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Sample entropy can sensitively identify changes in biological signal regularity. The aim of
this study was to investigate whether sample entropy could detect such change in 
human movement which may be attributable to fatigue or other factors. The regularity of 
kettlebell trajectories from simulated kettlebell sport competition performed by five 
experienced lifters was assessed using a novel moving window technique. Resultant 
entropy estimate trajectories indicate sensitivity to changes in regularity. Decrements in 
grip strength indicate this may be attributable to fatigue though other possibilities exist. 
The ability to easily model the resultant entropy trajectories is also demonstrated. The 
technique holds potential for use by practitioners though more work is required before 
implementation.
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INTRODUCTION: Sample entropy, or SampEn(m,r,N), is a statistical method for quantifying 
the regularity of a signal (Lake, Richman, Griffin, & Moorman, 2002). The technique 
measures the probability that a data window of m points, that is repeated in a signal of length 
N points, within a tolerance r, will also repeat for a window of m+1 points within the tolerance 
r. Sample entropy has been used to distinguish between higher and lower skilled athletes 
(Preatoni, Ferrario, Dona, Hamill, & Rodano, 2010) and observed and surrogate data 
(Taylor, 2017). Another use has been to identify the onset of illness in infants by assessing
regularity changes to heart sinus rhythm (Lake et al., 2002). This ability to sensitively identify 
critical change in biological signals may have application within the monitoring of human 
movement. 
Like pathology, fatigue can alter the output of the human system. This may manifest as 
changes to the regularity of observed kinetic and/or kinematic signals. Entropy may therefore 
provide a tool for detecting fatigue, or fatigue induced changes, in such measures. Kettlebell 
sport requires participants to perform as many valid repetitions as possible of a kettlebell 
snatch within 10 minutes (Ross, Wilson, Keogh, Ho, & Lorenzen, 2015). The cyclical motion 
of the kettlebell and the strength endurance nature of the task offer a potentially fruitful 
avenue for assessing the ability of entropy to identify possible fatigue related changes in 
regularity. Therefore, the purpose of this investigation is to ascertain whether sample entropy 
can identify changes in regularity in the trajectory of a kettlebell, which may be related to 
fatigue, during simulated kettlebell sport competition.

METHODS: Five skilled male kettlebell sport athletes (1.82 ± 0.07 m, 90.3 ± 11.3 kg, 33.4 ± 
7 yrs) participated in this study. The task involved a six minute bout of simulated kettlebell 
sport competition where participants attempted to perform as many repetitions of the 
kettlebell snatch as possible within the time limit. One change of hand was allowed at 
approximately the halfway point consistent with kettlebell sport rules. A retro-reflective 
marker was place on the front of the kettlebell approximating the centre of mass of the 
kettlebell. Three dimensional kinematics of the bell were collected using a nine camera 
Vicon motion analysis system (Oxford Metrics, Oxford, UK) capturing at 250 Hz. Cumulative 
force applied to the kettlebell across the first and last 14 lift cycles was calculated using 
inverse dynamics and compared with paired sample T-tests to identify potential effects of 
fatigue. Similarly grip strength was measured pre- and post-test and also submitted to 
dependant T-tests. Relevant effect sizes (Cohen’s d) were also calculated. This study was 
approved by the Australian Catholic University Human Research Ethics Committee.
Vertical (z-axis) kettlebell displacement was extracted from the kinematic data. Following 
frequency and residual analysis the displacement data was filtered using a 4th order 
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Butterworth low pass filter (6 Hz cut off). Data up to and including the first repetition post 
hand swap were removed leaving approximately the last three minutes of repetitions. This 
was done to isolate the data most likely affected by any accumulated central and peripheral 
fatigue. 
To attempt to characterise change in regularity over the exercise bout sample entropy was
calculated for a moving window of 10 cycles. This began with the first 10 cycles, ended with 
the last 10 and covered every sequence of 10 consecutive cycles in between. Windows of 
lengths 20, 15 and 5 were also tested but a window length of 10 cycles was found to provide 
the best balance between the length (too short in the 20 cycle condition) and smoothness 
(too noisy in the 5 cycle condition) of the resultant entropy trajectories. Sample entropy 
estimates are reliant on the critical values (m,r,N). The length N is set by the period and 
number of the cycles analysed. The results from several values for m (2 and 3) and r (0.1, 
0.2 and 0.3 multiplied by the SD of the signal) were evaluated using the data of one 
participant and values of m=2 and r=0.1*SD were chosen as they resulted in the most 
sensitive/discriminative entropy estimate. During analysis it appeared there was a 
relationship between the change of cycle period and the resultant entropy estimate. As the 
period alters the value of N for each given window of 10 cycles, each participant’s data were 
interpolated to 1000 points using a Fast Fourier transformation and resultant moving window 
sample entropy trajectories compared with the unaltered data qualitatively using plots and 
quantitatively with a Pearson’s correlation. This was done to ensure that entropy estimates 
were the result of more than just changes in the period length of consecutive cycles.
Once the entropy estimate trajectories were ascertained for each participant regression was 
undertaken to see if the resultant curves could be easily modelled. First, second and third 
degree polynomials as well as one and two term power curves were fitted to each 
participant’s results with the aim of finding the simplest model to return acceptable goodness
of fit.

RESULTS: Differences between cumulative kettlebell force applied during the first and last 
14 cycles were non-significant (p > 0.67) with very small effects (d
decreased pre- to post-test for both left and right hands (8.2 ± 3.7 kg and 6.6 ± 6.7kg 
decrements respectively). This decrease was significant for the left hand (p < 0.01) and 
approached significance for the right hand (p = 0.09). There was a large effect size for the 
decrease in both the left and right hand (d = 1.2 and d = 1.3 respectively). An example of the 
vertical trajectory of the kettlebell and overlaid kettlebell cycles can be seen in Figure 1.

