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The purpose of this study was to compare step-by-step kinematics of normal and assisted 
60 m sprints with different loads in experienced sprinters. Step-by-step kinematics were 
measured using inertial measurement units  integrated with a 3-axis gyroscope and a 
laser gun in eleven participants during a normal 60 m sprint and sprints with a 3, 4, or 5kg 
pulling force. The main findings were that using increased assisted loads resulted in 
faster 60 m times, which was a result of a higher step velocity caused mainly by longer 

step lengths. In terms of practical application, it is notable that employing this approach, 
when using a 5 kg assisted load can help athletes reach higher step velocities and 
maintain these velocities longer, which could be a training impulse to move the speed 
barrier upwards. 
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INTRODUCTION: In many sports, sprint ability is highly important. There are different 
training methods used to enhance sprint performance. One of these methods is assisted 
running (Mero & Komi, 1985; van den Tillaar & Gamble, 2018). Assisted sprints are used to 
overcome the speed barrier, which is defined as the maximal running velocity that an athlete 
could reach. Different ways are used to create this assisted condition like downhill running 
(Paradisis & Cooke, 2001), running behind a car, or by using a pulley system (Kristensen et 
al., 2006; Majdell & Alexander, 1991). Some pulley systems, like elastic bands or be pulled 
by a partner (Mero & Komi, 1985), are not easy to control and are therefore, not easy to 
standardize the pulling force for research purposes. 
Only a few studies have investigated the kinematics during assisted sprints (Kristensen et al., 
2006; Mero & Komi, 1985; van den Tillaar & Gamble, 2018; van den Tillaar & Von Heimburg, 
2017). In assisted runs, higher step velocities were found, which were caused by a longer 
step length and shorter contact times (van den Tillaar & Gamble, 2017, 2018; van den Tillaar 
& Von Heimburg, 2017), whereas Mero and Komi (1985) found a higher stride rate when 
performing assisted sprints.  
However, van den Tillaar and colleagues (2017, 2018) have only investigated the effect of 
assisted sprints upon kinematics for the first 20-30m, while Mero and Komi (1985) has 
investigated kinematics during 10 m between 35 and 45 m. Moreover, these studies 
compared only one assisted sprint condition with the normal sprint. Furthermore, none of 
these studies investigated the whole development of kinematics from start to maximal 
velocity and the acute effect of assisted runs with different loads. 
Therefore, the aim of the study was to investigate the effect of different assisted sprint loads 
upon step-by-step kinematics during a 60 m sprint in experienced sprinters. It was 
hypothesised that step velocity increases with increased assisted sprint loads and that this 
increase in step velocity causes a higher maximal velocity. This higher maximal velocity 
would be the result of longer step length and shorter contact times and higher step rate as 
found in earlier studies (Mero & Komi, 1985; van den Tillaar & Gamble, 2017, 2018).  
 
