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ABSTRACT 

 

 

EXAMINATION OF CD133 AND CD147 AS CANCER STEM CELL MARKERS 

 

By 

Christopher McMahon 

 

 To date, as many as 14,000 patients in the United States per year are diagnosed 

with glioblastoma, the most common and most malignant primary brain tumor. 

Glioblastomas are characterized by their ability to evade treatment on many fronts, thus a 

novel approach to curative therapies is imperative. A population of cells with stem cell-

like properties are found within glioblastoma tumors and drive their initiation and 

progression. Identification of extracellular markers on these tumor stem cells is thus 

paramount. The cell surface glycoproteins CD133 and CD147 were examined as potential 

markers of cancer stem cells found in glioblastoma. Here we found evidence which 

shows that formation of neurospheres with U87MG glioblastoma cells may be driven by 

increased expression of CD147, correlated with increased CD133 expression. These 

findings suggest that relative levels of CD147 expression may be used as a determinant to 

target cancer stem cells in glioblastoma.  
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INTRODUCTION 

 

 

Glioblastoma (GBM) is the most prevalent central nervous system-borne primary 

brain tumor found in adults. They are typically exceedingly aggressive tumors; 90% of 

patients die within three years and half fail to see a second year1. What is equally 

problematic is that they are also exceedingly difficult to treat. Surgery, and modern 

chemotherapy and radiotherapy are largely unsuccessful. Patients are also largely at risk 

for recurrent tumors2.  

What is currently highly regarded as the theory behind GBM tumors’ resistance to 

treatment is the cancer stem cell theory. This theory proposes that within a GBM tumor 

there are different tumorigenic phenotypes; one of these phenotypically-different cells is 

capable, if transplanted into a host, of generating new tumors. This type of cell is referred 

to as a cancer stem cell (CSC) because of its similarity to normal stem cells3. The CSC 

theory postulates that this small subpopulation of cancer cells drives tumor growth; of 

any given GBM tumor, only 1-30% of the total cell volume is comprised of CSCs4. As 

they exhibit characteristics of normal stem cells, they are potentially able to differentiate 

into neuronal, astroglial, and oligodendroglial cells; the resulting tumor will 

characteristically be a mixture of cell types2-3. 

The majority of primary neurological tumors in adults are glial-cell derived, and 

of those, GBM are the most prevalent. Despite their prevalence, there are few treatment 

options. This is due largely to a multifaceted approach of GBMs to thwart attempts to 

combat it.  GBM tumor cells alter adjacent normal cells to facilitate growth of tumor 
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cells, invasion, resistance to chemical treatment, evasion of immune attack, and 

metastasis1-3. And while the human immune system can typically initially retard tumor 

growth, it is often thwarted by immunosuppressive pathways activated by tumor cells3.  

It has also been shown that non-CSCs may have the ability to revert back to CSCs 

under particular environmental cues5; CSC traits may be acquired via the epithelial to 

mesenchymal transition (EMT). Through this process, (differentiated) epithelial cells can 

assume the mesenchymal phenotype, to wit: the ability to migrate, invade, and resist 

apoptosis6. Thus, even benign tumor cells may eventually exhibit invasiveness and 

metastatic potential. It seems then that GBM cells may simply be classified into CSCs 

and “not-as-yet CSCs”. Therefore, removing even 99% of the mass of a typical GBM 

tumor and subsequently treating the remaining mass of cells with chemo- and 

radiotherapy is scarcely a guarantee of success; the <1% that remains could certainly 

possess the ability to regrow the tumor, metastasize, etc. It is thus paramount that we be 

able to identify and target what is constitutively a CSC. 
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LITERATURE REVIEW 

 

 

CD133 

 

GBMs, or Grade IV astrocytomas, are highly proliferative and heterogeneous 

tumors which have proven quite difficult to treat. This work will first examine the 

potential for the transmembrane glycoprotein CD133 to be a hallmark of human 

glioblastoma CSCs. CD133, also referred to as Prominin-1, is a 5-transmembrane 

glycoprotein of 117 kDa encoded by a gene on chromosome 4p15. It is expressed by 

hematopoietic progenitor cells, embryonic stem cells, and various cancers7.  

While it is thought to be responsible for orchestrating cell-cell topography, neither 

its ligands nor its actual function are certain8. However, cells expressing CD133 have 

been shown to have self-renewing and differentiating ability in vivo; it has been used to 

identify putative cancer stem cell populations from malignant brain tumors, as well as 

other types of cancers9.  

However, CD133- CSCs have also been isolated and shown to form tumors10. It is 

possible that these cells harbored an occult population of expressed CD133 protein that 

wasn’t realized, perhaps because of differential folding resulting from differential 

glycosylation masking specific CD133 epitopes11. This makes detection of expressed 

CD133 using antibodies difficult; it suggests the possibility that what is described as a 

CD133- population is actually a population of cells that is CD133+ but with differing 

glycosylation status12. In addition, difficulty in identifying the CD133 molecule could 
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also be due to local tumor microenvironment13, or epigenetic modifications, such as 

promoter methylation14. What is also problematic is that the majority of CD133+ cells are 

characterized by having significantly higher levels of expression of O6-methylguanine-

DNA-methyltransferase, or MGMT, compared to CD133- cells 15. MGMT is a DNA 

repair protein and is the chief antagonist to Temozolomide (TMZ), the most frequently 

employed antitumor alkylating agent. Methylation of the MGMT promoter has been 

shown to both increase chemosensitivity to alkylating agents16,17 and to correlate with an 

improved response to radiotherapy18. Thus, cells with higher levels of CD133 correlate 

with antitumor drug resistence19, and resistance to radiotherapy15. 

Therefore, the evidence points to CD133+ cells being a hallmark of GBM CSCs.  

 

CD147 

 

While the role of CD133 is unclear, the CD147 molecule (basigin) has been well 

described. CD147 is a 385-amino acid molecule with a molecular weight of 42 kDa 

found on the surface of many types of cells, including leukocytes, epithelial and 

endothelial cells. It is an integral membrane protein belonging to the immunoglobulin 

superfamily of proteins, and as such plays an essential role in intercellular recognition20. 

CD147 is also highly glycosylated giving the protein an apparent MW of around 60 kDa. 

