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COGNITIVE SCIENCE & NEUROSCIENCE | RESEARCH ARTICLE

Sustained, not habituated, activity in the human 
amygdala: A pilot fMRI dot-probe study of 
attentional bias to fearful faces
Millicent A. Weber1, Kelly A. Morrow1, Will S. Rizer1, Keara J. Kangas1 and Joshua M. Carlson1*

Abstract: The human amygdala consciously and nonconsciously processes facial 
expressions and directs spatial attention to them. Research has shown that amyg-
dala activity habituates after repeated exposure to emotionally salient stimuli 
during passive viewing tasks. However, it is unclear to what extent the amygdala 
habituates during biologically relevant amygdala-mediated behaviors, such as the 
orienting of attention to environmentally salient social signals. The present study 
investigated amygdala habituation during a dot-probe task measuring attentional 
bias to backward masked fearful faces. The results suggest that across the duration 
of the 50 min (1,098 trial) task both attentional bias behavior and amygdala activ-
ity were sustained—rather than habituated. Thus, these initial findings indicate that 
when biologically relevant behavior is sustained, so too is amygdala activation.

Subjects: Neuroscience; Psychological Science; Attention; Emotion; Cognition & Emotion; 
Cognitive Neuroscience; Social Neuroscience

Keywords: amygdala; habituation; backward masking; attention bias; fear

The amygdala is located bilaterally within the anterior temporal lobe and is critically involved in various 
aspects of emotional and social processing (Adolphs, 2010). From early research, it has been shown 
that stimulation of the amygdala leads to unprovoked fear and/or aggression (Shealy & Peele, 1957). 
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Damage to the human amygdala impairs the recognition of fearful facial expressions (Adolphs, Tranel, 
Damasio, & Damasio, 1994; Adolphs et al., 1999), learning new fear associations (LaBar, LeDoux, 
Spencer, & Phelps, 1995), the experience of fear (Feinstein, Adolphs, Damasio, & Tranel, 2011), and the 
preferential processing of threatening environmental stimuli (Anderson & Phelps, 2001; Bach, 
Hurlemann, & Dolan, 2014; Vuilleumier, Richardson, Armony, Driver, & Dolan, 2004). Functional neuro-
imaging research indicates that the amygdala is reactive to fearful faces when processed at a con-
scious level (Breiter et al., 1996; Morris et al., 1996), and also when conscious awareness has been 
restricted by backward masking (Liddell et al., 2005; Morris, Öhman, & Dolan, 1998; Whalen et al., 1998; 
Williams et al., 2005), binocular rivalry (Williams, Morris, McGlone, Abbott, & Mattingley, 2004), and 
continuous flash suppression (Jiang & He, 2006) as well as in cases of cortical blindness (Morris, 
DeGelder, Weiskrantz, & Dolan, 2001; Morris, Ohman, & Dolan, 1999). One behavior that nonconscious 
amygdala activity has been linked to is the direction of spatial attention toward signals of environmen-
tal threat (Carlson, Reinke, & Habib, 2009). In particular, the amygdala appears to code for both the 
salience and spatial location of a stimulus (Peck, Lau, & Salzman, 2013). Through projections to visual 
cortex (Adolphs, 2004; Vuilleumier et al., 2004) and the prefrontal cortex (Amaral & Price, 1984; Carlson, 
Cha, Harmon-Jones, Mujica-Parodi, & Hajcak, 2014; Carlson, Cha, & Mujica-Parodi, 2013) the amygdala 
mediates the preferential processing of environmental threat.

Habituation is an adaptive decrease in responsivity to conserve computational resources after 
repeated stimulus exposure(s) (Plichta et al., 2014). Although the amygdala responds to both con-
sciously and nonconsciously viewed fearful faces, this response has been found to rapidly habituate 
during passive viewing conditions (Breiter et al., 1996; Whalen et al., 1998). On the other hand, dur-
ing emotional decision-making (Tabert et al., 2001) as well as periods of uncertainty (Herry et al., 
2007), amygdala remains activated. Thus, the amygdala rapidly and nonconsciously responds to 
environmental signals of threat and if the salience of these signals decreases, the amygdala re-
sponse habituates.

