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Background: High sensation-seekers (HSS) pursue novelty even at the cost of self-harm. When challenged, HSS
are less anxious, show blunted physiological (cortisol, startle) and neurobiological (prefrontal-limbic) responses,
and devalue aversive outcomes. Here, we investigate how these features interact under conditions of physical
danger, in distinguishing between adaptive and maladaptive approaches to risk.
Methods:We recruited a cohort of individuals who voluntarily sought out recreational exposure to physical risk,
and obtained serial cortisol values over two time-locked days. On the ‘baseline’ day, we scanned subjects' brains
with functional and structural MRI; on the ‘skydiving day,’ subjects completed a first-time tandem skydive. Dur-
ing neuroimaging, subjects viewed cues that predicted aversive noise; neural data were analyzed for prefrontal-
limbic reactivity (activation) and regulation (non-linear complexity), aswell as cortical thickness. To probe threat
perception, subjects identified aggression for ambiguous faces morphed between neutral and angry poles.
Results: Individuals with prefrontal-limbic meso-circuits with less balanced regulation between excitatory
and inhibitory components showed both diminished cortisol/anxiety responses to their skydives, as well as
less accurate perceptual recognition of threat. This impaired control was localized to the inferior frontal gyrus,
with associated cortical thinning. Structural equation modeling suggests that sensation-seeking is primarily
mediated via threat-perception, which itself is primarily mediated via neural reactivity and regulation.
Conclusions: Our results refine the sensation-seeking construct to provide important distinctions (brain-based,
but with endocrine and cognitive consequences) between the brave, who feel fear but nonetheless overcome
it, and the reckless, who fail to recognize danger. This distinction has important real-world implications, as
those who fail to recognize risk are less likely to mitigate it.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

For any organism, novelty provides both potential benefits aswell as
potential costs: an animal that ventures out of known territorymay find
a new source of food, yet it may also expose itself to predation. As such,
evolutionary selectionmay have favored a spectrum of novelty-seeking
behavior within a species, as different circumstances make different
attitudes towards risk more or less adaptive.

‘Sensation-seeking,’ in humans, is a personality construct character-
ized by the pursuit of novelty, even at the risk of increased social,
financial, or physical harm (Zuckerman, 1994). High sensation-seekers

(HSSs) have received clinical attention because they are more likely
than low sensation-seekers (LSSs) to engage in personally and socially
destructive behavior such as drug abuse (Dennhardt and Murphy,
2013; Ersche et al., 2013; Marvel and Hartmann, 1986; Zuckerman,
1986), gambling (Estevez et al., 2013; Harris et al., 2013; Stanton
et al., 2001), and promiscuity (Newcomb et al., 2011; Stanton et al.,
2001). However novelty seeking, as a character trait, may also be
disproportionately represented among populations (e.g., emergency
room physicians, surgeons (Hojat and Zuckerman, 2008), firemen
(Levenson, 1990), bomb squad technicians) that our society tends to
view as altruistic, and even heroic. Here, we hypothesize that individ-
uals who pursue a dangerous activity with full awareness of its risks
(‘the brave’), versus those who pursue the same activity blind to its
risks (‘the reckless’), are not simply two sides of the same coin, culturally
distinguished post hoc simply by virtue of whether their impact is
ultimately pro or anti-social. Rather, they represent qualitatively
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heterogeneous approaches to risk, which are neurobiologically, physio-
logically, and cognitively distinct.