Additionally, CD147 regulates the expression of the monocarboxylate transporter (MCT) 

family of proteins. MCTs are responsible for shuttling lactic acid out of highly malignant 

tumors which rely on anaerobic glycolysis as an energy source21; without MCTs the 
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resulting buildup of lactate would acidify the cell cytoplasm and slow or stop cellular 

metabolism.  

One of the best-described functions of CD147 is its ability to induce expression of 

matrix metalloproteinases (MMP) in stromal cells22. It is from this function that its 

alternate name, EMMPRIN (Extracellular Matrix MetalloPRoteinase Inducer), is derived. 

Matrix metalloproteinases are from a large family of proteins and have many differing 

functions, but we are chiefly concerned with their pathophysiologic functions, such as 

modulation of tumor microenvironment. In this capacity MMPs are essential for cell 

growth, angiogenesis, inflammation, and tumor cell migration23. Thus, CD147 induces 

expression of molecules which support tumor growth and increase lethality and 

aggressiveness of tumors.  Under the relatively-hypoxic conditions, the conditions 

employed in this study, CD147 promotes tumor growth, enhances tumor malignancy, and 

inhibits tumor cell apoptotic ability24.  

CD147 up-regulates MMP secretion by adjacent stromal cells, which in turn 

degrade the extracellular matrix. Thus, CD147 is a key element in tumor invasion, 

metastasis, and progression.25. It has been shown that CD147 is overexpressed on the 

surface of GBMs, and further, that relative level of CD147 expression is correlated with 

WHO grade of astrocytoma26. These findings suggest that CD147 is a worthwhile 

therapeutic target.  
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Hypoxia 

 

Currently, GBM tumors are treated by surgical removal and subsequent treatment 

with both chemotherapy and radiotherapy. One agent mitigating the effects of these latter 

two treatments is intratumoral hypoxia27. TMZ, the most-used anti-GBM drug, has been 

found to target only GBM cells derived from the peripheral layer of the tumor mass28. 

The interior-most cells, the cells exposed to the least amount of circulating oxygen, have 

proven the most resistant to the alkylating agent treatment. These data suggest that there 

is a direct correlation between intratumoral hypoxic gradient and resistance of the tumor 

cells to chemotherapeutic agents. 

In normal brain tissue, physiological concentrations of oxygen will vary between 

0.5 and 7.5%. In GBM tissue, however, this value is markedly decreased to as little as 

0.1% or less29, suggesting hypoxia is an agent of GBM. The hypoxic microenvironment 

plays a key role in the regulation of the CSC phenotype; exposure of GBM cells to 

hypoxic conditions encouraged a phenotypic shift of cells toward a more stem-like state, 

and these alterations were in turn accompanied by upregulation of markers of 

undifferentiated cells, such as Oct4, and neural stem cell markers, like nestin30. 

Additionally, hypoxic culturing also induces a phenotypic shift to one of increased 

glycolytic activity; the cells undergo a metabolic reprogramming which ultimately results 

in acidification of the tumor microenvironment. This acidic environment induces 

upregulation of stem-cell genes such as VEGF31, and Olig2, Oct4, and Nanog32. Thus, 

hypoxia induces phenotypic shifts towards stemness.  
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Objectives 

 

The literature suggests that the respective relative overexpression of CD133 and 

CD147 antigen causes increased tumorigenicity. We examined this potential property 

through direct comparison of high- and low-expressing cells of each antigen. The aim of 

this work was to isolate a subpopulation of CD133+ human GBM cells and measure their 

ability to form neurospheres in stem cell-culture suspension. In parallel, populations of 

cells expressing various levels of CD147 were isolated to measure similar properties.  
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EXPERIMENTAL DESIGN 

 

 

Subculture of Human GBM Cell lines  

 

LN229, T98, and U87MG adherent cell lines (American Tissue Culture 

Collection, Manassas, VA) were removed from cryostasis in liquid nitrogen and 

resuscitated. Per standard culturing methods, the T98 and U87MG lines were cultured in 

Eagle’s Modified Essential Medium (EMEM; Lonza, Walkersville, MD) with 10% Fetal 

Bovine Serum (FBS; Atlanta Biological, Atlanta GA); the LN 229 in Dulbecco’s 

Modified Eagle’s Medium (DMEM; GE Life Sciences, Logan, UT) with added 5% FBS 

(Atlanta Biological). Both media were supplemented with 1% Penicillin-Streptomycin-

Amphotericin B (PSA; Gibco, Carlsbad, CA) antibiotics. Cells were kept in cryostorage 

in 1ml aliquots in freeze medium (90% FBS, 10% DMSO); each aliquot was added to 

19ml of appropriate, pre-warmed complete culture medium in 75cm2 tissue-treated 

culture flasks under laminar flow. Each was placed in incubation at 37⁰ C and 5% CO2 

until near-confluency (~75%) was reached, at which point the respective flasks were 

either passaged (subcultured) or cells were harvested for use. After one passage for each 

cell line, cells were then transferred to 175cm2 flasks to increase total number of cells 

available for RNA extraction and cell sorting. Cells were then kept in 175cm2 flasks 

throughout the duration of the experiments.  

To create a microenvironment which would potentially cause a phenotypic shift 

towards a more stem cell-like state, after several passages, the cells were transferred from 
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normoxic conditions to the hypoxic (5% CO2, 5% O2) incubator en masse and remained 

there throughout the remainder of the study. 

 

 

Extraction of mRNA 

 

Once near-confluency had been achieved, cells were removed from respective 

flasks with trypsin-versene (Lonza) and pelleted at 300 rcf for 10 minutes. RNA was 

extracted from each cell line independently using an RNA/DNA/Protein AllPrep kit 

(Qiagen, Valencia, CA) following manufacturer’s protocol. Pelleted cells had 

supernatants removed and pellets were resuspended in 350µl Buffer RLT, and vortexed 

several seconds to mix. Lysates were then homogenized using centrifugation at 14000 

rpm (top speed) for 2 minutes using a tabletop centrifuge in conjunction with 

QiaShredder (Qiagen, Valencia, CA) spin columns. After, lysates were transferred to 

Allprep DNA spin column placed in 2ml collection tube and centrifuged at top speed 30 

seconds. The flow through from each sample was then combined with 250µl 100% 

ethanol and mixed by pipetting. Samples were then added to separate RNeasy spin 

columns in a 2ml centrifuge tube and centrifuged at top speed 15 seconds. To each 

column 700µl Buffer RW1 was added, and each tube centrifuged at top speed for 15 

seconds. After, 500µl Buffer RPE was added to each column and centrifuged at top speed 

for 15 seconds. This step was then repeated but centrifuged for 2 minutes to ensure 

complete drying of the column. Columns were then removed and replaced in 1.5ml 
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collection tubes. To each, 10µl of RNase-free H2O was added, and the columns were then 

centrifuged at top speed for 1 minute. 