As previously mentioned, a critical component of the amygdala response to threat is facilitated 
attentional processing at the location of potential threat (Carlson et al., 2009, 2013; Monk et al., 
2008). However, the length of time for which this effect persists is unknown. Previous studies have 
shown that attentional bias to threat is sustained across two testing blocks (96 trials/block) in indi-
viduals prone to elevated attentional bias (Lonsdorf, Juth, Rohde, Schalling, & Öhman, 2014) and is 
sustained across two testing blocks (48 trials/block) when accompanied by unpredictable aversive 
sounds (Herry et al., 2007). Thus, attention bias behavior—and underlying amygdala activity—appear 
to persist or habituate slowly. Yet, the duration of time for which this sustained response persists is 
not well understood. Here, we used data from an existing study (Carlson et al., 2009), which meas-
ured attentional bias behavior and amygdala activity across 1,098 trials over a 50 min timespan, to 
test the degree to which behavioral and amygdala responses were habituated or sustained over an 
extended time-period. Given that amygdala activity appears to underlie attentional bias behavior, we 
hypothesized that the amygdala would remain active—provided attentional bias behavior was  
observed. However, the precise duration of these two effects has yet to be determined.

1. Methods

1.1. Participants
Seven male and five female, right-handed individuals, aged 18–35 participated in the study. 
Individuals were screened for prescription and recreational drug use, neurological and psychological 
histories, and for irremovable metal pieces prior to the study. Participants were given monetary 
compensation for participating in the study. All subjects gave informed consent and were treated in 
accordance to the guidelines of the Institutional Review Board of Southern Illinois University 
Carbondale. Due to a technical problem, one participant’s functional magnetic resonance imaging 
(fMRI) data was lost and therefore unavailable for fMRI analyses. MRI data from this sample has 
been previously reported (Carlson et al., 2009, 2012; Carlson, Reinke, LaMontagne, & Habib, 2011); 
however, all analyses included here are new.
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1.2. Dot-probe task
Participants performed a dot-probe task, while event-related fMRI data was acquired. Each trial 
consisted of a fixation cue appearing for 1,000 ms, followed by two faces presented simultaneously 
for 33 ms to the left and right of the central fixation cue, and then immediately followed by the 
neutral face mask for 100 ms. A target dot appeared for 750 ms, behind either the right or left face. 
A randomized jittered inter-trial interval (ITI; 500–2,000 ms) concluded each trial. Subjects respond-
ed to the location of the dot using an MRI-compatible response pad. The right index finger was used 
to respond to left visual field (LVF) targets and the right middle finger was used for right visual field 
(RVF) targets (see Carlson et al., 2009 for more details).

Trials consisted of directed and undirected attention trials. Directed attention trials displayed two 
faces, one neutral and one fearful. Half of the directed attention trials were incongruent (target dot 
appeared opposite of the fearful face), and the other half of the trials were congruent (target dot 
appeared on same side as the fearful face). Faster reaction times on congruent compared to incon-
gruent trials measure an automatic directing of attention to the fearful face. Half of the directed 
attention trials (≈549) contained a LVF fearful face and the other half contained a RVF fearful face. 
Undirected attention trials (≈549) showed faces of the same expression (i.e. fearful–fearful & neu-
tral–neutral) and were considered to be independent of attentional bias because neither face de-
manded more attention than the other. The task was divided into 10 five-minute runs. Each run 
contained 162–170 trials (depending on the randomized jittered ITIs selected in a given run), which 
resulted in approximately 1,647 total trials across LVF, RVF, and undirected attention conditions.