METHODS: Eleven male (age 22.3±5.8 years, 74.8 ± 7.6 kg, 1.82 ± 0.08 m) experienced 
sprinters with 100m personal best ranging from 10.27-11.30 were recruited for the study. 
After a warm-up, all participants performed one normal 60m sprint followed by one 60 m 
sprint with 3, 4, or 5 kg pulling force employed by dynaSpeed (Ergotest Technology AS, 
Langesund, Norway). Thus, in total four sprints. Sprint times were measured with two pairs of 
wireless photocells (Brower Timing Systems, Draper, USA). Participants initiated each sprint 
from a standing start in a split stance with the lead foot behind a line taped on the floor 0.3 m 
from the first pair of photocells. Speed measurements were recorded continuously during 
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each attempt using a laser gun (CMP3 Distance Sensor, Noptel Oy, Oulu,Finland) sampling 
at 2.56 KHz and re-sampled at a rate of 10 Hz with a moving average of 100 msec to 
calculate step velocity. Contact and flight times throughout the run were derived from using 
wireless 9 degrees of freedom inertial measurement units (IMU) integrated with a 3-axis 
gyroscope. Sampling rate of the gyroscope was 200Hz with maximal measuring range of 
2000 deg/s±3% attached to the dorsal side of each foot (Ergotest Technology AS, 
Langesund, Norway). Foot contact and flight time were recognized by the pattern that the 
angular velocity of plantar flexion/extension of both feet showed, which was determined in an 
unpublished pilot study that compared contact and flight time data measured with infrared 
contact mat over 30 m (Ergotest Technology AS, Langesund, Norway) with the patterns of 
the angular velocity of plantar flexion/extension (ICC=0.94). This made it possible to measure 
contact and flight time directly with the IMU per step, while step frequency and step length 
were calculated for each step by the formulas: Step frequency = 1 / (contact time + flight 
time) Step length = velocity * (contact time + flight time). All recordings were synchronised 
with the Musclelab 10.57 (Ergotest Technology AS, Langesund, Norway). 
To compare the step-by-step kinematics of the three conditions a two-way ANOVA 
(condition, 30 steps) for each kinematic variable was use. When significant differences were 
observed, post hoc comparison with least mean difference were performed for pairwise 
comparison. The level of significance was set at p<0.05 and all data are expressed as mean 
± SD. Statistical analysis was performed using SPSS 24.0 for windows (SPSS, inc., Chicago, 
IL). Reliability of the sprint times and kinematics was tested by intraclass correlation 
coefficient (ICC) based on Cronbach’s alpha of the electronic timing was 0.94, while the ICCs 
of the measured kinematics were varying from 0.87 (step length) to 0.97 (contact times) 
measured in a previous study of van den Tillaar and von Heimburg (2017). 
 
RESULTS: The 3 kg (6.94 ± 0.27 s), 4 kg (6.82 ± 0.26 s) and 5 kg assisted 60 m times (6.74 
± .26 s) were on average 1.9, 3.6 and 4.8 % significantly faster in comparison to the normal 
sprints (7.08 ± 0.26 s). Step velocity was also significantly different between the four 
conditions. Furthermore, an interaction in step velocity was found. Post hoc comparison 
showed that step velocity increased each step and that maximal velocity was reached at step 
21: 39 m (normal sprint) or 22: 42.2-43.3 m (assisted sprint conditions). Velocity decreased 
again from step 23 for the normal and 3 kg assisted sprints. With the 4 kg assisted sprints, 
velocity decreased starting at step 25 and no significant step velocity decrease was observed 
within the 5 kg assisted sprints (Fig. 1). Significant differences between conditions in step 
velocity started from step 4. 

4

5

6

7

8

9

10

11

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

S
p

ri
n

t 
v
e

lo
c

it
y
 (

m
/s

)

*
*
*

*

normal 3kg assisted 4kg assisted 5kg assisted

Steps  
Figure 1. Average step velocity, (± SD) over all participants for the normal and 3, 4 and 5kg 
assisted 60m sprints. * indicates a significant difference in step velocity with the all other 

sprints. ʘ indicates step at which maximal velocity was reached for each condition. 

Only a significant effect of condition was found for step length, which was significantly shorter 
in the normal 60 m sprints compared to the assisted sprints. Furthermore, step length was 
also shorter with the 3 kg load compared with the 5 kg assisted sprint (Fig. 2). Contact time 
did not change per condition significantly (p = 0.06). No significant effect of condition was 
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found for flight time (p = 0.73) or step frequency (p = 0.63). All variables had a significant 
step effect (p < 0.001). Post hoc comparison showed that step frequency only increased from 
step 1 to 6 and then decreased again the last two steps, while contact and flight times 
respectively decreased and increased until step 17. Step length increased from step to step 
until it reached maximum at step 20 (Fig. 2). 
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Figure 2. Average step frequency and length, flight and contact time (± SD) over all participants 

for the normal and 3, 4 and 5kg assisted 60m sprints. * indicates a significant difference with 
the normal sprints. † indicates a significant difference in step length between 3 and 5kg 

condition.  → indicates a significant difference from this step to all right of the arrow. 