  If reverse transcription was not performed immediately after extraction, RNA 

was stored at -20⁰C. Storage at -20⁰C was limited to one week or less.  

 

 

Reverse Transcription 

 

To convert the extracted RNA into cDNA, reverse transcription was performed 

using avian myeloblastosis virus reverse transcriptase (AMV-RT) and the manufacturer’s 

protocol (Promega, Madison, WI). Exactly 2µg of RNA was combined with 2µl of either 

oligo dT primers (Promega, Madison, WI) or random hexamer primers (Promega, 

Madison, WI). The amount in microliters varied and depended upon concentration of 

RNA extracted from respective cell lysates; volumes did not exceed 8µl as total volume 

of primer/RNA cannot exceed 11µl and the ratio of primer to template RNA cannot be 

altered. Solutions containing oligo dT primers were incubated at 42⁰C and those 

containing random hexamer primers were incubated at 37⁰C at a ratio of 0.5µg primer/µg 

RNA in a sterile, nuclease-free 200µl microcentrifuge tube. This mixture was placed in a 

Thermal Cycler (BioRad T100, BioRad, Hercules, CA) and heated to 70⁰C for 5 minutes, 

then chilled to 4⁰C for 5 minutes. After, the primer/template mixture was kept on ice, and 

the following were added in order: 

5µl AMV RT 5X Reaction Buffer 

2.5µl dNTP Mix 

30 units AMV RT (at 10 units/µl; 3µl AMV RT added) 
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dH2O sufficient to bring total volume to 25µl (amount varies depending upon 

volume of RNA added) 

 

The samples were then incubated for 60 minutes at the appropriate temperature 

described earlier. The cDNA products were stored at -20⁰C for later use, if not used 

immediately. 

 

 

PCR 

 

The cDNA obtained via reverse transcription was used to amplify the CD133 

gene using endpoint PCR. Thermal Cycling parameters were in accordance with the PCR 

Master Mix protocol (Promega, Madison, WI). Reactions of 25µl were set up as follows:  

12.5µl PCR Master Mix (Promega) 

10.0µl Nuclease-free H2O 

1.25µl of each primer (forward and reverse) 

2.25µl cDNA template                                                                                              

Parameters for the PCR amplification were as follows: 

2 minutes at 95⁰C 

1 minute at 51⁰C (5⁰C less than lowest Tm of primers) 

1 minute at 72⁰C (optimal temperature for Taq polymerase)                                                                                                                                                   

This cycle was repeated a total of 35 times, after which a final extension of 5 minutes at 

72⁰C was performed. After, samples were cooled to 4⁰C and examined immediately or 

placed at -20⁰C until analyzed. Storage at -20⁰C was limited to one week or less. 
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PCR Primer Design 

 

Primer sets used were designed using Primer3 on My Biology Workbench 

(http://workbench.sdsc.edu/). PrimerBlast was employed subsequently to ensure 

specificity to target genes, and finally the IDT OligoAnalyzer tool (www.idtna.com) was 

used to ensure favorable annealing to target sets and to preclude formation of primer-

dimers.  

 

Table 1. IDT primer sets used for endpoint PCR and qPCR 

Primer (Human) Sequence (5′-3′) 
CD133(1) forward GTC CTG GGG CTG CTG TTT AT 

CD133(1) reverse TCC TTG ATC GCT GTT GCC AT 

CD133(2) forward CCT GGT CCA ACA GGG CTA TC 

CD133(2) reverse GAA GGA CTC GTT GCT GGT GA 

CD133(3) forward GCC AGC CTC AGA CAG AAA AC 

CD133(3) reverse CCA AGC CTT AGG AGC ATC TG 

Basigin-2 forward GCG GTT GGA GGT TGT AGG AC 

Basigin-2 reverse GGG AGG AAG ACG CAG GAG TA 

GAPDH forward AAG GTC GGA GTC AAC GGA TTT 

GGT 

GAPDH reverse AGT GAT GGC ATG GAC TGT GGT 

CAT 
 

 

 

Gel Electrophoresis 

 

A 1% agarose gel electrophoresis was subsequently used to detect for the 

presence of DNA products synthesized during endpoint PCR.  The gel was created by 

combining 0.25g agarose and 25ml TBE (Tris/Borate/EDTA) buffer and heated until 

http://workbench.sdsc.edu/
http://www.idtna.com/
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agarose dissolved. After cool enough to touch, 1µl 10µg/µl ethidium bromide was added 

and mixed. Mixture was poured into standard gel box setup. PCR products were added 

and run at 120V for 45 minutes in 1X TBE buffer. Gel bands were visualized using Gel 

Doc Imaging System (BioRad, Hercules, CA).  

 

 

Fluorescence Activated Cell Sorting (FACS) 

 

Culture cells were evaluated for CD133 or CD147 expression using the S3 Cell 

Sorter (BioRad, Hercules, CA).  

For the CD133 FACS, the culture cells (LN 229, T98, and U87MG) were first 

removed from the respective culture flasks with 8ml trypsin-versene (Lonza) or Accutase 

(Innovative Cell Technologies, San Diego, CA) and resuspended in 16ml complete 

medium. The respective cell suspensions were then centrifuged at 800 rcf for 5 minutes. 

