 ORF 

was ligated into the mKate2 expression vector using New England BioLab’s Quick Ligation 

Kit (Cat. #M2200S). The ligation product was transformed into competent E. coli bacteria 

and incubated in 500μl of growth media for 45 minutes. The transformed bacteria were 

then plated on LB agar plates with ampicillin and incubated overnight at 37°C. Single 

colonies were chosen and amplified in 5mL of LB broth. Recombinant plasmids were 

purified using Qiagen plasmid mini kits (Valencia, CA).  The plasmids were verified for 

successful ligation by PCR analysis using Crimson Taq Polymerase and agarose gel 

electrophoresis.  

CELL CULTURE 

 

Human glioblastoma cell line LN229 was maintained in DMEM with 10% FBS at 

37°C degrees Celsius and 5% CO2 at 100% humidity. The human foreskin fibroblast line 

MSU1.1 was maintained in EMEM with 10% FBS at 37 degrees Celsius and 5% CO2 at 100% 

humidity. Both cell types were plated and maintained on 10cm culture dishes.  

 

TRANSFORMATION OF BASIGIN-3/MKATE2 RECOMBINANT FUSION VECTOR 

 

 The mKate2 expression vector and the basigin-3 mKate2 recombinant fusion vector 

were transformed into LN229 GBM cell line and the MSU1.1 fibroblast cell line using the 

Neon transfection system (ThermoFisher, Waltham MA). One confluent 10cm culture plate 

of each the LN229 and MSU1.1 was treated with trypsin and counted. The cells are diluted 

to the suggested cell density and the cells are loaded into the Neon system tips. The 

appropriate settings are programed into the Neon system and the electroporation takes 
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place (Table 2). The cells are plated on 60mm culture plates after transfection in antibiotic 

free media. The cells are allowed to grow overnight before media is replaced with media 

treated with neomycin (G418) as a selection process. The cell media was changed regularly 

and the cells were passaged when needed. Further selection was made using Bio-rad cell 

sorter to select for cells expressing the red florescent protein mKate2.  

REAL-TIME PCR 

 

Separate 10cm culture plates were prepared for RNA collection for the LN229 

untreated cells and the LN229 cells that were transfected with the recombinant fusion 

protein. Cells were  lysed with RLT lysis buffer and the RNA was purified from each sample 

using the RNAeasy mini kit (Qiagen, Valencia, CA). cDNA was synthesized using AMV 

reverse transcriptase (Promega Cat. #M5101).  The real-time PCR (rt-PCR) reaction was 

performed using SYBR green mastermix. The 19μl of the PCR master mix (SYBR green, 

primers, dH2O) was loaded into the 48-well plate with 1μl of cDNA sample. The reaction 

was perfomed by using an Applied Biosciences StepOnePlus thermocycler and was 

programed to begin with 1 cycle at 95°C for 10 minutes and then 40 cycles of 15 seconds at 

95°C for denaturing, decreased to annealing temperature of 55°C for 1 minute, and 

increased for elongation at 73°C for 30 seconds.  

The threshold cycle (Ct) was calculated using an automatic baseline and were 

exported to excel. The gene expression was analyzed using a comparative Ct method. This 

method involves normalization to a housekeeping gene, in this case Gyceraldehyde-3-

phosphate dehydrogenase (GAPDH), to calculate a delta Ct. The delta Ct of the transformed 

cell line with the basigin-3 overexpression is then compared to the delta Ct of the untreated 

cell line to get the delta delta Ct. Fold change is calculated by 2^(-delta delta Ct). Fold 
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change indicates  if there is any change in gene regulation. A fold change above one 

indicates an up-regulation and a negative fold change indicates a down-regulation.  
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RESULTS 

 

TRANSFECTION OF THE EXPRESSION PLASMIDS RESULTED IN THE SUCESSFUL 

TRANSLATION OF THE MKATE2 PROTEIN.  

 

 The plasmids were confirmed for successful insertion of the basigin-3 construct 

(Figure 1) using a double digestion with mlu1 and sgf1 endonucleases. The basigin-3 insert 

was ligated into the mKate2 expression vector using PCR primers with endonuclease sites 

cloned into the end of the basigin-3 sequence. The double digestion confirmed that three of 

the ligations had basigin-3 construct successfully inserted (Figure 2).   