 
DISCUSSION: The main findings in this study were that using increased assisted loads 
resulted in faster 60 m times, which was a result of a higher step velocity mainly caused by 
longer step lengths, which was measured during the entire 60 m. Sprint times were only 1.9, 
3.6 and 4.8 % faster, which were lower than reported in earlier studies: 6%  (van den Tillaar 
& Gamble, 2017) and 8.5% (Mero & Komi, 1985). These differences can be explained by the 
fact that van den Tillaar and Gamble (2017) used a higher pulling load (85 N) and that Mero 
and Komi (1985) only measured 10 m time (35 to 45 m). When comparing data from 35 to 45 
m during the normal runs of the present study, step length (2.17 vs. 2.17 m), frequency (4.44 
vs. 4.46 Hz) and velocity (9.55 vs. 9.65 m/s) were similar with those of Mero and Komi (1985) 
who used comparable athletes. The increases in velocity over this distance when pulled with 
5 kg were now 6%, which is much more similar to what Mero and Komi (1985) reported. 
The faster 60 m times when assisted were caused by reaching a higher maximal step 
velocity and holding this maximal step velocity longer as indicated by the velocity plateau in 
the 5 kg assisted sprint from step 22 and onwards, while in the normal and 3 kg assisted 
sprints, step velocity started to decrease again from step 23 and onwards (Fig. 1). It is 
interesting to see that the maximal step velocity was reached at almost the same step (step 
21-22) for each condition that assistance with these loads did not influence time of 
occurrence of maximal performance. This maximal step velocity was caused by decreased 
contact time, increased flight time and step length, which reached their maximal value at 
steps 17 and 20. It indicates that assisted sprints can help to increase maximal step velocity, 
but not the time of occurrence of it. The cause of it could be that the athletes were simply not 
able to increase limb velocity more to the degree required to achieve shorted contact times 
and longer steps, and that the pulling force is compensated by a greater braking force 
occurring at each step under the assisted sprint condition. At around this point (step 22), the 
added propulsion provided by the machine is in balance with the braking force during 
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touchdown caused by putting the foot more in front of the centre of mass. Whilst the 
kinematics of lower limb joints and limb segments were not investigated in the present study, 
Mero and Komi (1985) previously reported this at touchdown by altered shank (lower leg) 
and knee joint angles during assisted sprinting in comparison to normal sprints 
Differences in step velocity with the normal condition occurred after step 3, which was similar 
to earlier studies (van den Tillaar & Gamble, 2017, 2018; van den Tillaar & Von Heimburg, 
2017). This was mainly caused by the difference in development of the step length between 
the two conditions. This is in accordance with the ‘first transition’ during the acceleration 
phase when sprinting (Nagahara et al., 2014).  
A potential limitation of the study was that we used men of varying performance level and 
experience with assisted sprints, which could cause possible differences in the kinematics. 
Perhaps with greater exposure to the assisted sprint condition, athletes may learn to make 
the necessary adjustments to allow them to increase step frequency alongside the increases 
in step length. Some athletes did not have experience with the assisted sprint and perhaps a 
training period of several weeks could change the kinematic pattern positively by increasing 
step frequency as Kristensen et al. (2006) showed after 6 weeks of assisted training. In 
future studies, kinetic and kinematic analysis of the different body segments during the 
sprints should be included to get a better understanding of the effects of assisted sprint 
conditions with different loads on the step kinematics. In addition, more subjects from the 
same or higher level should be included before making statements about the effects of these 
conditions on different athlete populations.  

CONCLUSION: Based upon the findings of the present study, we can conclude that the 
different assisted sprint loads mainly affected increased step length, which resulted in faster 
runs. In terms of practical application, it is notable that employing this approach, when using 
5 kg assisted load can help athletes reach higher step velocities and maintain these 
velocities longer, which could be a training impulse to move the speed barrier upwards.  
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