Supernatants were aspirated and pellets were resuspended in 2ml sort buffer [1X Ca/Mg 

free PBS (Fisher Scientific, Pittsburgh, PA), 1% BSA (HyClone, Logan, UT), 25mM 

HEPES (HyClone, Logan, UT), pH 7.0] and centrifuged as before. Supernatant was 

aspirated and pellet resuspended in 120µl sort buffer. A 20µl sample of the cell 

suspension was removed for use as a control sample. To the remaining 100µl of cell 

suspension, 10µl of CD133 antibody (AC133-Viobright FITC, Miltenyi Biotec, San 

Diego CA) was added in dark conditions. The mixture was allowed to incubate in 

darkness at 4⁰C for 10 minutes, according to the manufacturer’s suggestion. Following 

incubation, sample was centrifuged at 300 rcf for 5 minutes, supernatant removed, and 
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pellet resuspended in 1ml sort buffer. This volume was increased to 4ml with sort buffer, 

and control sample volume increased to 1ml with the same. Both samples were separately 

strained twice using a 40µm cell strainer. 

For the CD147 FACS, U87MG cells were removed from flasks using trypsin-

versene, resuspended in the same medium as above. The cells were then centrifuged at 

850 rcf for 6 minutes. The supernatant was aspirated and pellets resuspended in 1.5ml 

sort buffer and centrifuged as before. Supernatant was removed and pellets resuspended 

in 100µl sort buffer. A 10µl sample was removed for use as a control sample. To the 

remaining 90µl, 20µl of anti-CD147 reagent was added (MEM-M6/1) FITC Mouse mAb; 

Novus Biologicals, Littleton, CO). The sample was then incubated at 4⁰C for 60 minutes 

in darkness. Following incubation, samples were centrifuged at 400 rcf for 5 minutes. 

Supernatants were removed and pellets resuspended in 1.2ml sort buffer, then 

recentrifuged as before. This step was performed twice. Supernatants were then aspirated, 

and pellets resuspended in 1ml sort buffer. Working samples and control samples were 

brought to 4ml and 1ml volumes respectively with sort buffer and strained twice as 

above.  

In either case, before FACS the control samples were run through the sorter to 

acquire fluorescence data for the untreated cells as a basis for comparison with the 

fluorescent antibody-labeled cells. Once a standard had been established, new data were 

acquired on the treated cells and a new standard established; unlabeled and antibody-

labeled cells were then sorted and collected based on this standard, using the ProSort v1.2 

Software (BioRad, Hercules, CA).  
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Cells sorted for CD133 expression were sorted based on fluorescence to any 

degree. This value is measured by the FACS instrument via photon emission. Unlabeled 

cells simply pass by the laser in the instrument and emit no photons, thus no signal will 

be detected. As fluorescent antibody-labeled cells pass by the laser, photons are emitted 

and the intensity of the voltage measured by the instrument increases. These data are 

displayed in the form of histograms, which plot a single parameter (i.e. FITC intensity, x-

axis) against event number (y-axis); and scatter-plots, which plot two parameters 

simultaneously: side-scatter intensity (y-axis) against fluorescence intensity (x-axis), with 

each dot representing a single event. The x-axis shows relative fluorescence on a 

logarithmic scale, with each successive “decade” representing a relative tenfold increase 

in measured fluorescence. After antibody labelling, data were acquired on 100,000 

events. On the resulting histograms, sorting gates were placed to collect the lowest-20% 

fluorescing and highest-20% fluorescing cells in each sample; this percentage is indicated 

numerically in the “statistics” window of the histogram plots. 

Using these parameters, CD147 expression was divided into two groups: lowest-

20% expression (“low expression”) and highest-20% expression (“high expression”). 

 

 

Subculture of Sorted Fractions  

 

The U87 cells labeled with anti-CD147 antibody were sorted into “high” and 

“low” fractions; the “low” fraction consisted of the 20% lowest-fluorescing (and 

therefore, lowest-CD147-expressing) cells in the sample. The “high” fraction consisted of 
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the 20% highest-fluorescing. From either fraction, 300,000 cells were placed in adherent 

culture (FBS-supplemented medium) and same number of each placed in suspension 

culture using complete stem cell medium [DMEM/F-12 with L-glutamine (Gibco, 

Carlsbad, CA), 2% StemPro Neural Supplement (SPNS; Gibco), 20% Epidermal Growth 

Factor (EGF; Preprotech, Rocky Hill, NJ), 20% Basic Fibroblast Growth Factor (bFGF; 

Preprotech, Rocky Hill, NJ), 10mg/ml Gentimicin (Gibco), 0.5% PSA (Gibco), 0.5mg/ml 

BSA (HyClone, Logan, UT)]. In both cases, 25cm2 flasks were used, each containing 4ml 

of appropriate medium. After 96 hours of incubation in hypoxic conditions at 37⁰C, 

cultures were observed for relative level of proliferation, neurosphere formation 

(suspension culture) or total cell count (adherent culture).   

For counting the adherent cells, cells were treated with 2 ml trypsin-versene 

solution and allowed to incubate in hypoxia for 3 minutes, after which each flask was 

placed back into the laminar flow hood and gently scraped for 30 seconds to remove any 

remaining adhered cells. To this cell/trypsin solution, 6ml of EMEM complete medium 

was added. After mixing by pipetting, the respective cell solutions were removed and 

placed into 15ml conical tubes for cell counting. To a 100µl sample of each, Trypan Blue 

dye was added at 1:6 dilution and cells were counted using a hemocytometer and 

standard protocol.  

Additionally, a subsequent sort was performed collecting the highest- and lowest-

1% CD147-expressing cells. These fractions were used exclusively for qualitative 

examination using a confocal microscope. 
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Real-Time PCR Analysis of Sorted Fractions 

 

U87MG cells were sorted into high- and low-fluorescing fractions as described. 

Respective fractions were combined in conical tubes and centrifuged at 300 rcf for 10 

minutes. Supernatants were aspirated, and RNA was extracted, reverse transcription 

performed as described above. The cDNA obtained was amplified employing qPCR 

using a LightCycler 2.0 (Roche Diagnostics, Indianapolis, IN). For this analysis, CD133, 

CD147, and GAPDH genes were examined, the last being used as a control. This 

instrument employs colorless glass capillary tubes and a carousel; each tube houses 20µl 

of sample.  

