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Abstract Ventral striatal activation measured with func-

tional magnetic resonance imaging (fMRI) and feedback

negativity amplitude measured with event-related poten-

tials (ERPs) are each enhanced during reward processing.

Recent research has found that these two neural measures

of reward processing are also related to one another, such

that increases in ventral striatal activity are accompanied

by increases in the amplitude of the feedback negativity.

Although there is a long history of research implicating the

midbrain dopamine system in reward processing, there has

been little research into the possibility that structural var-

iability in the midbrain may be linked to functional vari-

ability in reward reactivity. Here, we used structural MRI

to measure midbrain volumes in addition to fMRI and ERP

measures of functional neural reactivity to rewards in a

simple gambling task. The results suggest that as midbrain

volumes increase, fMRI reward reactivity in the ventral

striatum and medial prefrontal cortex also increases. A

similar relationship exists between midbrain structure and

the amplitude of the feedback negativity; further, this

relationship is mediated specifically by activity in the

ventral striatum. These data demonstrate convergence

between neuroanatomical, hemodynamic, and electro-

physiological measures. Thus, structural variability in the

midbrain relates to variability in fMRI and ERP measures

of functional reward reactivity, which may play a critical

role in reward-related psychopathologies and the treatment

of these disorders.

Keywords Reward � Striatum � Volume � Morphology �
Feedback negativity � VBM

Introduction

The ability to crave, seek, detect, obtain, and enjoy

resources or actions that benefit an organism’s survival is

an essential aspect of motivated drive states. A long history

of neuroscience research in animals has implicated the

dopaminergic projections from the midbrain to the ventral

striatum (VS) in reward processing (Olds and Milner 1954;

Wise 1996). In human functional magnetic resonance

imaging (fMRI) studies the VS activates in response to a

number rewarding stimuli such as drugs (Breiter et al.

1997; Drevets et al. 2001), erotic images (Walter et al.

2008; Sabatinelli et al. 2007), pleasant tastes (O’Doherty

et al. 2002), attractive faces (Senior 2003), monetary

rewards (Knutson and Bossaerts 2007), and favorable

social interactions (Zink et al. 2008). Additional evidence

using event-related potentials (ERPs) has identified the

‘‘feedback negativity’’ (FN; 300 ms) as an evoked potential

that is sensitive to rewarding versus non-rewarding stimuli

(Gehring and Willoughby 2002; Miltner et al. 1997; Hol-

royd et al. 2008; Foti et al. 2011). The amplitude of the FN

is thought to track the relative valence of outcomes
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(Holroyd et al. 2006, 2004). Recent research has explored

the relationship between fMRI and EEG measures of

reward anticipation (Plichta et al. 2013) and reward feed-

back (Carlson et al. 2011). In particular, research by our

group demonstrates that increased VS activity is linked to

increased FN amplitude (Carlson et al. 2011).

Ventral Striatal activity (Wise 1996) and FN amplitude

(Holroyd and Coles 2002) are both thought to be influenced

by the dopaminergic midbrain. Yet, the extent to which

structural variability in midbrain morphology relates to vari-

ability in these measures of neural reactivity remains

unknown. The importance of establishing the relationship

between brain structure and reward reactivity is highlighted

by research linking blunted reward processing to depressive

symptoms. Indeed, both blunted VS activity (Epstein et al.

2006; Fitzgerald et al. 2008; Pizzagalli et al. 2009) and FN

amplitude (Foti and Hajcak 2009) to rewards have been

linked to heightened levels of depression. In addition,

research suggests that a blunted FN amplitude is associated

with depression as early as late childhood (Bress et al. 2012,

2013b) and a blunted FN prospectively predicts the onset of a

major depressive episode (Bress et al. 2013a). The symptom

of anhedonia in particular has been linked to blunted VS

reward reactivity (Keedwell et al. 2005; Wacker et al. 2009)

and deep brain stimulation of the VS attenuates the symptoms

of anhedonia in depressed individuals (Schlaepfer et al. 2008).

It is possible that these individual differences in reward

reactivity may be driven in part by structural differences in

midbrain morphology. Thus, given the importance of reward

processing in normative adaptive behavior and depressive

behavior, it is essential to understand the structure–function

relationship of reward processing in the brain.