LN229 GBM and MSU1.1 fibroblast cell lines were cultured to confluency and 

100,000 were transfected with either the mKate2 or the Basigin-3/mKate2 fusion protein 

expression vector (Figure 1) using the Neon transfection system. Transfected cells were 

cultured with the antibiotic neomycin to maintain selection for cells containing the 

recombinant plasmid for the remainder of the project. Flow cytometry and confocal 

imaging was used to confirm successful transfection and that there was successful 

translation of the mKate2 protein in vivo. Flow cytometry was performed using a BioRad 

(Hercules, CA) Cell sorter. Shown in Figure 3A and D are the untransfected LN229 and 

MSU1.1, respectively,  cell count verses the fluorescence of mKate2 protein (left) and the 

size of the cells verses the fluorescence (right).  These readings were used to gate the 

baseline fluorescence seen in the cells. In Figure 3B, E show the LN229 and MSU1.1 cells 

that were transfected with an expression vector with only mKate2. The plots show a 

distinct shift to the right indicating that there is an increase in red fluorescence, therefore 

the cells have been successfully transfected and mKate2 is being translated. The cells that 
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were transfected with the basigin-3 mKate2 construct also show a shift to the right (Figure 

3C, G) indicating successful translation of the basigin-3 mKate2 fusion protein.  

The confocal images of the transfected cells (figure 4) also confirm that the cells 

were successfully transfected and the mKate2 was being translated in vivo. Consistent with 

the flow cytometry results the cells transfected with mKate2 only plasmid (center) is 

expressing more fluorescence than the cells transfected with the basigin-3 mKate2 

construct (right). Figure 5 shows separated panels of the LN229 cells transfected with the 

basigin-3 mKate2 construct. The positive red fluorescence confirms again that the mKate2 

protein is being successfully translated within the fusion protein construct. The cells seem 

to be smaller than usual and unfortunately are not in a good enough shape to see the 

subcellular localization of the fusion protein. 

 

EXPRESSION OF BASIGIN-3 IN LN229 GLIOBLASTOMA CELL LINE 

 

 A PCR reaction with basigin-3 specific primers was run to examine if there is 

normally basigin-3 expressed in the LN229 GBM line. The middle lane is from the LN229 

control sample and the lane on the right is from the LN229 sample transfected with the 

basigin-3 mKate2 expression vector. The positive bands indicate that there is basigin-3 

present in both samples and implies that basigin-3 is normally expressed in the LN229 

GBM cell line (figure 6). 
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mRNA EXPRESSION OF MATRIX MALLOPROTEINASE PROTEINS IN BASIGIN-3 

OVEREXPRESSED CELLS 

 To examine if there are any changes in MMP expression when basigin-3 is 

overexpressed quantitative real-time PCR was ran on RNA isolated from the LN229 cells 

transfected with the basigin-3 mKate2 expression vector (Figure 6). These results were 

averaged from seven replicates of each target gene. Basigin-3 was show at a 1.3 fold change 

compared to control LN229 cells, a lower expression change than expected. None of the 

MMP genes we targeted (MMP1, MMP2, and MMP3) showed a decrease in expression in the 

LN229 cells and there was no significant increase in their expression (Table 3).  
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DISCUSSION 

 

 Construction and overexpression of the basigin-3/mKate2 fusion protein in the 

LN229 GBM cell line was performed successfully.  Analysis of the fusion protein expression 

using both flow cytometry and confocal microscopy demonstrated that the fusion protein 

was translated within the cells. Unfortunately, the image quality from the confocal images 

did not allow for any conclusions to be made on the subcellular localization of basigin-3 in 

the cells. The results are consistent with the Liao et al., 2011 paper were the authors  

indicated that basigin-3 is expressed on the cell surface (Liao et al., 2011).  

 One of the proposed functions of basigin-3 is that it has an inhibitory effect on 

basigin-2 (EMMPRIN) function and could inhibit the basigin-2 mediated expression of 

MMPs. In this study, the evidence that suggests the overexpression of basigin-3 does not 

decrease the expression of MMP1, MMP2, or MMP3 in GBM cell lines. In fact, it appears that 

MMP2 expression is increased in the cells expressing the basigin-3/mKate2 fusion protein. 

Additional experiments would need to be performed in order to place any statistical 

significance to this assertion.  