To the negative controls, 16µl PCR-grade H2O was added, followed by 2µl of 

primers and 2µl LightCycler DNA Master SYBR Green I reagent (Roche Diagnostics, 

Indianapolis, IN). After, 14µl of PCR-grade H2O was added, followed by 2µl of primers 

and 2µl of SYBR Green I reagent, to separate thin-walled PCR tubes kept on ice. The 

samples were mixed by pipetting, and then transferred to the capillary tubes contained 

within centrifuge adapters, themselves contained within a cold block. All samples were 

then centrifuged 30 seconds at 500g before being added to the LightCycler. The qPCR 

was run using the following parameters: 

Denaturation: 1 Cycle, 95⁰C, 30 seconds 

Amplification: 45 Cycles: Denaturation: 95⁰C, 0 seconds 

Annealing: 51⁰C, 5 seconds 

Extension: 72⁰C, 30 seconds 

Cooling: 1 Cycle, 40⁰C, 30 seconds 

 

The data were analyzed using proprietary LightCycler software v. 4.05 (Roche 

Diagnostics, Indianapolis, IN). 
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Immunocytochemistry Analysis of CD133 Antibody using HF2303 Cancer Stem 

Cells 
 

Qualitative analysis of the anti-CD133 antibody (Miltenyi, San Diego, CA) was 

performed using a confocal microscope (Olympus Fluoview FV1000 Confocal Laser 

Scanning Microscope, FV10-ASW 3.1 software; Olympus Corporation Americas, Center 

Valley, PA). HF2303 primary human GBM cancer stem cells (Henry Ford Hospital, 

Detroit, MI) were cultured at 37⁰C in hypoxia using complete stem cell medium 

[DMEM/F-12 with L-glutamine (Gibco, Carlsbad, CA), 2% StemPro Neural Supplement 

(SPNS; Gibco), 20% Epidermal Growth Factor (EGF; Preprotech, Rocky Hill, NJ), 20% 

Basic Fibroblast Growth Factor (bFGF; Preprotech, Rocky Hill, NJ), 10mg/ml 

Gentimicin (Gibco), 0.5% PSA (Gibco), 0.5mg/ml BSA (HyClone, Logan, UT)]. 10ml of 

medium (with suspended cells) was removed and placed in a 15ml conical tube. This was 

centrifuged at 150rcf for 90 seconds. Then 9.4ml of the supernatant was aspirated, 

leaving 0.6ml supernatant and HF2303 cells. The cells were resuspended and divided, 

and 300µl was added to each well of one gasketed coverslip (CultureWell MultiWell 

Chambered Coverslips, Grace Bio Labs, Bend, OR).  

Coverslip wells were pretreated by adding 100µl Poly-d-Lysine (BD Biosciences, 

San Jose, CA) to each well. After 10 minutes, the Poly-d-Lysine was removed and then 

the cell suspension was added. The cells were allowed to incubate on the coverslip 6 

hours at 37⁰C in hypoxia. After, the wells were removed of medium and washed twice 

with 1X PBS. Then 400µl blocking buffer (5% BSA, 0.1% Triton X-100 in PBS) was 

added and allowed to incubate under laminar flow for 20 minutes at RT. In a darkroom 

under red safe light, 400µl of anti-CD133 antibody was added (1:1000) and allowed to 
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incubate in darkness at room temperature for 60 minutes. The antibody solution was then 

removed and wells were washed twice with wash buffer. This was removed and 400µl 

4% paraformaldehyde solution was added and allowed to incubate for 20 minutes at RT. 

Wells were then washed twice with 1X PBS. PBS was then removed, silicon gaskets 

removed, and coverslips gently waved to air-dry. One drop per well of ProLong Diamond 

Antifade Mountant with DAPI (ThermoFisher Scientific, Waltham, MA) and coverslips 

were then mounted to slides. Slides were wrapped in foil and allowed to stand at RT 

overnight (>12 hours).  

 

 

Immunocytochemistry Analysis of High and Low CD147-expressing U87MG Cells 

 

Further qualitative analyses of the sorted U87MG cells was performed using a 

confocal microscope (Olympus Fluoview FV1000 Confocal Laser Scanning Microscope, 

FV10-ASW 3.1 software; Olympus Corporation Americas, Center Valley, PA). The 

slides were manufactured using gasketed coverslips as before (CultureWell MultiWell 

Chambered Coverslips, Grace Bio Labs, Bend, OR). Two slides were made using 

U87MG cells sorted based on relative expression of CD147. The first contained the 

highest- and lowest-20% of CD147-expressing cells, and the second slide contained the 

highest- and lowest-1% of CD147-expressing cells.  

Of each cell type, 10,000 were added to a different coverslip well, which were 

pretreated with Poly-D-Lysine (BD Biosciences, San Jose, CA) as described above.  The 

gasketed coverslips were allowed to incubate 6 hours at 37⁰C in hypoxia. After, 400µl of 



20 
 

4% paraformaldehyde in PBS were added and allowed to incubate for 20 minutes at RT. 

Wells were then washed twice with 1X PBS. PBS was then removed, silicon gaskets 

removed, and coverslips gently waved to air-dry. One drop per well of ProLong Diamond 

Antifade Mountant with DAPI (ThermoFisher Scientific, Waltham, MA) and coverslips 

were then mounted to slides. Slides were wrapped in foil and allowed to stand at RT 

overnight (>12 hours).  

 

 

Statistical Analysis 

  

Data obtained from adherent U87MG proliferation assay were expressed as mean 

and standard error. Data were analyzed by paired two-tailed t-test; calculations were 

performed using Microsoft Excel. Data were considered significant at  P < 0.05.   
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RESULTS 

 

 

Identifying presence of CD133 transcripts in LN229, T98, and U87 cell lines 

 

After RNA extraction, reverse transcription and subsequent endpoint PCR, 

agarose gel electrophoresis was performed using the three CD133 primer sets to 

determine the presence of CD133 DNA in the LN229, T98, and U87 cell lines. The 

results indicate that the CD133 transcript is present in the cell lines and therefore could 

be employed as a potential marker for cancer stem cells. 

The data in figure 1 show bands present in lanes 4, 7, and 10 between 200-300bp 

relative to the ladder; the product size for primer set 3 is 247bp which suggests the 

presence of CD133 DNA across all three cell lines. Primer set 3 was used exclusively 

henceforth due to its smaller size and ubiquity. A redundant agarose gel analysis was 

subsequently performed (Figure 2), which confirms the success of this primer set.  

