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This research estimates running pattern characteristics that relate to running injury risks 
quantitatively and simply from a real-environment running motion. Wearable inertial 
measurement unit (IMU) sensors are used to provide a simple measurement of the 
running patterns in a real environment. We then measure an experimental running motion 
in detail in the laboratory using both large-scale devices and wearable sensors, and build 
correlational models between the conventional parameters related to running injury risks 
and parameters from wearable sensors. These correlational models realize a quantitative 
and simple estimation of running pattern characteristics related to running injury risks 
from a real-environment running motion. Our models estimate that fatigue, grounding 
style, pronation, and grounding impact have a high correlation with injury risk by the 
conventional methods. A feedback of these parameters and shoe selection based on 
these information would contribute to a reduction of running injuries.  
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INTRODUCTION: Many people enjoy running easily in shoes to improve their physical 
health, though running may result in physical injuries and disabilities. Many running injuries 
develop in the legs compared to upper extremities and back. The lower extremity injuries are 
caused by a fatigue, grounding style, pronation, grounding impact etc. and results in injuries 
such as a tibial stress fracture, foot plantar fasciitis, knee patellar femoral pain syndrome, 
and shin splints (Daoud et al., 2012; Hinterman et al., 1998). Sports-goods manufacturers 
offer various shoes to reduce these running injuries and develop shoe selection systems to 
provide shoes that are appropriate to specific runners’ running patterns. For instance, Static 
Foot ID from ASICS assists shoe selection based on a static posture, and Dynamic Foot ID 
selects shoe using an optical motion capture system and a treadmill (ASICS co.). These 
systems require large-scale devices, and running patterns measured in laboratory 
environments differ from real-environment ones because of a physical and psychological 
conditions (Elliot et al., 1976). A real-environment measurement, analysis, and feedback 
system of running patterns would realize an assistance for individual runners to select shoes 
that are appropriate to their running patterns and reduce the running injuries.  
This research estimates the running pattern characteristics quantitatively and simply in a 
real-environment running to reduce the running injury risks. The wearable inertial 
measurement unit (IMU) sensors realize simple running pattern measurements in real-
environment running. We also measure the experimental running motion in detail using the 
large-scale devices and the wearable sensors in the laboratory and build the correlation 
model between the conventional parameters related to the running injury risks and the 
parameters from the wearable sensors. These models can estimate the running injury risks 
from the real-environment running quantitatively and simply and contribute to the reduction of 
running injuries.  
 
METHODS: The running motion is captured by using the IMU sensor (TSND151, ATR-
Promotion, Japan) at a rate of 1000 Hz, the commercial marker-based optical motion capture 
system with 15 cameras (VICON, Oxford, England) at a rate of 200 Hz, and the force plate 
(AMTI, MA, USA) at a rate of 1000 Hz on ten adult male subjects (average ± SD; age: 24.5 ± 
2.8 years, 172.1 ± 6.5 cm, 67.6 ± 11.5 kg). The subjects were free of any injuries at the time 
of data collection. Our study protocol was approved by the local institutional review board, 
and it conformed to the guidelines of the Declaration of Helsinki (1983). These devices were 
accurately synchronized using VICON MX system. The measured data were post processed 
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using MATLAB2017a (The MathWorks Inc., MA, USA). As for the IMU sensors, we applied 
the 4-th order lowpass Butterworth filter with the cut-off frequency of 50 Hz to the 
acceleration, and the 4-th order bandpass Butterworth filter with the range of 1 Hz to 50 Hz to 
the angular velocity. The ground reaction force data were filtered with the 4-th order lowpass 
Butterworth filter with the cut-off frequency of 50 Hz (Nordin et al., 2017).  
Hardware: Wearable IMU sensors (Figure 1) were applied to our system for a simple 
measurement of running pattern in a real-environment running and to measure accelerations 
and angular velocities of runners’ foot segments. Running has a huge impact in the 10 to 30 
ms at grounding. The IMU were TSND151 (ATR-Promotion, Japan) that have a high 
sampling rate (up to 1000 Hz) and a large measurement range. Peak acceleration at the 
grounding exceeds the acceleration range of TSND151 (16G), and we interpolated the 
acceleration with a spline function when the huge acceleration is detected.  
Software: Our system extracted the running pattern characteristics that are related to running 
injuries. Here, the fatigue, grounding style (rear foot strike (RFS), mid foot strike (MFS), and 
fore foot strike (FFS)), grounding impact, and pronation (overpronation and supination). 
These parameters were computed using the large-scale devices, for instance, optical motion 
capture systems and force plates. We measured running motion using the wearable IMU 
sensors and the large-scale devices simultaneously and built the correlation models between 
the parameters computed from these simple and large-scale devices. These models were 
used to realize the quantitative and simple estimation of running injury risks using wearable 
sensors.  
Fatigue: We used a support-phase duration as the indicator of fatigue. This support-phase 
duration represented the rate of support phase during one running cycle and correlated with 
the running speed, as well as the fatigue. The conventional method computes this support-
phase duration from the grounding and take-off time measured using the force plate. The 
improved algorithm of S-method (Mo et al., 2018) was applied to this system. The grounding 
time was computed as the rising time just before the acceleration peak, and the take-off time 
is the peak time just after exceeding 2G after the grounding. We computed the support-
phase duration based on these grounding and take-off times.  
Grounding style: There are three different grounding styles, RFS, MFS, and FFS, and 
possible injuries and suitable shoes differs between them. The conventional method 
recognizes these styles from Strike Index (SI) that is computed using the optical motion 
capture system and the force plate (Altman et al., 2012). This SI is a rate of a distance 
between a centre of pressure from a heel at the grounding w.r.t. a foot length. The system in 
our study estimates this SI from a plantar / dorsal-flexion behaviour of a foot segment at the 
grounding that is measured by IMU sensors. The foot segment grounds at the dorsal-flexion 
posture and keeps plantar flexion in RFS. On the other hand, the segment grounds at the 
plantar-flexion posture, once dorsal flexes, and then plantar flexes. We focused on these 

behaviours and computed IMU as shown in Figure 2. The correlation model between SI from 

the conventional method and IMU estimates SI from IMU measured by IMU sensors.  