There are several possible explanations for these results. First, it is possible that the 

presence of the mKate2 red fluorescent fusion protein on the carboxy terminus of the 

basigin-3 sequence altered the signaling function of the basigin-3 protein. In order to test 

this, future work using overexpression of un-tagged basigin-3 might rule out this 

possibility. Secondly, the promoter driving expression of the basigin-3/mKate2 fusion 

might not drive expression at a high enough level to produce changes in MMP gene 

expression. In addition, the MMPs that might be responsive to basigin-3 overexpression in 

GBM cells may not be MMP-1, -2, or -3. The hepatocarcinoma cells used in the Liao et al. 
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paper are fundamentally different than GBM cells in their origin and cellular location. Thus, 

it is difficult to know whether this is an inherent limitation of the GBM model being used 

without further information on the expression of MMPs in GBM cells.  

Finally, it is difficult to interpret the results without a more detailed analysis of the 

interactions between basigin-2 and basigin-3 at the plasma membrane of the cell. The 

results of this study cannot rule out the possibility that the overexpressed basigin-

3/mKate2 construct did not physically interact with basigin-2 (EMMPRIN) at the plasma 

membrane. Confirmation of such a protein interaction at the plasma membrane requires 

the use of Forster Resonance Energy Transfer (FRET) methodologies using the basigin-2 

and basigin-3 proteins expressed as recombinant fusion proteins. This work was initiated 

but not completed due to time constraints. However, the initial work of creating and 

characterizing the basigin-2 and basigin-3 FRET vectors is described in Appendix B.  

This study was the first to test the function of basigin-3 overexpression in GBM cell 

line. Like most scientific work, this study has raised more questions than it has answered. 

For example, if the overexpressed basigin-3 protein does have an effect upon cell growth, 

what are these effects? Several possibilities include changes in the ability of the cells to 

grow under varying oxygen or glucose levels, or changes in gene expression other than 

MMP-1, -2, or -3. According to the published literature on basigin-3, this isoform is 

expressed at low levels in normal tissue types. If the observation that basigin-3 expression 

is elevated in GBM cell lines, this protein would still make an interesting target to study for 

potential therapeutic approaches.  
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APPENDIX A: FIGURES AND TABLES 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Basigin-3 mKate2 fusion protein plasmid map.  Construct was designed 

with the mKate2 protein to be fused on the C-terminus of the Basigin-3 protein.  
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Figure 2. Double digest with mlu1 and sgf1 to confirm successful 

insertion of Basigin-3 into the plasmid constructs. From left to right: 

Ladder, plasmid single cut sgf1, Basigin-3 PCR product, plasmid single cut 

mlu1, double digested ligation 1, ligation 2, ligation 3, ligation 4, ligation 5, 

ligation 6. Ligations 1,2, and 5 show successful basigin-3 inserts.  
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Figure 3. Cell sorter flow cytometry charts confirming successful transfection of 

both LN229 and MSU1.1 cell types. The graphs on the left of each segment are  a cell 

count vs.  fluorescence and the graphs on the right are cell size vs.  fluorescence.  (A) 

LN229 GBM control cells. (B) LN229 +mKate2, cells were transfected with a plasmid 

containing the mKate2 sequence. (C) LN229 + BSG3/mKate2 construct cells that were 

transfected with the recombinant fusion construct of Baigin-3 mKate2. (D) MSU1.1 

fibroblast control cells. (E) MSU1.1 + mKate2, cells were transfected with a plasmid 

containing the mKate2 sequence. (F) MSU1.1 + BSG3/mKate2 construct cells that were 

transfected with the recombinant fusion construct of Baigin-3 mKate2. 
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 Figure 4. Confocal images of LN229 cell line. From left to right: nontransfected LN229, 

transfected with with the mKate2 only plasmid, transfected with the Basigin-3 mKate2 

fusion protein plasmid.  
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Figure 5. Confocal images of Basigin-3 expression in LN229 cells. Top left to right: 

DAPI (blue), lipophilic dye (green), mKate expression (red). Bottom left to right: 

