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Being similar to tightrope walking, slacklining has become very popular among athletes 
and physiotherapists to practice and improve balancing capabilities. For flat ground static 
balance the center of pressure is often used to quantify how stable a subject is. In this 
work we present a method to reconstruct the center of pressure and the joint torques 
from pure motion capture data for motions that don’t allow for force plate measurements. 
We demonstrate the application to a subject balancing on a slackline. We create a 
subject-specific 3D-model and perform a least-squares fit to the recorded motion by 
formulation and solution of an optimal control problem. From the resulting forces we 
construct the center of pressure dynamics and quantify how stable the subject is on a 
slackline. The joint torques allow for further insight into the balancing strategies applied. 
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INTRODUCTION: Maintaining stability and balance is of crucial importance in human 
locomotion. Even though it is not fully understood how stability and balance are to be 
quantified, the center of pressure (CoP) position and velocity have been used in several 
studies to compare the balance capabilities of different athletes, for example by Thompson, 
Badache, Cale, Behera and Zhang (2017). Balancing and walking on a slackline is widely 
applied for balance training in various sports such as climbing or surfing but also in 
rehabilitation. The athlete hereby balances on a up to 5 cm wide nylon webbing that is 
tensioned between two fixed end points. Donath, Roth, Rueegge, Groppa, Zahner and 
Faude (2013) have performed CoP measurements standing on a force plate before and after 
slackline training to find transition effects. They found no significant improvement in static 
and dynamic stance. Yet no direct measurements of the CoP position while balancing on a 
slackline are reported in the literature. This is mainly due to that it would require force plates 
or pressure sensitive soles to acquire this data. Felis, Mombaur & Berthoz (2015) used 
model-based optimization to gain more insight into human walking identifying the whole 
dynamics of the model including the ground reaction forces using only kinematic data. 
Following their approach, but with a modified contact model, we present a method to 
reconstruct the CoP position and velocity during single leg balancing on a slackline from 
motion capture data. Additionally we can estimate the joint torques of the subject which 
allows for further interpretation on the balancing strategies applied. 
 
METHODS: The method can be divided in three parts: modeling, motion capture and  
optimization. To describe balancing on a slackline with enough detail to estimate the CoP we 
need a subject-specific 3D dynamic model. For this purpose we rely on the anthropometric 
measurements by de Leva (1996) to estimate the segment geometry, masses and inertia. 
The model consists of 16 segments (head, upper and lower trunk, pelvis, upper and 
forearms, upper and lower legs, feet and hands). They are connected by joints which we 
model with the following degrees of freedom (DoF). The pelvis is linked to the world frame by 
three translational and three rotational DoF. To match the mechanical capabilities of a 
human, the hips, shoulders, and lower spine have spherical joints with 3 DoF. The ankles 
and the upper spine have 2 DoF and elbow, neck and knees have 1 DoF. The hands are 
fixed with respect to the forearms to further reduce the model complexity as they are not 
significant to the motion. In total the model has 32 DoF. Out of these 32 DoF 26 are actuated 
by torques that describe the effect of the accumulated muscle force per joint.  
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Figure 1: Left: Overview of the degrees of freedom (DoF) used for the deLeva Model. The 
Floating Base is not actuated and has three rotational and three translational DoF. The 
actuated rotational joints of the model are indicated with R and X, Y and Z describe the 

according coordinate system axis. Right: A typical slackline situation in the motion capture 
lab. The slackline is 5cm wide and 3m long and installed with the Gibbon Slackrack 300. 

 