 

 

Confocal Imaging of CD133 Protein Expression in Cancer Stem Cells 

 

Because the literature indicates that levels of CD133 may be low among the 

general population of GBM cells2,5,8,10-12, the antibody (CD133/1 (AC133) Viobright 

FITC; Miltenyi Biotech, San Diego, CA) used to detect CD133 was tested on HF2303 

cells which ubiquitously express the CD133 antigen33. The image shows almost complete 
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binding of the antibody to the HF2303 cells, therefore suggesting the antibody indeed 

binds to CD133 antigen (Fig. 3).  

 

 

Identification of GBM Cells Positive for CD133 

 

Using the methods described, the LN 229, T98 and U87MG cells were pre-

labeled with the FITC-conjugated anti-CD133 antibody and then sorted based on relative 

fluorescence compared to unlabeled cells.  Each sort yielded extremely low numbers of 

cells which had shifted downstream far enough to be considered fluorescing; often these 

numbers were two-figure or even single digit values. Commonly, ~0.03% of cells were 

labelled by the antibody. Multiple sorts performed across all three cell lines yielded 

similar results. 

There is very little difference in either the histogram plots (Fig. 4-5) or the side-

scatter plots (Fig. 6-7). Only several cells are displayed (Fig. 7) beyond the second 

decade, where fluorescing cells would likely be, based on the fluorescence data acquired 

before the antibody was introduced. These data indicate that while the cells were 

expressing CD133 mRNA, CD133 could not be detected on the surface of the cell using 

this method. 
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Sorting of U87MG Cells Based on Expression Levels of CD147 

 

To ensure presence of CD147 on the target cells and successful binding of 

antibody/fluorescence of FITC conjugate, U87MG cells were cultured overnight with 

antibody and photographed using a fluorescent microscope. The data suggest the 

presence of CD147 on the cell surface and that successful sorts may be performed using 

these methods (Fig. 8). 

U87MG cells were pre-labeled with anti-CD147 antibody with FITC conjugate 

and sorted into high and low fractions. The initial sort yielded an identically-split 

population; half the cells were expressing, half were not. Subsequent sorts found that 

most cells were fluorescing relative to the unlabeled cells; about 99% on average. While 

the cells displayed little or no expression of CD133, they exhibited nearly universal 

expression of CD147.  

After the cells were incubated with the anti-CD147 antibody, a clear shift is 

noticeable in the histogram plot (Fig. 9-10). In the initial plot, the fluorescence peak 

(representing presence of cells) is contained almost entirely within the first decade of the 

area log. After antibody addition, roughly 90% of the fluorescence peak is located 

beyond the first decade, indicating a significant increase in the level of fluorescence 

relative to the unlabeled U87MG cells. Therefore, a vast majority of the cells expressed 

the CD147 antigen.  

In similar fashion, the scatterplots of the pre- and post-antibody-labeled U87MG 

cells display a clear downstream shift in the cell concentration (Fig. 11-12). Blue areas 

indicate the areas of highest cell concentration. After the U87MG cells were labelled with 
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the anti-CD147 antibody, the cell population had clearly exhibited a tenfold increase in 

level of fluorescence relative to the unlabeled U87MG cells. Thus, a majority of the 

U87MG cells tested were bound by antibody, indicating presence of CD147 on a vast 

majority of the cells. 

 

 

 

Cells with Increased CD147 Expression Form Neurospheres in Suspension Culture 

 

 After sorting into fractions, collected high- and low-CD147-expressing U87MG 

cells were collected and placed into suspension culture using complete stem cell medium. 

The cells were placed in hypoxia at 37⁰C and allowed to remain for four days. After 96 

hours incubation time, the culture flasks were photographed using a light microscope. 

This was repeated two additional times, for a total of three groups of (high and low) 

expression culture (Fig. 13-18). The cells expressing the higher levels of CD147 had 

formed large neurospheres after incubating 96 hours in hypoxia. In the cultures of cells 

expressing relatively low CD147 levels, no neurospheres had formed. The suspension 

cultures of low-expressing CD147 remained as singlet cells; there were only rare 

instances of even doublets formed by these cells. 

 

 

Adherent Cultures of High-CD147 Cells are More Proliferative 

  

Fractions of U87MG cells expressing both high and low levels of CD147 (20% 

highest-expressing/20% lowest-expressing) were also separately added to adherent cell 
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culture and allowed to proliferate. After 96 hours, cells were counted using standard 

manual methods. To preclude bias, identity of respective flasks was hidden and revealed 

to the author after results were tallied. In all three sets of cultures, the U87MG cells 

expressing relatively higher levels of CD147 were more proliferative (Figure 19). The 

mean values for each group were calculated. The mean concentration of cells in the high-

expressing group was 4.245 million cells/ml; in the low-expressing group this value was 

1.665 million cells/ml. Thus, the high-expressing group showed a 245% increased growth 

rate compared to the low-expressing group of U87MG cells. 

   

 

qPCR Data Suggest Increased CD147 Levels and Increased CD133 Levels are 

Correlated 

 

 CD133 and CD147 gene expression was assessed by qPCR. ΔCT levels were 

recorded for CD133 and CD147 relative to GAPDH. The ΔCTs for the CD147 levels in 

the high and low fractions were 8.38 and 6.67, respectively, for a positive ΔΔCT of 1.71. 

While it is interesting that the low-CD sample had a slightly lower CT, these values 

indicate strongly positive reactions with abundant CD147 gene expression. The values 

also indicate relatively high levels of CD147 in general, relative to the CT of GAPDH. 

The respective ΔCTs in the high-CD147 (ΔCT=16.86) and the low-CD147 (ΔCT=19.79) 

samples of CD133 were also strongly positive, suggesting relatively high levels of 

CD133 gene expression in both samples. The ΔΔCT for these samples is 2.93, with an 

expression fold change of 7.62. Thus, CD133 was expressed 7.62 times more in the high-

CD147 sample compared to the low-CD147 sample.  These data indicate that CD133 
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gene expression is present in U87MG cells, and that high-CD147 levels may strongly 

correlate with elevated expression of CD133. 