Human and animal studies have established that threat assessment
is regulated by a control circuit, with the amygdala and prefrontal
regions providing dominant excitatory and inhibitory components,
respectively (Phelps and LeDoux, 2005). From a control systems per-
spective, a healthy prefrontal-limbic circuit should be sufficiently flexi-
ble to respond to environmental threat, yet sufficiently constrained to
efficiently return to baseline following perturbation. Because flexibility
and constraint of the circuit affect the dynamics of the hemodynamic
time-series, characterization of these dynamics can be used to quantify
circuit-wide regulation. Theoretical work by ourselves (Rădulescu and
Mujica-Parodi, 2014) and others (for review, see (Bullmore et al.,
2009; Gisiger, 2001; He et al., 2010)) demonstrate that when control
systems are optimized for both responsiveness and homeostasis, signal
outputs are self-similar or fractal, with time-series that follow a power
law for both excitatory and inhibitory nodes, balanced at a critical
point between order and complexity (see Methods section). As circuits
become increasingly dysregulated, signal complexity for affected nodes
deviates from that critical point (Rădulescu and Mujica-Parodi,
2014), as observed in trait anxiety (Tolkunov et al., 2010), schizo-
phrenia (Radulescu et al., 2012), autism (Lai et al., 2010), epilepsy
(Daneshyari and Kamkar, 2010), and aging (Suckling et al., 2008).
Different brain states (He, 2011) and disorders may each reflect dis-
tinct regulatory circuit dynamics. However, the unique signature for
each brain state and disorder derives from the specific circuit, feed-
back function (e.g., positive versus negative, strength, lag), and
node affected, as well as whether deviation from the critical point
shifts towards greater or lesser complexity (Rădulescu and Mujica-
Parodi, 2014).

This studywas designed to testwhether one hallmark feature ofHSS—
reduced response to threat (De Pascalis et al., 2007; Joseph et al., 2009;
Kruschwitz et al., 2012)—is predicted by prefrontal-limbic dysregulation,
via its effect on threat perception.We recruited a cohort of first-time tan-
dem skydivers—individuals who all willingly chose recreational exposure
to physical risk. The study consisted of two testing days (‘baseline’ and
‘skydive’), between 7 and 14 days apart, and time-locked to control for
diurnal variability. On the baseline day, we obtained functional and
structural MRI as well as personality measures. On the skydiving day,
the subject jumped from 4 km (13,000 ft). On both testing days, subjects
provided serial endocrine (cortisol, epinephrine, beta endorphin, testos-
terone) measurements and self-reported levels of state anxiety and
euphoria. Neuroimaging data were analyzed for prefrontal-limbic reac-
tivity (fMRI activation in anticipation of aversive bursts of loud white
noise) and system-wide regulation (power spectrum scale invariance, a
measure of signal complexity), as well as cortical thickness. We
measured threat perception using a separate signal-detection task, in
which subjects were asked to identify affect-valence for ambiguous
faces morphed by degrees between neutral and angry expressions.
Structural equation modeling mapped the relationship between
sensation-seeking and neural, endocrine, and cognitive measures.

Methods

Participants

The Institutional Review Board at Stony Brook University
approved this study; all participants provided informed consent.
Thirty (12 female) healthy adults between the ages of 18 and 48
(M = 24.69 ± 7.27) participated in the primary study; an additional
N = 22 (2 female) healthy adults between the ages of 18 and 46
(M = 22.45 ± 7.48) participated in a pilot fMRI-skydiving study report-
ed in Appendix A. Participants were recruited from individuals who
contacted Skydive Long Island (Calverton, NY) to schedule their first-
time skydives. Potential participants were screened for drug usage,
neurological/psychiatric histories, and MR exclusion criteria. Participants

provided information regarding age, gender, height andweight, andfilled
out questionnaires designed tomeasure differentmeasures of personality
related to risk aversion. These questionnaires included the NEO Personal-
ity Inventory (PAR, Lutz FL), Perceived Stress Scale (Cohen et al., 1983),
Attitudes Towards Risk Questionnaire (Franken et al., 1992), State-Trait
Anxiety Inventory (STAI: Mind Garden, Menlo Park, CA), and the
Sensation-Seeking Scale (Zuckerman and Link, 1968). For the primary
study, trait anxiety scores ranged from 20 to 53 (M = 33.07 ± 7.11)
while sensation-seeking scores ranged from 16 to 35 (M = 24.85 ±
4.68); and detailed subject information for the pilot study is provided in
Appendix A.

