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Force plate measurement systems unavoidably introduce noise into the output signals. 
Noise in the center of pressure (COP) signal is the propagation of error that arises from the 
combination of the components used to compute it. A framework to analyze the random 
error in COP signals is introduced based on the “Guide to the Expression of Uncertainty of 
Measurement” (GUM) approach. 

KEYWORDS: Digital Filtering, Smoothing, Uncertainty of Measurement, Center of 
Pressure, Variance Matrix. 

INTRODUCTION: Force plate measurement systems unavoidably introduce noise into the 
output signals (Hunt, 1998). The noise in the COP signal is the propagation error that arises 
from the combination of the components used to compute it (i.e. strain gauges and/or 
transductor) with function f. Generally, the noise is modeled as a wide-band additive, 
stationary, zero-mean, and uncorrelated noise that contaminates the low-pass COP signal with 
noise variance σ2. However, even if the noise of the recorded GRF signals can be modelled 
as an additive zero-mean “white noise”, the nonlinear transformation in COP computation 
induces noise in the COP signal that becomes nonstationary (i.e., unequal noise variance), 
except for the case where the Fz (vertical force component) is constant. In many fields of 
biomechanical studies, there are instants where Fz vector of GRF changes its magnitude 
drastically during its evolution in time, so, the noise presented in the raw COP coordinates 
should be modeled as additive, zero-mean, and nonstationary–i.e., unequal noise variance 
across COP coordinates and variations in time of the noise power. Weak correlated noise is 
also assumed. This renders time-invariant Fourier transform based filtering techniques or 
Generalized cross-validated splines (GCVSPL) as suboptimal. In dynamics tasks, many ways 
exist to process force plate measured signals. Therefore, the aim of this study was to analyze 
the noise in the COP signal under different experimental conditions to construct a weighted 
variance matrix for the COP noise in conformance with the GUM approach (BIPM, IFCC, 
IUPAC, & ISO, 2008).  

METHODS: General Uncertainty Framework. Consider a single real output quantity Y that is 
related to a vector of real input quantities X = (X1,...,XN) T by an explicit univariate measurement 
model Y = f(X). The estimate of the output quantity is y = f(x) with x = (x1, … , xN). Assuming 
linear or weakly-nonlinear relation and using a first-order Taylor series expansion, the standard 
uncertainty uy associated with y is obtained by the “law of propagation of uncertainties” 
expressed by 

𝑢𝑦
2 = 𝑆𝑥𝑈𝑥𝑆𝑥

𝑡 

where Sx is the vector of the sensitivity coefficients expressed by the values of the partial 

derivatives 
∂f

∂Xj
 for j = 1,...,N, at X = x and Ux is the N × N uncertainty matrix associated with x 

containing the covariances u(xi , xj) for i, j = 1, ... ,N associated with xi and xj. 

Experimental Setup. Two strain-gauge force platforms (Dinascan 600M, IBV, Valencia, Spain) 
were utilized to obtain the temporal evaluation of the components of the GRF vector and the 
coordinates of the COP during the experiment at a sampling rate of 30 Hz.  Calibrated dead 
loads (Telju, Spain) were used.  
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The force measurement system was switched on always 15 min prior to the measurement 
process to reach thermal stability. A calibrated dead load (M) was displaced on the top plate 
of the force platform from the point P0 to the point P10 gradually in 10 consecutive stages that 
corresponded to 11 fixed points and then was returned back from the point P10 to the point P0 
in a similar manner. This operation was repeated two times. During the displacements of the 
dead load M from the point P0 to the point P10 and back to the P0, at each one of the 
intermediate points where the load M was placed gradually, the COP was measured for 10 
repeated times in an interval of 30 sec between each repetition. Each repeated COP data was 
collected for a time period of 5 sec at a sampling rate of 30 Hz under a set of repeatable 
conditions of measurement. To ensure that the load M was placed with accuracy onto the fixed 
points on the grid, a point loader was used. This procedure was repeated for different calibrated 
loads (range: from ≈ 98 N to ≈ 294 N) for the two force platforms used in the study. In addition, 
a dead load (≈ 294N) was placed on the top plate of the force platform about its geometrical 
center and the COP was registered at 30, 230 and 500 Hz for 10 sec. A frequency analysis 
was made on the COP signals to test whether COP noise is “white”. To test the influence of 
the sampling rate another dead load (≈ 294N) was placed on the top plate of the force platform 
about its geometrical center and the COP was registered for 10 sec at an integer sequence of 
frequencies (30, 40, 50, ... , 300 Hz).  

Data Processing and Analysis. There are k = 10 repeated COP samples comprised of 150 
data each, for each one of the 11 fixed points P0→10, replicated r = 4 times. For each point, the 
mean value and standard deviation for each repeated COP sample were computed, as well as 
the overall mean value comprised of all the data of the k = 10 repeated samples. The overall 
mean (𝑦̅) and standard deviation (𝑆𝑖) were computed by:  

𝑦𝑖̅ =
1

𝑛𝑖
 ∑ 𝑦𝑖𝑗

𝑛𝑖
𝑗=1         and      𝑠𝑖 = √

1

𝑛𝑖−1
∑ (𝑦𝑖𝑗 − 𝑦𝑖̅)

2𝑛𝑖
𝑗=1            𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑘. 

Where: 

ni = the ith repeated COP sample size 𝑦𝑖̅= mean value for the ith repeated COP sample 

si = standard deviation of ith repeated COP 
sample  

𝑦𝑖𝑗 = the j datum of the ith repeated COP sample.  