Figure 1. All relevant cycles for one participant represented consecutively (a) and overlaid (b)

Plots of the moving window entropy estimate trajectories of observed data and interpolated 
data indicated that the shape of the trajectory was relatively consistent between the two 
conditions. The difference between the two was predominantly represented by a magnitude 
shift. The direction of this shift depended on whether 1000 points was greater (shift down) or 
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less (shift higher) than the mean number of points making up the observed cycles. An 
example of this can be seen in Figure 2. Correlation between the two entropy trajectories 
were all significant (p < 0.01) and strong (r2

good fit (p < 0.01) for four of five participants and mean goodness of fit of r2 = 0.60 (range
0.07 – 0.84).

Figure 2. Comparison between entropy estimate (a) and cycle lengths (b). Comparison 
between entropy estimate of observed and interpolated data (c)

Quadratic regression yielded significant models (p < 0.01) for all participants with a mean 
goodness of fit of r2 = 0.90 (range 0.83 – 0.98). Higher order polynomial regression resulted 
in diminishing returns for goodness of fit alongside increased model complexity. As such 
they were not pursued further or included in results. Similarly, power regression (mean r2 =
0.51 – 0.78) did not perform better than quadratic fits. The resultant moving window entropy 
trajectories for each participant and respective quadratic model fit can be seen in Figure 3.

Figure 3. Moving window entropy estimate for participants 1 – 5 (L to R) and relevant model fit

DISCUSSION: The aim of this study was to begin investigating whether sample entropy 
could detect changes in the regularity of human movement time series which may be 
attributable to fatigue. Sample entropy was calculated for a moving window of 10 cycles 
across the last 3 minutes of 6 minute muscular endurance task. Resulting sample entropy 
trajectories indicate that the entropy estimates for most participants did undergo a noticeable 
change in trajectory around the last 25 – 50% of performance time (Figure 3). The 
decrements in grip strength across participants pre- to post-test suggest fatigue was 
experienced by the lifters. It is possible therefore that the changes in kettlebell displacement 
regularity characterised by the inflection in the moving window entropy trajectories are the 
result of fatigue. 
There was initial concern in making this observation due to an apparent relationship between 
cycle period and entropy estimate (Figure 1). However, the highly similar shape of entropy
estimate trajectories for both the observed and interpolated (standardised period) data as 
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well as correlation results suggest that this may not be the sole reason for regularity 
changes. Furthermore, the other kinematic trajectories (x and y axes) indicated no similar 
relationship. As the vertical displacement of the kettlebell is the primary movement outcome 
of this sport (a repetition is only counted once the kettlebell is ‘locked out’ overhead) it can 
be expected that variability is low for this trajectory. Movement outcomes and mechanically 
important facets of skills consistently display reduced variability compared to other aspects 
of movement (Taylor, 2017). Furthermore, the vertical amplitude of the kettlebell is 
constrained somewhat by anatomical ranges of motion, both at the highest point and during 
the cycle completion/initiation as the kettlebell passes through the legs. This constraint may 
leave period modulation as the primary means of any change to the regularity of cycles over 
time. Magnitudes of the entropy estimates indicate kettlebell trajectories are highly 
consistent (sample entropy estimates range between 0 and 1 where 0 is complete 
regularity). However, the plots in Figure 1 illustrate that despite this, variations in the cycle 
curves exist which are not limited to changes in period. 
It appears though that even when regularity changes are small moving window entropy 
estimates can detect them. Whether this can be confidently attributable to fatigue will require 
further work. Other potential sources of regularity alteration may lie in changes in the effort of 
the lifters as they approach the end of the bout (e.g. a ‘sprint’ finish). Even if this is the case 
it appears the entropy estimates are sensitive enough to identify this change within a highly 
regular movement time series. Further trialling of the technique is required in settings where 
the onset or existence of fatigue can be well documented. Furthermore, activities where the 
period of the cycles are more constrained, such as cycling and multi-crew rowing, as well as 
application to joint or segment kinematic data and kinetic data may prove more informative. 
Another potential benefit of the technique may lie in the ease with which it can be accurately 
modelled. For all participants a parabola was able to be fitted to the moving window entropy 
trajectory with strong goodness of fit. This raises the possibility of being able to predict future 
outcomes or to identify when elements such as training or tactical adaptation result in a 
change to the expected entropy trajectory. While the quadratic regression provided a strong 
fit a relatively clear inflection point in the data existed for most participants (Figure 3). The 
moving window entropy trajectories may therefore also be modelled well by two linear 
regressions, one for data up to the inflection and one for after it. Data departure from one 
regression to the next may better isolate the onset of any changes in regularity. If related to 
fatigue, this inflection point may also offer a focus for training, where the goal could be to 
shift it right, similar to some physiological variables such as anaerobic threshold.

CONCLUSION: This study demonstrated that it may be possible to employ sample entropy 
to effectively and sensitively identify changes in the regularity of human movement. These 
changes in regularity may be attributable to fatigue or other factors which are otherwise not 
easily identifiable. The sensitivity of the measure, the ease of modelling and the existence of 
inflection in the moving window entropy trajectory provide possibilities for athlete monitoring, 
performance analysis and planning as well as training feedback. Further work is required 
though to fully understand the strengths, weaknesses, intricacies and scope of the method.
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