Transmitted light image , all images combined, blank square.  
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Figure 6. Basigin-3 expression in LN229 GBM cell line. A PCR reaction amplifying 

basigin-3 in LN229 control cells (left) and the LN229 cells transfected with the basigin-3 

mKate2 fusion vector 
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Figure 7.  Basigin-3 overexpression does not decrease MMP-1/2/3 

expression in LN229 cells. qRT-PCR results support that the increased 

expression of basigin-3 does not cause an inhibitory effect on the expression of 

MMP 
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Table 2: Neon system electroporation parameters 

 Voltage 
(V) 

Width 
(ms) 

Pulse # Cell Density 
(cells/mL) 

Transfection 
efficiency (%) 

Viability 
(%) 

MSU1.1 1650 20 1 5x106 92 90 

LN229 1300 30 1 5x106 70 70 
 

Table 1: Primer sequences 

Primer Forward primer 
sequences (5’-3’) 

Reverse primer 
sequences (5’-3’) 

Use of primer 

BSG3 
mkate2 

GCGACGCGTGGAAGAG
TTCCTCTGGCGGACGTT 

GAGGCGATCGCCATGGGC
ACGGCCAACATCCAGCT 

Amplification and addition of restriction 
site on BSG3 for mKate2 vectors 

BSG3 
FRET  

GAATCATGGGCACGGC
CAACATCCAGCT 

TTGCAGGCGGTCTCCTTG
AGGGGACTACCTAGG 

Amplification and addition of restriction 
site on BSG3 for FRET vectors 

BSG2 
FRET 

GAGAATTCAATGGCGG
CTGCGCTGTTCGT 

TTGCAGGCGGTCTCCTTG
AGGGGACTACCTAGG 

Amplification and addition of restriction 
site on BSG2 for FRET vectors 

EP-
BSG3 

CGGCTTAGTCTGCGGTC
C 

GGGAGGAAGACGCAGGAG
TA 

PCR verification of BSG3 insert 

EP-
BSG2 

GCGGTTGGAGGTTGTA
GGAC 

GGGAGGAAGACGCAGGAG
TA 

PCR verification of BSG2 insert 

RT-
qBSG3 

EP-BSG3 forward 
primer 

CGACCACGGTGAGAAAAG
TC 

qRT-PCR 

MMP1 GGTCTGAGGGTCAAGC
AG 

AGTTCATGAGCTGCAACA
CG 

qRT-PCR 

MMP2 ACATCAAGGGCATTCA
GGAG 

GCCTCGTATACCGCATCA
AT 

qRT-PCR 

MMP3 GCAGTTTGCTCAGCCTA
TCC 

GAGTGTCGGAGTCCAGTT
C 

qRT-PCR 
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 Basigin-3 MMP1 MMP2 MMP3 

Number of values 7 7 8 7 

          

Minimum 0.1923 0.1701 1.060 0.1851 

25% Percentile 0.1923 0.1701 1.060 0.1851 

Median 1.139 2.367 1.683 0.3175 

75% Percentile 2.301 2.450 5.530 4.382 

Maximum 2.301 2.450 6.812 4.382 

          

Mean 1.367 1.775 2.732 1.441 

Std. Deviation 0.9558 1.097 2.535 2.010 

Std. Error 0.3613 0.4146 0.8963 0.7597 

          

Lower 95% CI of mean 0.4826 0.7604 0.6121 -0.4179 

Upper 95% CI of mean 2.251 2.789 4.851 3.300 

          

One sample t test         

Theoretical mean 1.000 1.000 1.000 1.000 

Actual mean 1.367 1.775 2.732 1.441 

Discrepancy -0.3665 -0.7748 -1.732 -0.4409 

95% CI of discrepancy -0.5175 to 1.251 -0.2396 to 1.789 -0.3882 to 3.851 -1.418 to 2.300 

t, df t=1.015 df=6 t=1.869 df=6 t=1.932 df=7 t=0.5804 df=6 

P value (two tailed) 0.3494 0.1108 0.0947 0.5828 

Significant (alpha=0.05)? No No No No 

 

Table 3: Column statistics of qPCR results.  
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APPENDIX B: FRET VECTORS 

 

HYPOTHESIS AND SPECIFIC AIMS 

 

Hypothesis 2: Basigin-3 interacts with basigin-2 (EMMPRIN) in GBM cell lines 

Aim 2: Examine the protein interactions between basigin-3 and basigin-2 in GBM tumors 

by the use of FRET analysis.  