fMRI task

Pilot testing, in an independent sample of N= 22 first-time tandem
skydivers, established that fear peaked in anticipation of—rather than in
response to—the jump, and that cortisol response to that anticipatory
period correlated with amygdala activation in response to fearful faces
(see Appendix A). Therefore, for this study we used a neuroimaging
task previously shown to elicit subjective threat anticipation, with asso-
ciated activation of the amygdala and insula (Carlson et al., 2011). The
Anticipation of Aversive Events Task consisted of a 20 trial block design,
in which each trial consisted of a 1000 ms cue (red X for ‘aversive,’
blue O for ‘benign’), followed first by a 16 s countdown, and then by a
1000 ms auditory stimulus. Aversive cues predicted a burst of 100 dB
white noise, while benign cues predicted a burst of 55 dB white noise.
Inter-trial intervals were jittered between 4000 and 8000 ms, during
which time subjects viewed a white fixation cross on a black screen.
Total task time was 8 min.

MRI acquisition and analysis

Subjects were scanned on 3 T Siemens Trio (N = 18) or Philips
(N = 12) MRI scanners at the Stony Brook University SCAN Center
using 12-channel SENSE parallel head coils (post-hoc analyses, the re-
sults of which are provided in Appendix A, show that the use of two
scanners did not significantly impact our results). Data were acquired
using 232 T2*-weighted echo planar single-shot images covering the
whole brain with the following parameters: TR = 2500 ms, SENSE
factor = 2, TE = 22 ms, Flip angle = 83°, Matrix dimensions = 96 ×
96, FOV = 224 × 224 mm, Slices = 36, Slice thickness = 3.5 mm,
Gap = 0. Standard pre-processing procedures were performed using
the Statistical ParameterMapping software (SPM5), including image re-
alignment corrections for headmovements, slice-timing corrections for
order of slice acquisition, normalization to standard 2 × 2 × 2 mmMNI
space, and spatial smoothingwith a Gaussian FWHM6mm filter. Using
the general linear model in SPM5, first-level single-subject statistical
maps were created from contrasts (17 s anticipatory cue block that
combined 1 s cue plus 16 s countdown, for aversive versus benign con-
ditions) and auditory events (0 s, for aversive versus benign conditions).
At the second-level, cortisol reactivity values for each of the three time-
periods were included as regressors of interest.

To quantify circuit-wide regulation via the degree of complexity in
the signal, we calculated its power spectrum scale invariance (PSSI)
using parameters that we previously optimized for fMRI time-series
(Rubin et al., 2013). Outputs that are self-similar or fractal have frequency
spectra S( f), which follow a power law: S(f)∝ f−β, with the critical point
between order and complexity defined by β = 1 (pink noise) (Gisiger,
2001). Shifts towards greater chaos or greater persistence are defined
as towards β = 0 (white noise) or β = 2 (brown noise) respectively.
Using modeling and simulations of a prefrontal-limbic meso-circuit,
we previously have shown that control systemswith balanced excitato-
ry and inhibitory components produce outputs with PSSI closer to pink
noise, whereas control systems with less effective inhibitory feedback
produce PSSI closer to white noise (Rădulescu and Mujica-Parodi,
2014).

2 L.R. Mujica-Parodi et al. / NeuroImage 103 (2014) 1–9



For PSSI analyses, we used the full 232-point pre-processed time
series, which included all conditions. For each voxel, we calculated the
power spectral density as the squares of the Fourier transformation am-
plitudes of the linearly detrended time series. From the power spectral
density we computed the scaling parameter β by plotting the power
spectrum on a log–log scale and estimating the slope by applying a
linear fit to the data in the 0.06–0.2 Hz range (Tolkunov et al., 2010).
The scaling parameter β was then averaged for each of the limbic
regions of interest (ROI; bilateral amygdala, insula, anterior cingulate,
hippocampus, superior frontal gyrus and inferior frontal gyrus) defined
anatomically using the Wake Forest University Pick-Atlas (Maldjian
et al., 2003). In order to test the robustness of the ROI results, we also
conducted unbiased voxel-wise statistics and calculated PSSI using a dif-
ferent frequency range, 0.01–0.1 Hz, used in the scale-free fMRI litera-
ture (He, 2011; He et al., 2010). For both analyses, we performed
regressions, taking individual PSSI images as a dependent variable,
and the cortisol reactivity to skydive as an independent variable
in SPM. The confirmatory voxel-wise analysis was done in SPM and
corrected for multiple comparisons using a cluster-extent correction
method (AFNI 3dClustSim) at ROI-corrected p (alpha) b 0.05. This
yielded ROI-specific minimum cluster sizes at p threshold of .05
(Monte-Carlo simulation = 10,000 iterations: minimum cluster size
for the amygdala = 155.8; hippocampus = 195.6; insula = 134.2; an-
terior cingulate cortex= 310.2; superior frontal gyrus= 210.3; inferior
frontal gyrus = 222.3).