The model and an overview of the DoF is shown in Figure 1. We define the X-axis along the 
slackline, such that both form a right-handed system with the vertical Z-axis. Since this model 
is still highly complex we use the Rigid Body Dynamics Library (RBDL, Felis, 2017) to 
compute the kinematic and dynamic properties needed for the method. 
The contact with the slackline is modeled by four contact points at the foot of the model such 
that a rectangular contact area of 5 x 20 cm is described. Two points are located at the heel 
and two at the hallux of the models foot. At each point a force can act on the model. Each 
force is described as a three dimensional vector that consists two tangential components and 
a normal component. 
Motion was recorded with a camera-based motion capture system (Qualisys, Göteborg, 
Sweden) and the corresponding software (Qualisys Track Manager). The subject was 
prepared with 46 infrared-reflective markers following the Gate-IOR marker-set by Leardini, 
Biagi, Merlo, Belvedere and Benedetti (2011). The Slackline (5 cm wide and 3 m long), was 
attached at the two end points, but could otherwise move in space, using a Gibbon Slackrack 
300. For generation of reference joint angles from the motion capture data we used the tool 
Puppeteer (Felis et al. 2015). 
The last step of the method was the formulation and solution of an optimal control problem 
(OCP). We search for forces at the previously defined contact points and joint torques that 
make the model most closely track the fitted joint angles. Therefore the objective function 
minimized the squared deviation between the reference and the models joint angles. To 
avoid the use of excessive torques we added a small regulation term on the joint torques. 
Since all four contact forces are acting on the same body, this lead to an overdetermined 
problem formulation, which we solved by adding another small regularization term that also 
minimized the squared forces. As constraints to the OCP we used the kinematic limitation of 
the joint angles and the torque ranges that are reported in the literature for example by King, 
Wilson and Yeadon (2006). Further, we imposed a non-slip condition by introducing a friction 
coefficient that constraints the tangential component of the force with respect to the normal 
component. An OCP was solved by the direct multiple shooting method as implemented in 
the optimal control code MUSCOD-II (Bock & Plitt, 1984; Leineweber, Bauer, Bock & 
Schlöder, 2003). As stated in the introduction, the advantage of this approach compared to a 
classical inverse dynamics approach is that it does not require force plate measurements but 
allows us to reconstruct full dynamic model properties from purely kinematic measurements. 
From the four calculated contact forces we were able to compute the CoP displacement from 
the center of the foot. We used the normal component of each force as described in Winter 
(2009). The displacement was computed individually for the mediolateral (ML, along the 
coronal plane) and anterior-posterior component (AP, along the sagittal plane). 
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RESULTS AND DISCUSSION: As a proof of concept, we applied the method to two  
recordings of the same subject on a slackline for 20 s on each leg. The average fitting error 
of the markers to the model was 1.36 cm. The OCP found a dynamically feasible motion that 
very closely tracked the reference motion with a deviation of 0.36 cm for the floating base 
and 0.2° for the models joint angles. From the resulting contact forces, we computed the CoP 
position and velocity over time for the AP and ML direction. The results were evaluated  
following the work of Thompson et al. From the position we derived the distance between the 
minimum and maximum AP and ML position (MAXD) and the root mean square (RMS). From 
the velocity we computed the mean (MV) and also the root mean square (RMSV). For all 
values a smaller number is favorable as we assumed that a perfectly balance subject is able 
to maintain the CoP always at the same spot. The results are shown in Table 1. The RMS 
values of the positions are within the range reported in the literature for two and single leg 
balancing for example by Mansfield and Innes (2015) and suggest that the subject was 
maintaining balance well. The MAXD, MV, and RMSV are higher than what is reported for 
standing on force plates, which is reasonable since the task is more difficult and the subject 
constantly has to adjust the pose to maintain balance. Similar values are observed for ML 
and AP direction. 

Table 1: Evaluation of the reconstructed CoP properties 

 Right Left 

AP ML AP ML 

RMS [cm] 0.27 0.28 0.29 0.29 

MAXD [cm] 2.36 2.12 2.42 2.42 

MV [cm/s] 1.64 1.74 2.45 1.86 

RMSV [cm/s] 3.39 3.99 4.83 3.29 

 

Further, the OCP results give us information on the joint torques that were applied by the 
subject to perform the motion. We find continuous activation and torques acting on the 
supporting leg and the two spine joints to maintain an upright posture. Out of the remaining 
limb joints the hip and and shoulders show the highest torques and activation. These are 
plotted in Figure 2 for balancing on the right foot.  
 

 
Figure 2: The resulting joint torques of the model for hip and shoulders joints. Higher 
actuation is seen in the coronal plane (RX) than for the sagittal plane (RY). Balance in 
ML direction is maintained by using the arms and legs, while the AP is balanced with 

the supporting leg’s hip joint. 
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When separating the individual DoF according to their axis we find that for the coronal plane 
(RX-joint, plotted in blue) the actuation is generally higher than for the the sagittal plane (RY-
joints, plotted in green). This supports the fact, that balance in ML direction (perpendicular to 
the slackline) is harder to maintain than in AP direction (along the slackline). Especially the 
shoulder joints are mainly creating torques around the X-axis to control balancing in the ML 
direction. For balancing in AP direction the main control takes place in the supporting legs 
hip joint. The whole body is leaning slightly forward or backward with the free leg balancing 
against the upper body.  
 
CONCLUSION:  The method allowed us to reconstruct the CoP position and dynamics from 
pure motion capture data and for situations in which no force plates can be used. 
Additionally, we get the model joint torques that were applied by the subject to perform the 
motion. We demonstrated the application to balancing on a slackline and computed the 
dynamics of the CoP to quantify how stable a subject is. We found similar values to what is 
reported in the literature. Analyzing the resulting joint torques we found different balance 
strategies for coronal and sagittal plane. In the future we are going to apply this method to 
compare the stability of different subjects on a slackline and also to monitor their learning 
process. 
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