 

 

Laser Confocal Imaging of Sort Fractions Confirms Expected CD147 Levels Based  

On Sort Parameters 

 

 

Cells from either high or low sort fractions were added to gasketed coverslips, 

fixed with 4% paraformaldehyde, and mounted to slides using DAPI-containing 

mounting medium. The U87MG cells expressing highest levels of CD147 all exhibit 

green coloration (FITC, attached to anti-CD147 antibody) at areas close to but distinctly 

separate from the cell nuclei (Blue, DAPI-stained) (Fig. 20). Because the highest-20% 

fraction fluoresce at high levels per the sort data, the cells collected in the higher 

expressing fraction of U87MG cells should all be labelled with FITC; the confocal 

images suggest the same.  

Conversely, we expect that the low CD147-expressing fraction of U87MG cells 

collected would have some FITC expression visible under microscopy, though not all. 

Based on fluorescence data from sorting, the low population does include U87MG cells 

that either do not express surface CD147 or express at low enough levels that the 

fluorescence was not detected. Lastly, the low population would include cells which 

simply did not bind antibody for any reason. Some low CD147-expressing cells certainly 

express CD147, based on FITC fluorescence. Other U87MG appeared to express little 

CD147. Yet other labelled U87MG cells appeared to be expressing no CD147 whatever, 

or at least did not appear to fluoresce (Fig. 21).  
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To streamline this approach relative to this experiment, microscope slides were 

prepared with the highest- and lowest-1% fractions from FACS and U87MG cells labeled 

with the same anti-CD147 antibody as described. The highest 1% population exhibits 

universal basigin expression as indicated by the green fluorescence (FITC) (Fig. 22). 

None of the cells in the lowest-1% fraction are exhibiting any detectable levels of 

fluorescence, suggesting that isolating these two extreme populations for study is possible 

(Fig. 23). 
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DISCUSSION 

 

 

While it has been shown that stem-like cancer cells may be cultured successfully 

using adherent or suspension conditions35,37, and that U87MG cells form neurospheres in 

suspension culture36-37, a correlation between U87MG/GBM neurosphere formation and 

CD147 levels may be a novel finding.  We have shown here that U87MG GBM cells 

expressing relatively high levels of CD147 on the cell surface are both more proliferative 

and more likely to form neurospheres than their lower-expressing counterparts. All three 

suspension cultures of U87MG cells expressing high levels of CD147 formed large 

neurospheres in culture after only four days, and none of the cells expressing low levels 

of CD147 formed neurospheres after the same time period. These data suggest that 

CD147 levels are directly correlated with neurosphere formation in GBM cells, or that 

the CD147 levels are indicative of some other such agent of neurosphere formation.  

We attempted to show that CD147 is a cancer stem cell marker in order to 

establish it as a worthwhile target for antitumor therapy. The evidence presented here has 

validated our attempts. Because CD147 is not typically found on glial cells and neurons, 

it can be employed to delineate normal, healthy tissue from cancerous tissue. 

Chemotherapeutic agents targeting CD147 would not only be a highly effective form of 

treatment, but targeting this population of cells would not affect healthy tissue 

surrounding the tumor mass, bypassing a major hurdle confronted during surgical 

excision.  
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Preliminary data recorded performing qPCR on the high and low sort fractions 

suggests that CD133 overexpression on U87MG cells is correlated with CD147 

overexpression. While this was preliminary data performed from cDNA collected from a 

single sort and must be confirmed and reconfirmed, CD147 overexpression may 

positively affect CD133+ CSC enrichment. It is possible that the cells are geared toward 

expressing relatively high levels of the CD133 antigen but epigenetic factors and 

posttranslational modifications prevent this expression from being realized14. Because 

inhibition of the Sonic Hedgehog pathway in CD133+ cells enhances the effectiveness of 

the chemotherapeutic agent temozolomide37, identifying this population of cells based on 

CD147 expression would be quite effective.    

RNA extraction and subsequent reverse transcription and endpoint PCR indicate 

that the transcripts for CD133 are present among all three GBM cell lines used 

throughout these experiments. Therefore it was expected that sorting LN229, T98, and 

U87MG cells based on relative levels of CD133 antigen expression should be possible. It 

is not clear that the GBM cell lines do not express the CD133 antigen. It is possible that 

the trypsin-versene and Accutase used to remove the cells from the culture flask may 

cleave the AC133 epitope, which may require a longer period of time devoted to cell 

recovery before the addition of antibody. While the manufacturer of the antibody 

(Miltenyi) insists that 10 minutes is sufficient time for antibody binding, it may be 

prudent to increase the incubation time, which may improve binding. This approach will 

also help address any issues regarding recovery period of the epitope following 

trypsinization/collagenization with Accutase. Non-enzymatic removal of the cells from 

the flask seemed like a logical alternative to treatment with proteinase or collagenase and 
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may leave the CD133 antigen intact. However this removal method was not deemed 

viable as it was impossible to separate the cells, which is necessary for sorting.  

Furthermore, as stated earlier it has been suggested11 that the CD133 antigen may 

be expressed on the cell surface, but precluded from binding to the antibody due to steric 

hindrance or similar problems. However, the correlation suggested by these data indicates 

that by selecting for a population of U87MG cells expressing increased levels of CD147 

we also enrich a population of CD133+ cells. Thus, it would certainly be possible to sort a 

high-CD147 population of U87MG cells and in turn label those cells with the anti-CD133 

antibody. This approach should significantly increase the percentage of CD133+ cells 

while also precluding any problems like steric hindrance of antibody binding, cleavage of 

AC133 epitope, etc.  

 

 

Future Directions 

 

To confirm if CD147 expression is responsible for neurosphere formation and 

adherent-cell proliferation as the data suggested here, it would be prudent to employ the 

CRISPR Interference technique to repress CD147 expression. The Clustered regularly 

interspaced short palindromic repeats (CRISPR) pathway is a genetic perturbation 

technique which affords transcriptional-level sequence-specific activation or repression 

of gene expression, similar to RNA Interference38. This technique can repress 

transcription by blocking transcriptional initiation or elongation, or inducing 

heterochromatization; it has been shown to generate gene knockouts in humans39. Thus, 
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this technique could be used to knock out CD147 expression in U87MG cells. Then, 

drawing on the correlation established here, these cells could be sorted based on relative 

levels of CD133 expression; the CD133+ group would otherwise be identical to the high-

CD147 U87MG cells used here, save CD147 expression. These cells would then be 

suspension-cultured as performed here and observed for neurosphere formation.  