Cortical thickness analysis

T1-weighted structural magnetic resonance imaging in the same 3 T
scanner was collected on the control day. We performed cortical recon-
struction and volumetric segmentation with the Freesurfer image anal-
ysis suite (http://surfer.nmr.mgh.harvard.edu/). The technical details of
these procedures are described in prior publications (Dale et al., 1999;
Desikan et al., 2006; Fischl and Dale, 2000; Fischl et al., 1999, 2002).
Briefly, image processing includes motion correction and averaging of
multiple volumetric T1 weighted images, removal of non-brain tissue
using a hybrid watershed/surface deformation procedure, automated
Talairach transformation, segmentation of the subcortical white matter
and deep gray matter volumetric structures, intensity normalization,
tessellation of the gray matter white–matter boundary, automated
topology correction, and surface deformation following intensity gradi-
ents to optimally place the gray/white and gray/cerebrospinal fluid
borders at the location where the greatest shift in intensity defines the
transition to the other tissue. Once the cortical models were complete,
a number of deformable procedures were performed for further data
processing and analysis including surface inflation, registration to a
spherical atlas which utilized individual cortical folding patterns to
match cortical geometry across subjects, parcellation of the cerebral
cortex into units based on gyral and sulcal structures, and creation of
surface based data including maps of curvature and sulcal depth. This
method uses both intensity and continuity information from the entire
three dimensional MR volume in segmentation and deformation proce-
dures to produce representations of cortical thickness, calculated as the
closest distance from the gray/white boundary to the gray/cerebral
spinal fluid (CSF) boundary at each vertex on the tessellated surface.
Themaps are created using spatial intensity gradients across tissue clas-
ses and are therefore not simply reliant on absolute signal intensity. The
maps produced are not restricted to the voxel resolution of the original
data and are thus capable of detecting submillimeter differences be-
tween groups. Procedures for the measurement of cortical thickness
have been validated against histological analysis (Rosas et al., 2002)
and manual measurements (Kuperberg et al., 2003; Salat et al., 2004).
Freesurfer morphometric procedures have been demonstrated to
show good test–retest reliability across scanner manufacturers (Han
et al., 2006; Reuter et al., 2012). Following these procedures, we derived
mean thickness of the inferior frontal gyrus (IFG) in each individual.

We performed a bivariate correlation analysis between the thickness
and the PSSI values of the IFG, controlling for the effects of age, gender,
and intracranial volume (Ge et al., 2002; Tisserand et al., 2004;Welborn
et al., 2009).