The focus of the current study was to link functional

measures of reward processing as measured by fMRI and

ERP (i.e., VS activation and FN amplitude, respectively) to

underlying variability in neural structure within the dopami-

nergic midbrain as measured by structural MRI. Participants

completed a gambling task, which contained equal numbers

of trials containing monetary wins and losses in both fMRI

and ERP environments (Foti and Hajcak 2009; Hajcak et al.

2006). Given the longstanding association between midbrain-

regulated dopaminergic neurotransmission and reward pro-

cessing, we predicted that the magnitude of reward-related

reactivity in the VS and FN across individuals would posi-

tively correlate with variability in midbrain volume.

Methods

Participants

The same sample of 45 (Male = 27) consenting adults

between the ages of 19 and 25 (M = 21.11, SD = 1.27)

that participated in our previously published study (Carlson

et al. 2011) assessing correlations between fMRI and ERP

measures was also used for the current manuscript. Par-

ticipants were screened for metal and were monetarily

compensated for their time. The Institutional Review Board

of Stony Brook University approved this study.

Gambling task

The details of the experimental task as well as the fMRI

and EEG preprocessing and analysis procedures have

previously been described in detail (Carlson et al. 2011).

Functional MRI and EEG data were collected in separate

counterbalanced sessions, while participants performed a

simple gambling task. Briefly, trials began with a white

fixation cue presented in the center of a black screen. After

which, a screen displayed two doors side-by-side and

participants were instructed to choose a door. Behind one

of the doors there was a monetary prize (?$0.50), while

behind the other door there was a loss (-$0.25). After

another brief fixation cue, a feedback screen was displayed

where a green ‘:’ indicated a win, and a red ‘;’ indicated a

loss. The task consisted of 60 trials with 30 predetermined

wins and losses presented in a pseudorandom order.

EEG and fMRI measures

Win[ Loss VS activity and FN amplitude data were used

in a previous report (Carlson et al. 2011). Here, we utilized

the same extracted BOLD data from the left and right VS

as well as the medial prefrontal cortex (mPFC; left hemi-

sphere maxima extending bilaterally). In addition,

Win[ Loss ERP activity corresponding to the FN was

extracted using temporal-spatial principal components

analysis (FNPCA). The details regarding these measures can

be obtained in our earlier report (Carlson et al. 2011). As

previously reported, the FNPCA correlated with the VS

(left: r = 0.28, p\ 0.05 and right: r = 0.52, p\ 0.001)

and mPFC (r = 0.26, p\ 0.05) as well as other reward-

related regions (Carlson et al. 2011).

Structural image acquisition and analysis

A 3 Tesla Siemens Trio whole body scanner was used to

acquire T1 images with the following parameters:

TR = 1,900 ms, TE = 2.53, flip angle = 9�, FOV = 176

9 250 9 250 mm, matrix = 176 9 256 9 256, and voxel

size = 1 9 0.98 9 0.98 mm.

We used voxel-based morphology (VBM) as an auto-

mated user-independent voxel-wise measurement of the

associations between regional brain volumes and individ-

ual differences in reward reactivity. The VBM approach

has been extensively cross-validated with manual

1862 Brain Struct Funct (2015) 220:1861–1866

123



volumetric analysis (Woermann et al. 1999). The technique

derives volume measurements from transformation of

individual structural MR volume images into a common

stereotactic space, which allows the testing of differences

in sub-volumes of distinct brain regions using general

linear model statistics. The VBM methodology used in this

report is similar to the procedures described previously

(Ashburner and Friston 2000). First, we manually adjusted

volume brain images to a common orientation (origin at the

anterior commissure) before all images were pre-processed

using standard VBM procedures in SPM8 (http://www.fil.

ion.ucl.ac.uk/spm). We visually examined the T1-weighted

MPRAGE images for artifacts and structural abnormalities.

We then segmented these images into gray matter, white

matter and cerebrospinal fluid, after which they were again

visually inspected. Gray and white matter images were

normalized to standard gray matter templates in SPM8

(Ashburner and Friston 2000). Lastly, tissue probability

maps were obtained by averaging across participant data,

using an 8-mm FWHM Gaussian smoothing kernel. Mea-

sures of total gray matter volume were obtained from

summed global signal of segmented images of gray matter.

In our earlier study, right ventral striatal activation was

both the global maxima from the fMRI analysis and the

best predictor of FN amplitude (Carlson et al. 2011).