 
 
Grounding impact: The grounding impact that relates to the tibia fatigue fracture is 
represented by the vertical force impact peak (VIP), the vertical average loading rate (VALR), 
and the vertical instantaneous loading rate (VILR) (Davis et al., 2015; Bonanno et al., 2016; 
Crowell et al., 2010). The conventional method computes the vertical gradient of the 

 
Figure 2: plantar / dorsal flexion of RFS and FFS 

 
Figure 1: IMU sensors on shoes 
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grounding reaction force at 20% to 80% of its first peak at the grounding using the force 
plate. The system used in our study estimates VALR from the peak acceleration of the foot 
segment measured by the IMU sensor. Here, we use the peak of acceleration norm (PA) 
because of the integration error of the angular velocity from the IMU sensor.  
Pronation: The pronation is the complex compound motion with the extroversion of the 
calcaneus and the plantar flexion and adduction of the talus and often observed on the RFS 
runners. The excessive overpronation collapses the foot arch and triggers the risk of the 
plantar fasciitis, the Achilles tendonitis, the knee patellar femoral pain syndrome, and the 
shin splint (Daoud et al., 2012; Hinterman et al., 1998). The conventional method measures 
the angle between the heel and the calf at the grounding with two markers on each segment 

using the optical motion capture system and the force plate (pro).  The system used in our 
study estimates the pronation from the angular velocity in the coronal plane using the IMU 
sensor. The angle between the heel and the calf correlates highly to the peak value of the 
angular velocity in the coronal plane (Shin et al., 2014). The peak angular velocity within ± 20 

ms around the acceleration peak at the grounding (peak) are applied to build the correlation 
model with the angle between the heel and the calf. The standard linear regression models 
are applied to examine the relationships between the convention and IMU estimation 
methods using MATLAB2017a (The MathWorks Inc., MA, USA).  
 
RESULTS: Figure 3 shows the error between the grounding and take-off time that is 
measured using the force plates and the ones estimated from the IMU sensors data, whose 
positive value represents the time delay. We apply the S-method and our method to the IMU 
sensors data and compare these results.  

Figure 4 shows the SI computed by the conventional method and IMU that is computed from 

the IMU sensors data. The correlation between these data is SI = 0.00162 ☓ IMU + 0.697 

and its correlation coefficient is r = 0.900 and RSME = ±0.116. Figure 5 shows the grounding 
style estimated by the SI and our method. The green, orange, and cyan points represent 
RFS, MFS, FFS respectively, that are estimated by the SI. The green, orange and cyan area 
represents RFS, MFS, FFS that are estimated by our method.  
Figure 6 shows the VALR computed by the conventional method and the PA from the IMU 

sensors data. The correlation between these data is VALR = 2.45 ☓ PA + 35.8 and its 

correlation coefficient is r = 0.460 and RSME = ±16.9 BW/s.  

Figure 7 shows the pro computed by the conventional method and the peak computed from 

the IMU sensors data. The correlation between these data is pro = 0.0231 ☓ peak + 6.67 and 

its correlation coefficient is r = 0.800 and RSME = ±2.19°.  

 

 

 
Figure 7: pro and peak 

 
Figure 6: VALR and PA 

 
Figure 5: SI estimation 

 
Figure 4: SI and plantar / dorsal flexion 

 
Figure 3: Support-phase duration 
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DISCUSSION: S-method estimates the grounding and take-off time within the error of -32.2 
± 114 ms and 24.2 ± 35.3 ms (average ± SD), and our method realizes the error of 2.34 ± 
27.0 ms and 0.570 ± 27.0 ms (Figure 3). This result shows that our method improves the 
accuracy of the support-phase duration estimation. The grounding style was estimated with 
the correlation coefficient of r = 0.900, whose estimation using the optical motion capture 
system was r = 0.930. Our method with the wearable IMU sensors realizes the similar 
estimation accuracy compared to the large-scale devices. The grounding impact estimated 
by our method has the intermediate correlation (r = 0.460) with VALR. This may be because 
we used the peak of the acceleration norm and the horizontal acceleration of the braking 
effects on this result. Implementing the posture estimation of the IMU sensors and estimating 
the vertical acceleration would improve the VALR estimation. Our method estimates the 
pronation with a correlation of r = 0.800, and this result implies the high correlation between 
the peak value of angular velocity in the coronal plane and the angle between the heel and 
the calf measured by the optical motion capture system.  
These results show that the simple measurement using the IMU sensors realizes the 
quantitative estimation of the fatigue, the grounding style, the grounding impact, and the 
pronation.  
 
CONCLUSION: This paper developed the system that realizes the quantitative and simple 
measurement of the real-environment running pattern and estimates the running injury risks 
using the correlation model with the conventional parameters that are computed using the 
large-scale devices. Our system estimated the fatigue, grounding style, grounding impact, 
and pronation which was highly correlated with the conventional methods. Real-time 
feedback and a shoe selection system based on this information would contribute to the 
reduction of running injuries. 
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