Challenge and endocrine sampling

The entire protocol took place over two separate highly con-
trolled time-locked days, between 7 and 14 days apart (counter-bal-
anced for order). On each day participants awoke at 6:30 am and ate
a standardized breakfast at 8:00 am, after which they were not per-
mitted to eat, drink (other than water), or to participate in physical
exercise until the completion of cortisol acquisition. Participants
provided ten 6 cm3 saliva samples via the passive drool method. Sa-
liva collection began at 9:15 am and subsequently occurred in se-
quential 15 minute intervals between 9:30 am and noon. Subjects
boarded the plane at 10:15 am, ascended to an altitude of 4 km
(13,000 ft.) over 15 min, and jumped at 10:30 am. All subjects
were in free-fall for one full minute, under the canopy for 4 min,
and landed at 10:35 am. Samples were frozen at −20 °F and subse-
quently assayed via radioimmunoassay with a Coat-A-Count Cortisol
Kit (Siemens Medical Solutions Diagnostics, Los Angeles, CA). Corti-
sol time-courses were individually baseline-corrected for diurnal
variability using cortisol values sampled following an identical
(time-locked) protocol to the skydiving day, but without the skydive.
Self-report values of state anxiety (Spielberger State-Trait Anxiety
Scales; Mind Garden, Menlo Park, CA) and euphoria/pleasurable excite-
ment (see Appendix A) were obtained at six time points (9:00 am,
10:25 am, 10:45 am, 11:15 am, 1:00 pm, and 3:30 pm) on both days.
Plasma levels, assayed for epinephrine, β-endorphins, and testosterone,
were collected four times: during the baseline day at 9:15 am, andduring
the skydive day at 9:15 am, immediately upon landing, and 1 h after
landing.

Behavioral testing of threat perception

On the fifteen-minute plane ride leading up to the jump, subjects
completed our Ambiguous Threat Detection Task, which we have previ-
ously shown to be responsive to stress (DeDora et al., 2011). TheAmbig-
uous Threat Detection Task was designed to quantify the amount of
signal/noise required for decision-making, dissociating perceptual and
cognitive components. Threemale faces, taken from the Ekman Pictures
of Facial Affect, were morphed between neutral (0% angry) and angry
(100% angry) poles, ranging from20–80% angry over 10% intervals. Sub-
jects were presented with a series of images, and instructed to indicate
whether each face was ‘neutral’ or ‘aggressive’ as quickly as possible
without sacrificing accuracy. Each morphed face was perceptually
occluded with a filter of 15% Gaussian white noise (Photoshop CS 2
Version 9.02, Adobe Inc., San Jose, CA), ranging from a signal-to-noise
ratio of 0% to a signal-to-noise ratio of 100%. Each trial started with a
1500 ms period of dynamic visual white noise. Over the course of
5250 ms (35 iterative images each, with 150 ms duration, displayed at
6.67 Hz), a grainy, pixilated image gradually was transformed into a
face. The instruction to work as quickly as possible without sacrificing
accuracy meant that subjects made their decisions as soon as they
were the first able to detect a visually coherent image; thus, response
time identified the transition point in perceptual signal/noise. To pro-
vide environmental isolation, all subjects completed the task while
wearing a head-mounted display (nVisor SX60, NVIS Inc, Reston, VA)
connected to a laptop computer. The task was programmed and run
using E-Prime software version 1.2 (Psychology Software Tools, Inc,
Sharpsburg, PA).

Canonical perceptual experiments in psychophysics (Newsome
et al., 1990) have shown that one sensitive way to probe subtle features
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of decision-making is by using parameters of a sigmoidal fit:

f xð Þ ¼ 1

1þ exp xhalf−x
σ

! " :

The inflection point of the psychometric curve, xhalf, identifies
the transition point at which subjects are the first able to detect
threat among stimuli whose affect-valence was ambiguous, while σ
provides the slope, or discriminability, between threatening and non-
threatening stimuli. Each subject's behavioral responses to 20–80%
angry faces were fit with the above sigmoid function using Igor PRO
6.32A (WaveMetrics, Inc.; Lake Oswego, OR), generating an inflection
point xhalf for each subject. Group statistics were then performed upon
individual subjects' xhalf values, to determine whether individual vari-
ability in subjects' physiological responses to jumping out of a plane
were linked more generally to their thresholds for threat perception.