Therefore, participant’s extracted right ventral striatal

BOLD activity was used as a predictor variable with gray

matter volume as the dependent variable using multiple

regression within SPM8. We specifically tested whether or

not increased gray matter volume would correlate with

greater BOLD activity. Age and whole-brain gray matter

volume were included as covariates to control for their

potentially confounding effects on regional gray matter (Ge

et al. 2002). An initial whole-brain threshold was set to

Psingle-tailed\ 0.001 and a whole-brain cluster-level family-

wise error correction (FWE) was applied. Follow-up partial

correlations (controlling for age and whole-brain gray

matter) were performed on gray matter volume extracted

from a region in the midbrain identified in the SPM8

regression.

Results

As can be seen in Fig. 1, a cluster of voxels extending

bilaterally within the midbrain of the brainstem, which

appears to encompass portions of the periaqueductal gray

and ventral tegmental area, correlated with participant’s

right ventral striatal BOLD activity, k = 165, peak voxel at

-4, -28, -16; t38 = 5.05, PFWE-corrected\ 0.05. No other

regions correlated with right ventral striatal BOLD activity.

We then performed additional partial correlations (con-

trolling for age and whole-brain gray matter) on gray matter

values extracted from the midbrain cluster identified in the

SPM analyses. These follow-up analyses indicate that the

association between gray matter volume and BOLD activity

is present for both the left (r = 0.32, Pone-tailed = 0.02) and

the right (r = 0.59, Pone-tailed = 0.00003) ventral striatum

as well as the mPFC (r = 0.38, Pone-tailed = 0.007). In

addition, midbrain gray matter volume correlated with

Fig. 1 Results of a whole-brain analysis reveal a cluster of voxels

correlating with right ventral striatal activation to monetary rewards

relative to losses within the midbrain which appears to encompass

portions of the periaqueductal gray and ventral tegmental area (left).

Scatterplot of extracted midbrain gray matter volume and functional

win[ loss reactivity from fMRI task indicates that for both the left

and right ventral striatum as midbrain volume increases, ventral

striatal activation increases (right). These correlations remain signif-

icant when potential outliers with the highest ventral striatal BOLD

reactivity are excluded (left r = 0.27, p\ 0.05 and right r = 0.58,

p\ 0.001)
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FNPCA amplitude, r = 0.30, Pone-tailed = 0.03 (partial cor-

relation controlling for age and whole-brain gray matter).

Given that FNPCA amplitude has been linked to under-

lying VS and mPFC activation (Carlson et al. 2011), we

then ran a mediation analysis to test whether the associa-

tion between FNPCA amplitude and midbrain gray matter

was accounted for by functional activation in the right VS

and mPFC. Controlling for age and whole-brain gray

matter, midbrain gray matter significantly predicted func-

tional right VS activation (b = 0.73, Pone-tailed = 0.00003).

When both midbrain gray matter and functional VS acti-

vation were added as simultaneous predictors of FNPCA

amplitude, right VS activation continued to predict FNPCA

amplitude (b = 0.62, Pone-tailed = 0.0003), but midbrain

gray matter did not (b = -0.08, Pone-tailed = 0.34). The

Sobel test revealed that this mediation effect was statisti-

cally significant (z = 2.91, Pone-tailed = 0.002), indicating

that the association between midbrain gray matter and

FNPCA amplitude was fully mediated by functional VS

activation.

By contrast, mPFC activation did not mediate the rela-

tionship between midbrain gray matter and FNPCA ampli-

tude. Controlling for age and whole-brain gray matter,

midbrain gray matter significantly predicted functional

mPFC activation (b = 0.48, Pone-tailed = 0.007). When

both midbrain gray matter and functional mPFC activation

were added as simultaneous predictors of FN amplitude,

however, neither association was significant (midbrain:

b = 0.28, Pone-tailed = 0.09; mPFC: b = 0.17, Pone-

tailed = 0.16); the Sobel test yielded no significant effect of

mediation (z = 0.95, Pone-tailed = 0.17).

Discussion

We found that as midbrain volumes increased, fMRI

reward reactivity in the VS and mPFC also increased. In

addition, increases in midbrain volume were associated

with an increased FN amplitude to reward. The association

between midbrain volume and FN amplitude was mediated

by VS reward reactivity. On the other hand, the relation-

ship between midbrain volume and FN amplitude was not

mediated by mPFC reward reactivity.

Gray matter volume is thought to represent the density

of neuronal and glial cell bodies in addition to the number

of dendritic branches and short range axons (Zatorre et al.

