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The pupose of this study was to propose a method which estimates the resultant force and 
moment from the shape of a deformed pole based on a quasi-static equilibrium equation. 
The force and moment were assumed to be exerted, at the middle point of both hands, on 
the pole. The pole was modelled as a series of 11 rigid segments connected to the adjacent 
segment via a virtual rotational joint with a rotational spring component. The stiffness of the 
spring was identified from a static load test. The resultant mid-grip force and moment were 
calculated from a static force-moment equilibrium equation. The results indicate that the 
kinetic values obtained by the proposed method show similar values reported in a previous 
study which utilized a force plate.  

KEYWORDS: resultant force, coupling force, pole stiffness, closed loop problem  

INTRODUCTION: The pole-vault is a track-and-field event in which an athlete achieves height 
largely from energy stored in the vaulting pole. Vaulters bend the pole as much as possible to 
utilize a large restoring force which raises the vaulters’ body up in the last half of the vaulting 
motion. The pole bending is achieved by the resultant force and moment (i.e. coupling force) 
on the grip-handle part of the pole by both hands of the vaulters. Thus, knowledge of the kinetic 
variables as well as the kinematics (Angulo-Kinzler et al., 1994) and energetics (Arampatzis et 
al., 2004; Schade et al., 2006) provide useful information for vaulters to investigate their 
vaulting technique. Several studies on the kinetics of pole vaulting have been reported, in 
which 2-D exerting forces and moments by the upper-side hand (McGinnis, 1986) and 3-D 
resultant forces and moments exerted by both hands (Morlier and Mesnard, 2007) were 
investigated. Since these studies used a force platform and conducted an inverse dynamics 
calculation for a whole-body model, it would be difficult to implement the methods without the 
force platform or whole-body kinematics data for obtaining the kinetic information of both 
hands. In contrast, the shape of the deformed pole should be able to provide the resultant force 
and moment exerted by both hands due to the elasticity of the pole. Therefore, the purpose of 
this study was to propose a method in which the resultant force and moment exerted on the 
grip center of the hands was estimated from the pole’s deformation. 
 
METHODS: Three male pole vaulters (Mean ± SD: 1.74 ± 0.05 m, 65.3 ± 8.6 kg, Personal 
Record (PR): 4.93 ± 0.35m, pole length: 4.60 m for participant 1 and 2 and 4.90 m for 
participant 3), who were members of a university athletic team, participated in this study. They 
performed 5-8 trials at 95-98% of their PR. One trial with the highest subjective rating per 
participant was analyzed. Kinematic data (47 markers on the body; 20 and 26 markers on the 
poles of 4.6-m and 4.9-m length, respectively) were captured with a motion capture system 
(Vicon-MX; 20-Camera; 250 Hz). The pole bending phase was defined as the period from the 
athlete’s takeoff to the instant of the maximum bending of the pole.  
The pole was modelled as a series of 11 rigid segments, in which each adjacent segment was 
connected via a rotational virtual joint with a rotational spring component (Figures 1a and b). 
The stiffness of the rotational springs, whose values were assumed to be consistent over the 
pole, were identified from a static-load test of the pole. The forces and moments exerted by 
both hands were assumed to be applied to the middle grip of the pole, which was the centre 
point of both hands. 
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(a). A planar pole deformation model (b). A virtual joint with a rotational spring 

Figure 1: Schematic representations of a deforming pole model 
 
Since the lower-end of the pole (i.e. plug in Figure. 1a) can only exert a force on the ground, 
the deformation of the pole was assumed to be constraint on the bending pole plane. Under 
the above assumption, the virtual joint can only rotate about the axis normal to the bending 

pole surface. The joint torque vector 𝝉   consisting of the individual joint torques 𝝉 =

[𝜏1, 𝜏2,⋯ , 𝜏𝑛𝑗] , was calculated from the product of the angular displacement vector ∆𝜽 =

[∆𝜃1, ∆𝜃2,⋯ , ∆𝜃𝑛𝑗]  and the matrix of rotational spring stiffness at the individual joints 𝑲𝜽 =

𝑑𝑖𝑎𝑔 {𝑘𝜃, 𝑘𝜃, ⋯ , 𝑘𝜃 } as: 

 𝝉 = 𝑲𝜽∆𝜽 (1) 

The static equilibrium equation, being defined on the bending pole surface, between resultant 

force vector 𝑭T and moment 𝑵T at mid-grip point and the joint torque vector τ can be written 

in the following form as: 