Results

Validation of challenge

Skydive and baseline days showed marked cortisol differences
(Repeated-measures ANOVA: F(1, 28) = 28.92, p = .000001). As per
Fig. 1a, Bonferroni-corrected paired t-tests revealed that these started
during the anticipatory period 15 min prior to the jump that, because
of the 20 minute delay in salivary bioavailability (Kirschbaum and
Hellhammer, 1994), was sampled at landing (skydive day: 18.57 nmol/l,
SE = 1.13; baseline day: 8.78 nmol/l, SE = 1.13; t(28) = 5.9,
p = .000001), and peaked during the jump itself, sampled 20 min
post-jump (skydive day: 21.21 nmol/l, SE=1.7; baseline day: 8.45 nmol/l,
SE = .9; t(28) = 7.9, p = .000000005). Cortisol response in anticipation
of the jump positively correlated with pre-jump epinephrine (r = .71,
p = .00002), self-reported anxiety (r = .3, p = .02), and negatively
correlated with self-reported euphoria (r = − .3, p = .05). Thus, the
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skydiving was successful at activating the hypothalamic–pituitary–adrenal
axis in a manner that was both acute, as well as specific to fear.

Prefrontal-limbic reactivity (fMRI activation)

To reduce multiple comparisons, cortisol samples were first com-
bined into three general timeframes: early anticipation (−75 min to
−45 min. pre-jump), late anticipation to early recovery (±30 min
pre/post-jump), and late recovery (+45 min to +75 min post-jump).
This approach allowed us to identify a general time frame for the effect
that could be subsequently examined over shorter intervals. Cortisol
reactivity regressors for each of the three time-periods identified
greater left amygdala activation for the aversive N benign anticipatory
cue contrast (Fig. 1) during the period of peak cortisol response, the
late anticipation to early recovery period (t(28) = 4.52, r = .65,
Ppeak = .00005, PSVC = .03, k = 36, peak voxel (MNI): −18, −2, −22;
average: r = .58, p = .0004). Using extracted mean regressor value
from this cluster, we confirmed that the amygdala activation continued
to correlate with the cortisol response to the challenge (two-tailed
Partial correlation: r= .41, p= .02), even after controlling for trait anx-
iety, body mass index (Mujica-Parodi et al., 2009b), and removing one
individual with amygdala, cortisol, and self-reported pre-jump anxiety
values N2 SD above the mean. Breaking down the late anticipation to
early recovery period by individual time-points showed that the stron-
gest relationship occurred during the anticipatory period 30 min prior
to the jump (two-tailed Pearson correlation: r = .56, p = .001).

Prefrontal-limbic regulation (fMRI power spectrum scale invariance)

Based upon previous results for trait anxiety implicating dysregula-
tion of specific components of the prefrontal-limbic circuit (Tolkunov
et al., 2010), average power spectrum scale invariance (PSSI) values
were extracted for the anatomically defined (Maldjian et al., 2003)

Table 1
Stepwise (backward) linear regression shows that biological variables predict cortisol response to skydive with greater accuracy than self-reported measures of personality.

ANOVA regression Predictors

Model R(square) Sum of squares Mean square F Sig. Cortisol response to skydive

1 0.65 787.30 52.49 1.38 0.3 a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
2 0.65 785.58 56.11 1.61 0.21 g, d, k, f, m, c, b, e, j, i, l, n, o
3 0.65 781.87 60.14 1.85 0.14 d, k, f, m, c, b, e, j, i, l, n, o
4 0.64 774.87 64.57 2.10 0.09 k, f, m, c, b, e, j, i, l, n, o
5 0.64 768.22 69.84 2.40 0.06 f, m, c, b, e, j, i, l, n, o
6 0.64 765.72 76.57 2.79 0.03 m, c, b, e, j, i, l, n, o
7 0.63 753.16 83.69 3.15 0.02 c, b, e, j, i, l, n, o
8 0.59 704.81 88.10 3.17 0.02 b, e, j, i, l, n, o
9 0.57 686.21 98.03 3.59 0.01 h, e, j, i,l, n, o
10 0.56 669.93 111.66 4.17 0.007 e, j, i,l, n, o
11 0.51 613.58 122.72 4.36 0.007 j, i, l, n, o
12 0.47 570.45 142.61 4.94 0.005 i, l, n, o
13 0.44 523.71 174.57 5.89 0.004 l, n, o
14 0.4 478.27 239.14 7.90 0.002 n, o