1.3. Functional MRI data acquisition and analysis
A 1.5T Phillips whole body scanner and head coil were used to collect T2* weighted EPI scans with 
the following parameters: TR = 2500 ms, TE = 50 ms, flip angle = 90°, matrix dimensions = 64 × 64, 
slices = 26, slice thickness = 5.5 mm, and gap = 0. Preprocessing included: image realignment cor-
rections for head movement, slice timing corrections, normalization to standard 2 mm × 2 mm × 2 mm 
Montreal Neurological Institute space, and spatial smoothing with a Gaussian full-width-at-half-
maximum 10 mm filter.

Given that only LVF directed attention trials were shown to produce behavioral and amygdala ef-
fects in our previous analysis of this data (Carlson et al., 2009)1, we restricted our new habituation 
analyses to LVF directed attention (≈549 trials), as well as fearful–fearful and neutral–neutral undi-
rected attention (≈549 trials), trial-types (total trials used ≈1098). In SPM8, using a general linear 
model, first-level parameter maps were created for each condition across the 10 runs. A full factorial 
second-level model was created with trial-type (LVF, fearful–fearful, and neutral–neutral) and run 
(1–10) as within subjects factors. Left and right amygdala masks were created using the Masks for 
Regions of Interest Analysis software (Walter et al., 2003) and a search volume family-wise error 
(FWE) corrected (p < 0.05 with a 20 voxel extent threshold) region of interest (ROI) analysis was 
performed to look at common activity across all trial-types. Using this analysis of common activity, 
we reduced the likelihood of biasing isolated amygdala activity to any one of three trial-types. To 
test for habituation, temporal-gradients were generated for the right and left amygdala by extract-
ing the first eigenvariate of each region for each condition and then analyzed in SPSS using a linear 
trend analysis.

2. Results

2.1. Behavioral habituation analysis
A 2 (LVF2 congruency: congruent vs. incongruent) × 10 (Run: 1–10) trend analysis for repeated meas-
ures was used to test for behavioral habituation of the congruency reaction time (RT) effect (i.e. 
congruent RT < incongruent RT). As can be seen in Figure 1, the interaction between congruency and 
run was not significant, F(1, 9) = 0.162, p = 0.697, ηp

2 = 0.018, suggesting that at a behavioral level 
attentional bias to masked fearful faces was sustained over the 10 runs in this experiment.
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2.2. Amygdala ROI habituation analysis
As displayed in Figure 2, the task elicited bilateral amygdala activity, Left: t(10) = 9.38, PFWE < 0.05, 
k = 210, −32, −2, −12; Right: t(10) = 8.81, PFWE < 0.05, k = 145, 28, 2, −16. Data were extracted from 
these clusters and a 2 (Hemisphere: left vs. right) × 3 (Condition: LVF directed attention vs. fearful–
fearful vs. neutral–neutral × 10 (Run: 1–10) trend analysis for repeated measures was used to test for 
left and right amygdala habituation for each of the three conditions. There was no evidence of over-
all amygdala habituation across runs, F(1, 9) = 0.036, p = 0.854, ηp

2 = 0.004. Furthermore, the amyg-
dala did not habituate as a function of the following potential interactions: Hemisphere × Run  
F(1, 9) = 2.904, p = 0.123, ηp

2 = 0.244, Condition × Run F(1, 9) = 0.173, p = 0.687, ηp
2 = 0.019, or 

Hemisphere × Condition × Run F(1, 9) = 0.159, p = 0.699, ηp
2 = 0.017. In short, all linear contrasts 

were not significant—suggesting that neither the left nor right amygdala habituated over time. In 
contrast, significant Hemisphere × Run interactions were observed for eighth order (F(1, 9) = 9.22, 

Figure 2. The backward masked 
fearful face dot-probe task 
of attentional bias elicited 
bilateral amygdala activity.