 

The overall mean value for the k = 10 repeated samples at each point was computed as:  

𝑦̅ =
1

𝑛
∑ ∑ 𝑦𝑖𝑗 =

1

𝑛
∑ 𝑛𝑖𝑦𝑖̅

𝑘

𝑖=1

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

where 𝑛 =  ∑ 𝑛𝑖
𝑘
𝑖=1 = total number of measurements. In total, four overall means were calculated 

at each point, one for every replication. The standard deviation, s, of all repeated COP samples 
for one replication for each point is (NASA, 2010).  

𝑠 = √𝑠𝑏
2 + 𝑠𝑤

2  

The standard deviation of the sampled mean values relative to the overall mean value is the 
between sample sigma, 𝑆𝑏, computed as and the standard deviation within samples is the 
within sample sigma (noise), 𝑆𝑤, computed as  

𝑠𝑏 = √
1

𝑛−1
∑ 𝑛𝑖(𝑦𝑖̅ − 𝑦 ̅)

2𝑘
𝑖=1      and    𝑠𝑤 = √

1

𝑛−1
∑ (𝑛𝑖 − 1)𝑠𝑖

2𝑘
𝑖=1  

RESULTS AND DISCUSSION: The results showed that for Fz = constant the noise of the COP 
signal could be modeled as additive, zero-mean “white noise” (Fig. 1 and 2). Different sampling 
rates influence the COP noise. This is obvious for the COP signals that were registered with a 
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very different (low - very high) sampling rate (Fig. 1). For example, the variances of the raw 
COP data for different sampling rates are RAWy-30Hz = 0.54 mm2, RAWy-230Hz = 0.59 mm2 
, RAWy-500Hz = 0.61 mm2 , and RAWx-30Hz = 1.10 mm2 , RAWx-230Hz = 1.20 mm2 , RAWx-
500Hz = 1.30 mm2 (Fig. 2). However, for a narrower frequency interval, the assumption that 
the sampling rate does not influence the COP noise can be considered as correct. 
Notwithstanding, the noise elimination, was higher after oversampling spread the power over 
higher frequencies. The variance of the COP signals after low-pass filtering was BTWx30Hz = 
0.24 mm2, BTWx-230Hz = 0.05 mm2 , BTWx-500Hz = 0.03 mm2 and BTWy-30Hz = 0.15 mm2 
, BTWy-230Hz = 0.03 mm2 , BTWy-500Hz = 0.02 mm2 (Fig. 2). Other studies have also shown 
that cut-off frequency and sampling rate influence stabilometric parameters (Scoppa, Capra, 
Gallamini, & Shiffer, 2013; Schmid, Conforto, Camomilla, Cappozzo, & D'Alessio, 2002). 
However, our study demonstrated that  cut-off frequency and sampling rate are also dependent 
on the magnitude of the vertical force. 

 

Figure 1. Power spectral density of the raw COP signals obtained at different sampling rates 
(only the COPx is shown). 

 

Table I. Standard uncertainty Fz (n) obtained for different dead load weights. 

 M10 M20 M30 M40 

Force Platform 1 1.90 1.86 2.00 1.84 

Force Platform 2 1.96 1.81 1.75 2.08 
 

 

Figure 2. COP signals with different sampling rates (30, 230 and 500 Hz) after low-pass filtering 
with a fourth-order zero- phase- shift Butterworth filter (BTW) with cut-off frequency at 5 Hz 

(Winter, 2009). The probability function for the distribution is shown for each time series (only 
the COPx is shown). 

There was not a trend among the standard uncertainty of the Fz signal registered with the 
different dead load weights (Table I). Therefore, the highest standard uncertainty of both force 
platforms, (𝑢𝐹𝑧  = 2.1 N) was chosen (Table I). The uy in the COP measurements was modeled 
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as a hyperbolic function of the Fz magnitude (uFz = c). According to Lees and Lake (2008) the 
minimum uy is obtained when the dead load is placed at the geometrical center of the top plate 
of the force platform as in this point the same fraction of the Fz is registered by each load cell. 
Fig. (3) shows the experimentally obtained noise curve together with the minimal curve of the 
model for two cases of statistically correlated error sources, ρ = −0.9 and ρ = −0.8. The 
variance explained by the fitted regression models (R2) are very high and their match with the 
error model is obvious. For the Y-axis the experimentally obtained COP uncertainty is better 
modeled with statistically correlated error ρ = −0.8, while for the X-axis with ρ = −0.9.  

 

 

Fig. 3. Values of the uy obtained by the 
“propagation law”, along with the 
experimentally obtained standard 

deviation data fitted with regression lines. 
The colored areas are bounded by the 

values of uy for ρ = −0.9 (low) and ρ = −0.8 
(up). Blue and red areas correspond to the 
uy of the X and Y axes, respectively (F1X= 

Force platform 1 X-axis; F1Y= Force 
platform 1 Y-axis; F2X= Force platform 2 X-

axis; F2Y= Force platform 2 Y-axis;) 

 

 

 

CONCLUSION: The implementation of the GUM approach (BIPM et al., 2008) to calculate 
standard uncertainties for specifying the weighted factor for each coordinate of the noisy COP 
data was introduced. The noise curves can be used (the experimental or the theoretical) in 
order to obtain the weighted matrix for smoothing purposes. Studies have to take into 
consideration how acquisition settings like sampling rate, cut-off frequency, and Fz magnitude 
influence the COP values.  
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