2012). Therefore, gray matter volume can be thought as a

measure of local network integrity. Although the exact

functional significance of this local network integrity

remains unclear, presumably greater integrity in dopamine-

producing neurons in the midbrain should coincide with

greater dopamine production and availability in target

regions such as the VS and mPFC. It has been proposed

that dysfunction specifically in the midbrain-VS circuit

may be a primary etiological factor in depression (Nestler

and Carlezon 2006; Russo and Nestler 2013). Indeed,

recent animal data indicate that phasic dysregulation of

midbrain neurons projecting to the VS—but not the

mPFC—mediates depressive behavior under conditions of

environmental stress (Chaudhury et al. 2013). In humans,

depression is associated with lower midbrain volumes (Lee

et al. 2011). Based on the present data, this structural

abnormality in the midbrain may relate to functional

abnormalities in depression—particularly blunted VS

reactivity (Keedwell et al. 2005; Wacker et al. 2009) and

FN amplitude (Bress et al. 2013a, b, 2012; Foti et al. 2011)

to reward. Similarly, blunted VS activity to reward in other

patient populations such as attention deficit hyperactivity

disorder (Plichta and Scheres 2013) may also be linked to

lower midbrain volumes. On the other end of the spectrum,

greater midbrain volume may be related to over activation

of the VS-mPFC reward circuit and the corresponding

hypersensitivity to reward observed in pathological gam-

blers. Pathological gamblers have been shown to have

increased midbrain activity to near miss losses in a slot

machine gambling task and activation of the midbrain in

these individuals correlates with activity in the VS (Habib

and Dixon 2010). Based on the current results, we would

expect this hypersensitivity to reward to be driven by

enlarged midbrain volumes. Future research should test this

possibility directly by examining changes in the structure–

function relationship of reward processing within various

patient populations along the reward sensitivity spectrum.

It should be noted that it is unclear from the current results

as to whether lower midbrain volumes are a risk factor for

blunted reward or rather a consequence of this behavior. The

predominant theory for reduced gray matter volumes in

depression claims that such reductions are linked to stress-

mediated cell death by glucocorticoids (Woolley et al. 1990;

Sheline et al. 2002). Although this mechanism has particu-

larly been linked to reduced hippocampal and medial pre-

frontal cortical volumes (Bora et al. 2012; Kempton et al.

2011), it could also explain reduced midbrain gray matter in

those with blunted reactivity to reward. On the other hand,

decreased reactivity to reward may, over time, result in lower

levels of gray matter within the dopaminergic midbrain dif-

fuse modulatory centers. That is, it is unclear within our

sample as to whether reduced gray matter within the midbrain

is the cause or the effect of blunted reward reactivity. In either

case, midbrain gray volumes are closely linked to current

levels of reward reactivity.

Recent research has shown that learning a new skill or

training results in neuroplasticity, which is observable in

the MRI signal (Zatorre et al. 2012). It has recently been

suggested that tracking gray matter changes related to

treatments of anxiety disorders such as attention bias

1864 Brain Struct Funct (2015) 220:1861–1866
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modification may be useful in assessing the efficacy of

such treatments (Carlson et al. 2013). That is, the relative

success of treatment in reducing one’s attentional bias to

threat and level of anxiety should correspond to the degree

of structural change within a particular brain network (i.e.,

the amygdala—anterior cingulate network for attention

bias (Carlson et al. 2012, 2013). Similarly, given the

association between functional reward reactivity and mid-

brain gray matter volume observed here and the link

between functional reward reactivity and symptoms of

anhedonia (Keedwell et al. 2005; Wacker et al. 2009), the

efficacy of treatments aimed at alleviating this symptom

may be linked to structural changes within the midbrain as

well as functional measures of reward reactivity. Future

research should assess the extent to which successful

treatment results in structural changes within the midbrain

and the degree to which these potential changes are

reflected in functional measures such as the FN. If struc-

tural change is predictive of treatment outcome and can be

tracked through the FN, this would allow for easier

implementation of tracking treatment status through phys-

iological measures as EEG is considerably less expensive

than MRI.

In sum, variability in midbrain gray matter volume

accounts for variability in VS reactivity and FN amplitude

to rewards. Structural abnormalities in the midbrain may

underlie reward-related psychopathologies and the treat-

ment of these disorders.
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