Notes: Extracted data from 
the left and right amygdala 
were subjected to linear 
trend analysis to test for 
habituation (i.e. a negative 
slope). However, as can be 
seen above, even though 
amygdala activity fluctuated 
throughout the task, there 
was no pattern of habituation. 
Although fluctuating in nature, 
amygdala activation remained 
sustained above baseline. 
Interpolation lines have been 
added to emphasize the non-
linear pattern of amygdala 
activity across time.
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p = 0.01, ηp
2 = 0.51) and ninth-order (F(1, 9) = 11.65, p = 0.008, ηp

2 = 0.56) effects. Follow-up analyses 
indicate that the left amygdala displays an oscillatory pattern of the ninth order (F(1, 9) = 13.19, 
p = 0.005, ηp

2 = 0.59), while the right amygdala displays an oscillatory pattern of the eighth order,  
F(1, 9) = 5.74, p = 0.04, ηp

2 = 0.39. Thus, in contrast to a negative linear trend—indicative of habitua-
tion—amygdala activity oscillates in a non-linear nature over the extended 10 run scanning session.

3. Discussion
In this pilot study, we utilized an existing data-set (Carlson et al., 2009) where attentional bias be-
havior and amygdala activity were measured over an extended period of time to assess the degree 
to which these measures habituate during this prolonged timespan. At the behavioral level, there 
was a clear capture of attention by masked fearful faces—faster responses on congruent relative to 
incongruent trials—which was maintained from start-to-finish in a dot-probe task. Similarly, at the 
neural level, task-related amygdala activity oscillated throughout the 1,098 trial attention task and 
remained sustained relative baseline. Thus, our preliminary findings suggest that behavioral and 
neural measures of attentional bias to fearful faces do not habituate, but remain sustained, for at 
least 50 min (1,098 trials).

The current results add to previous literature indicating that threatening or emotionally salient 
stimuli capture observers’ attention. This capture of attention by emotionally significant stimuli oc-
curs both when the emotional stimulus is processed consciously and nonconsciously (Armony & 
Dolan, 2002; Beaver, Mogg, & Bradley, 2005; Blanchette, 2006; Carlson & Mujica-Parodi, 2015; Carlson 
& Reinke, 2008; Carlson et al., 2009; Cooper & Langton, 2006; Fox, 2002; Koster, Crombez, Verschuere, 
& De Houwer, 2004; Mogg & Bradley, 1999, 2002; Öhman, Flykt, & Esteves, 2001; Pourtois, Grandjean, 
Sander, & Vuilleumier, 2004). Several studies have previously examined habituation of attentional 
bias at the behavioral level. Generally, these studies indicate sustained attentional bias behavior that 
does not rapidly habituate (Herry et al., 2007; Lonsdorf et al., 2014), although not all studies have 
reported this pattern (Cohen, Eckhardt, & Schagat, 1998). Our behavioral results extend this under-
standing and demonstrate that even after 1,098 trials attention bias behavior persists for backward 
masked fearful faces in the dot-probe task. Furthermore, a relatively recent finding shows that at-
tentional bias can be conceptualized both in terms of a stable trait-like bias as well as a dynamic 
state-like bias, which alternates between momentary biases toward and away from threat (Iacoviello 
et al., 2014; Naim et al., 2015). The fluctuation in dynamic state-like biases has been termed “atten-
tion bias variability,” which is essentially calculated as the standard deviation of congruent—incon-
gruent reaction time differences throughout the dot-probe task. Our finding of sustained attentional 
bias (across 10 five minutes runs) suggests that although there may be moment-to-moment varia-
bility in attentional bias, a strong bias towards threat is present and sustained for at least 50 min 
(1,098 trials).