METHODS 

 

FRET PLASMIDS 

 

The plasmids were purchased from Addgene, mCerulean N1 was a gift from Steven 

Vogel (Addgene plasmid # 27795), and mVenus N1 was a gift from Steven Vogel (Addgene 

plasmid # 27793). The mCerulean and mVenus (FRET vectors) were transformed into E. 

coli bacteria and plated with Kanamycin.  

 

Bacteria colonies were allowed to grow overnight before a single colony from each 

plate was selected and used to inoculate 5mL of LB broth for amplification. After the 

confirmation of bacteria growth from the small amplifications the 5mL vials were used to 

inoculate 100mL LB broth for large scale amplification. For all amplifications the LB broth 

was kept at 37̊C on a shaker.  

 

Plasmids were purified from the bacteria using Qiagen Plasmid mini and maxi kits 

(Valencia, CA).  After purification a nanodrop was used to measure DNA concentration. 

Restriction enzymes and gel electrophoresis were used to verify plasmid identity. The 

restriction enzymes EcoR1 and BamH1 were used for the FRET vectors.  
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SUBCLONING OF FRET VECTORS 

 

The basigin-3 and basigin-2 insert was amplified using high fidelity Phusion DNA 

polymerase purchased from ThermoFisher (Waltham MA). Primers were designed to clone 

in restriction sites on the gene inserts in order to preferentially clone the genes in correct 

orientation for the FRET expression vectors. Primer information can be found in Table 1. 

Once the gene inserts were amplified by PCR, the ends were digested with the appropriate 

restriction enzymes. The gene inserts were verified and purified through gel 

electrophoresis. The digested PCR product band was cut out of the agrose gel and purified 

using QIAquick gel extraction kit purchased from Qiagen (Valencia, CA). The mKate2 

expression vector was digested using EcoR1 and BamH1 and was also purified through gel 

electrophoresis.  

 

The basigin-3 gene insert and the basigin-2 gene insert were ligated into each of the 

FRET expression vectors (mCreulean and mVenus) using New England BioLab’s Quick 

Ligation Kit (Cat. #M2200S). The ligation product was transformed into E. coli bacteria and 

incubated in 500μl of growth media for 45 minutes. The transformed bacteria was then 

plated on LB agar plates treated with ampicillin and incubated overnight at 37̊C. Single 

colonies were chosen and amplified in 5mL of LB broth.  

 

The plasmids of the amplified bacteria were purified using Qiagen plasmid mini kits 

(Valencia, CA).  The plasmids were verified for successful ligation by PCR using Crimson 

Taq Polymerase and ran through gel electrophoresis. The plasmids with the correct clones 

are further amplified and purified for transfection. The plasmids where confirmed for 
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successful insertion of the basigin-3 construct (App. Figure 1) using a double digestion with 

mlu1 and sgf1 endonucleases. The basigin-3 insert was ligated into the FRET expression 

vectors using PCR primers with endonuclease sites cloned into the end of the basigin-3 

sequence. The double digestion confirmed that three of the ligations had basigin-3 or 

basigin-2 constructs successfully inserted (App. Figure 2).  Ligation 3-2 (mVenus+basigin-

2), Ligation 4-2 and 4-5 (mCerulean+basigin-2), Ligation 5-2 (mVenus+Basigin-3), and 

Ligation 6-5 (mCerulean-Basigin-3) all showed successful inserts from either the double 

digest experiment or the PCR amplification of the insert (App. Figure 2).  

  



40 
 

FRET PRELIMINARY DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Appendix Figure 1. FRET plasmid maps. A plasmid was created in order for there to be 

a basigin-3 and an EMMPRIN fusion protein with each of the FRET vectors.  
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A B 

Appendix Figure 2. Double digest and PCR results. A.  Shows the double digest results 

for the ligation 3 and 4. From the left: Ladder, uncut plasmid, cut plasmid, EMMPRIN PCR 

product, BSG3 PCR product, Ligation 3 (1-5), ligation 4 (1-4). From this gel you can see 

that ligation 3-2 and ligation 4-2 run smaller than the other cut plasmids, suggesting that 

there might be a successful insert of the EMMRIN construct. B.  Shows the PCR results 

when Ligation 4-2 and 4-5, ligation 5- 2, and ligation 6-5 were targeted for their 

respected EMMPRIN or BSG3 inserts. All of the samples came back positive for the insert.  
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