Secondly, to confirm or disconfirm the effects of hypoxia on CD147 expression/ 

neurosphere formation, the experiment should be repeated with U87MG cells incubated 

only in normoxia. If neurospheres reform it might suggest that either the relative 

expression levels of CD147 are not driven by environmental oxygen levels, or that the 

levels of CD147 expressed in normoxia are sufficient to drive neurosphere formation, 

assuming CD147 is indeed the agent of neurosphere formation herein. Repeating the 

experiment in normoxia followed by CRISPR knockout of CD147 expression would 

further illustrate the role CD147 plays in proliferation and formation of neurospheres in 

U87MG cells. Additionally, once the experiment has been repeated and neurosphere 

formation observed, the neurosphere assay should be performed to confirm the ability of 

the cells in the neurosphere to proliferate and self-renew, and to assess their potency 

level. 

In conclusion, we have demonstrated here that U87MG cells can be sorted based 

on relative levels of CD147 expression. We have shown that U87MG cells expressing 

relatively high levels of CD147 will form neurospheres when incubated in suspension 

culture in hypoxia. We have also shown that U87MG cells expressing high CD147 levels 

are more proliferative in adherent culture than low-CD147 expressing U87MG cells. We 

have also supplied preliminary data which may suggest CD147 overexpression and 
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CD133 overexpression in U87MG cells are correlated, and it is possible that these two 

conditions in conjunction cause increased proliferation and neurosphere formation. Thus, 

CD147 and CD133 are worthwhile targets for GBM therapy going forward. 
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Figure 1. Agarose gel electrophoresis analysis of LN229, T98, and U87MG PCR products using CD133 

primers. Arrows indicate bands from Set 3 between 200-300bp.  
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Figure 2. Comparison of LN229 and U87MG cells displaying bands after PCR performed with the three 

CD133 primer sets. Primer set 3, in lane 9, displays dark band in 200-300bp range (arrow).  
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Figure 3. HF2303 neurospheres express the stem cell marker CD133. Neurospheres stained with DAPI 

(blue) and examined under confocal laser microscopy. Cells labelled with anti-CD133 antibody with FITC 

conjugate (green).  
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Figure 4. Fluorescence data of T98 cells before labelling with anti-CD133 antibody. Data acquired 

using S3 sorter. 

 

Figure 5. Fluorescence data of T98 cells after labelling with anti-CD133 antibody. Cells were 

incubated 10 minutes at 4⁰C in darkness before data acquisition using S3 sorter.  
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Figure 6. Scatterplot of T98 cells before labelling with anti-CD133 antibody.  

 

Figure 7. Scatterplot of T98 cells after labelling with anti-CD133 antibody.  
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Figure 8. U87MG cells express surface CD147. Cells were labeled with FITC-conjugated anti-CD147 

antibody (indicated by green in figure). 
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Figure 9. Histogram of U87MG cells before labelling with anti-CD147 antibody.  

 

 

 

Figure 10. Fluorescent histogram of U87MG cells after labelling with anti-CD147 antibody. Blue 

bars represent sorting gates; 20% lowest-expressing-basigin (R1) and 20% highest-expressing-

basigin (R2) cells were collected 
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Figure 11. Scatterplot of U87MG cells before anti-CD147 antibody addition. Blue/green area 

indicates highest concentration of cells. 
 

 

Figure 12. Scatterplot of U87MG cells after incubation with anti-CD147 antibody. Blue indicates 

presence of highest concentration of cells.  
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Figure 13. U87MG cells expressing high levels of CD147 form neurospheres in suspension culture. First 

group of cells incubated at 37⁰C for 96 hours in hypoxic suspension culture. Image taken at 4X. 
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Figure 14. U87MG cells expressing low levels of CD147 do not form neurospheres in suspension culture. 

First group of cells incubated at 37⁰C for 96 hours in hypoxic suspension culture. Image taken at 4X. 
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Figure 15. U87MG cells expressing high CD147 levels form neurospheres in suspension culture. Second 

group of cells incubated at 37⁰C after 96 hours in hypoxic suspension culture. Image at 4X. 
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Figure 16. U87MG cells expressing low CD147 levels do not form neurospheres in suspension culture. 

Second group of cells incubated at 37⁰C after 96 hours in hypoxic suspension culture. Image at 4X.  
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Figure 17. U87MG cells expressing high CD147 levels form neurospheres in suspension culture. Third 

group of cells incubated at 37⁰C after 96 hours in hypoxic suspension culture. Image at 4X.  
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Figure 18. U87MG cells expressing low CD147 levels do not form neurospheres in suspension culture. 

Third group of cells incubated at 37⁰C after 96 hours in hypoxic suspension culture. Image at 4X.  
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Figure 19. U87MG cells with increased CD147 expression are more proliferative. Comparison of relative 

proliferation levels of High CD147-expressing vs. Low CD147-expressing adherent U87MG cells. Cells 

were incubated 96 hours in hypoxia. Bars represent mean cell concentrations of three independent trials and 

standard error. 
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Figure 20. CD147 is expressed on U87MG cells. Laser Confocal Microscopy Image of U87MG cells 

expressing 20%-highest levels of CD147. Cells stained with DAPI (blue), labelled with anti-CD147 

antibody with FITC conjugate (green). Image taken at 10X. 
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Figure 21. CD147 is absent on some U87MG cells. Laser Confocal Image of 20%-lowest-CD147-

expressing U87MG cells stained with DAPI (blue) and anti-CD147 antibody conjugated with FITC (green). 

Image taken at 10X. 
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Figure 22. CD147 is expressed on U87MG cells. U87MG cells stained with DAPI (blue) and labelled with 

anti-CD147 antibody conjugated with FITC (green). Cells were among highest-1% CD147 expression. 

Image at 20X. 
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Figure 23. CD147 is not expressed on all U87MG cells. Laser confocal image shows lowest-1% of U87MG 

cells expressing CD147. Nuclei are DAPI stained (blue), cells labelled with anti-CD147 antibody 

conjugated with FITC. Image at 10X. 
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