As mentioned in the introduction, the amygdala has been found to respond to a variety of threat-
ening, or salience-related stimuli, despite whether these stimuli are processed consciously (Breiter et 
al., 1996; Morris et al., 1996) and nonconsciously (Liddell et al., 2005; Morris et al., 1998; Whalen et al., 
1998; Williams et al., 2005). Early work using passive viewing of emotional facial expressions in block 
designs found that—under these circumstances—the amygdala activates to salient environmental 
stimuli, but this response rapidly habituates (Breiter et al., 1996; Whalen et al., 1998). Other passive 
viewing studies of fear learning have reported similar effects using both block (Tabert et al., 2001) and 
randomized event-related designs (Greenberg, Carlson, Cha, Hajcak, & Mujica-Parodi, 2013) leading 
to the general acceptance of the idea that the amygdala habituates to signals of threat. However, our 
results add to other research indicating that—for some behaviors—the amygdala remains active 
over an extended period of time (Herry et al., 2007; Tabert et al., 2001). Indeed, our findings indicate 
that amygdala activity was sustained over 1,098 trials in a 50 min time period during which atten-
tional behavior was also sustained in the dot-probe task. Other reports of sustained amygdala activity 
have also been accompanied by sustained behavioral engagement including attentional bias under 
conditions of uncertainty (Herry et al., 2007) and emotional decision-making (Tabert et al., 2001). 
Thus, it appears that in circumstances where emotional information processing aids or modulates 
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cognitive processing the amygdala remains active—presumably contributing to this cognitive bias. 
The available evidence suggests that this is at least true for emotion-related influences on decision-
making and attention allocation. On the other hand, a dip in amygdala activity from run one to run 
two was observed. Studies not collecting additional data/runs may mistake this temporary dip in 
amygdala activity—which appears to be part of an oscillatory pattern (see Figure 2)—as habituation. 
Furthermore, given that we used a randomized event-related design, which results in uncertainty 
regarding the onset and nature of a given trial, it could be argued that this element of uncertainty is 
driving the observed sustained amygdala activation observed in our experiment. However, previous 
reports have found habituated amygdala activation in event-related designs (Greenberg et al., 2013) 
and sustained activation in block designs (Tabert et al., 2001) and therefore, the event-related nature 
of our design does not seem to be a sufficient factor in eliciting sustained amygdala activation. 
Although the current study assessed amygdala habituation to fearful faces, the amygdala appears to 
be more generally involved in processing abstract dimensions of a stimulus such as its salience, am-
biguity, unpredictability, and general biological importance (Cunningham & Brosch, 2012; Pessoa, 
2010; Pessoa & Adolphs, 2010). Additional research is needed to fully understand all the circum-
stances and stimuli for which the amygdala habituates or, on the other hand, remains active.

All studies inherently have their strengths and weaknesses. Our pilot study had a relatively small 
sample size, compromising the detection of small effects. Although, this limitation was, at least 
partially, overcome by using a data-set in which amygdala activity was known to be present (Carlson 
et al., 2009), these preliminary findings need to be replicated using a larger sample. Another limita-
tion of our pilot study is the sole comparison of fearful to neutral facial expressions. Future research 
including different categories of emotional stimuli is needed to determine whether the effects ob-
served here are specific to threat (fearful faces) or more generally observed for emotional or sali-
ence-related stimuli. The primary strength of our study was the extended length of time (50 min) 
and number of trials (549/condition) utilized in our task, which is considerably longer than the typical 
fMRI experiment (15 ± 5 min, 30–40 trials/condition)3. This strength allowed us the ability to test 
amygdala habituation over an extended time-period. In sum, although not without limitation, the 
current results provide preliminary evidence that attentional bias behavior and amygdala activity 
are sustained during the dot-probe task when using fearful faces.
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3. This experiment contained 6,039 trials per condition 
(549 trials per condition per participant × 11 partici-
pants). A large number of trials per participant increases 
the reliability (i.e. decreases the statistical error) of each 
measure. Given this increased precision, the need for a 
larger sample is reduced. Using the standard 40 trials 
per condition per participant, it would take approximate-
ly 150 participants to obtain the same number of trials 
per condition used in the current study. Thus, although 
the number of participants used in the current study 
was relatively small, the total number of amygdala data 
points per condition was very large.
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