 

𝝉 = 𝑱T𝑭T + [

𝑬
𝑬
⋮
𝑬

]𝑵T (2) 

where 𝑱 is the Jacobi matrix consisting of the outer product matrices of position vectors pointing 

to the middle grip from the virtual joint centres. As no moment acts on the plug, an equilibrium 

equation with respect to 𝑭T and 𝑵T can be expressed as:  

 𝒓plug,GC × 𝑭T + 𝑵T = 0 (3) 

where 𝒓plug,GC is the position vector pointing to the middle grip from the plug. Combining eqs. 

(1), (2) and (3), one can derive an equation solving the resultant force vector 𝑭T with use of a 
pseudo inverse matrix as: 

 𝑭T = (𝑩T𝑩)−1𝑩T𝑲𝜃∆𝜽 (4) 

 𝑩 = [0 0 1]

[
 
 
 
 
 
[𝒓1,GC ×]

⋮
[𝒓𝑖,GC ×]

⋮
[𝒓𝑛𝑗,GC ×]]

 
 
 
 
 

−

[
 
 
 
 
1
⋮
1
⋮
1]
 
 
 
 

[0 0 1][𝒓plug,GC ×] (5) 

Since the vector 𝑭T was constrained on the bending pole plane, the rank of the pseudo matrix 
𝑩 was 2. Thus, the inverse matrix of the matrix 𝑩 was calculated using a singular value 

decomposition. Then, the vector 𝑵T was calculated from the 𝑭T by using eq.(3).  
 
RESULTS AND DISCUSSION: Figure 2 shows schematic representations of the estimated 
mid-grip force and moment exerted by Vaulter 2. The length of the linear arrows and radius of 
the round arrows denote the magnitudes of the mid-grip force and moment vectors, 
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respectively. The direction of the mid-grip force changed from forward to downward. The mid-
grip moment was exerted about the normal axis of the Y-Z plane from just after takeoff (0% 
normalized time). The mid-grip moment about the normal axis of the X-Z plane increased as 
the pole rotated in the counter-clockwise direction. 
Figure 3 shows the force-time history curves of the vertical component of the mid-grip force 
vector for all participants. Every vaulter exerted a downward force on the ground, whose 
maximum values were between -660 N and -765 N at the instant of the maximum bending of 
the pole. 
Figure 4 shows the moment-time history curves of the estimated moments in the pole bending 
plane. The mid-grip moment values at 0% normalized time were between -230 Nm and -385 
Nm, and the maximum values in magnitude were between -384 Nm and -490 Nm.  
 
 

(a). Stick figure representation of pole vaulting 
 

(b). Stick figures of the estimated mid-grip forces and moments on the Y-Z plane 
 

(c). Stick figures of the estimated mid-grip forces and moments on the X-Z plane 
Figure 2: Schematic representations of the estimated mid-grip forces and moments 

(Vaulter 2), where X-, Y- and Z-axis respectively denote transverse, horizontal 
approach and vertical directions. 
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Figure 3: Force-time curves of the vertical component of the estimated mid-grip 
force vector. 

 

Figure 4: Moment-time curves of the estimated mid-grip moment exerted in the pole 
bending plane. 

 
The ground reaction forces obtained from the estimated mid-grip forces were similar to those 
reported by Morlier and Mesnard (2007), which utilized a whole-body inverse dynamics 
approach, around the instant of the maximum pole bending. The reported range of ground 
reaction forces were between 600 and 850 N around the instant. Both hands and a pole create 
a mechanical closed loop system. One cannot decompose the mid-grip forces or moments 
exerted along the pole into individual forces and moments exerted for each hand. Hence, 
reported forces and moments for the mid-grip position do not reflect the stress at each hand. 
 
CONCLUSION: A method for estimating the resultant mid-grip forces and moments from the 
shape of the deformed pole was presented. This method can be conducted without a force 
platform and inverse dynamics calculations for the whole body. However, the estimated forces 
and moments should be verified by using a force platform or force sensors in future studies.  
 
REFERENCES: 
Angulo-Kinzler, R. M., Kinzler, S. B., Balius, X., Turro, C., Caubet, J. M., & Escoda, J. (1994). 

Biomechanical analysis of the pole vault event. Journal of Applied Biomechanics, 10, 147–
165. 
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