Predictor labels

a NEO openness Self-report variables
b NEO extraversion
c NEO neuroticism
d STAI trait-anxiety
e Perceived stress
f Attitudes towards risk I
g Attitudes towards risk II
h Sensation-seeking: thrill and adventure seeking
i Sensation-seeking: disinhibition
j Sensation-seeking: experience seeking
k Sensation-seeking: boredom susceptibility
l Age Biological variables
m Sex
n L amygdala reactivity (activation)
o L BA45 (inferior frontal gyrus) regulation (PSSI)
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Fig. 3. Sensation seekers show heightened thresholds for threat detection when viewing
faces morphed between neutral and angry expressions (F(1) = 5.23, p= .03). The theo-
retical mid-point between neutral and angry poles (i.e., maximum ambiguity) was 50%.
Statistically clustering subjects by sensation-seeking, individuals who were relatively
low sensation seekers first identified the faces as aggressive just above this mid-point, at
51.95% angry (SE= 2.23). In contrast, relatively high sensation seekers failed to perceive
faces as aggressive until faces were 58.76% angry (SE = 1.98).
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bilateral amygdala, hippocampus, anterior cingulate, insula, superior fron-
tal gyrus (Brodmann Area 9), and inferior frontal gyrus (Brodmann Area
45) regions of interest. Even after controlling for trait anxiety, system-
wide limbic regulation correlated with cortisol response for the same
anticipatory −30 min. pre-jump time-period (Fig. 2). Stepwise (for-
ward and backward) linear regression identified the left inferior frontal
gyrus as most strongly contributing to the variance (r = .54, p = .003;
F(1,28) = 8.95, p= .006). These results were confirmed with follow-up
voxel-wise statistical analyses. PSSI values of the amygdala
(left hemisphere, t(28) = 2.92, ppeak = 0.003; right hemisphere,
t(28) = 2.87, ppeak = 0.004) and the left inferior frontal gyrus
(t(28) = 3.15, ppeak = 0.002) showed significant positive correlation
with cortisol reactivity at a cluster extent-corrected ROI-corrected
p b 0.05.

Prefrontal regulation and cortical thickness

We then investigated whether our prefrontal-limbic regulation
(PSSI) values correlated with gray matter volumetric variability across
individuals. Individuals with closer-to-optimal regulation in the inferior
frontal gyrus had greater cortical thickness for that same region,
lateralized to the left side (two-tailed Pearson correlation: r = .65,

p = .00003; Fig. 2b). The association was not attributable to age (two-
tailed Pearson partial correlation: r = .003, p = .99).

Prediction of cortisol response

Amygdala reactivity and prefrontal regulation each explained
approximately one quarter of the variance in participants' cortisol reac-
tivity to the skydive. A multiple regression that included both of these
accounted for 40% of the variance in their responses to the skydive
(r = .63, SE= 5.5; F(2,27) = 7.9, p = .002) A multiple regression that
included both of these (βamygdala = .37, βIFG = .3), in addition to age
(βage = .22), accounted for 44% of the variance in their responses
(r= .66, F=5.9, p= .004). As shown by Table 1, stepwise (backward)
linear regression compared 14 models, which yielded an adjusted
p = .004. Thus, models with biological measures (amygdala reactivity,
prefrontal regulation, and age) provided greater reliability than models
with self-report measures (including sensation-seeking) in predicting a
subject's subjective and cortisol responses to the first-time skydive.

Sensation-seeking and threat perception

To simplify interpretation, we performed a k-mean cluster analysis
(k = 2) on the sensation-seeking scores to separate the skydivers into

Fig. 4. Structural equation modeling suggest sensation-seeking is primarily mediated via threat perception, which itself is primarily mediated via amygdala reactivity and prefrontal
regulation. Fit parameters (SRMR = 0.0552, CFI = 0.9255) confirmed that the model provided a good fit to the data using established cutoffs of SRMR ≤0.08, CFI ≥0.90. Rectangles
represent manifest variables, circles represent latent variables, and triangles represent normalization constants.
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(relatively) higher sensation-seeking (rHSS; μ= 27.71± 2.26,N=17)
and (relatively) lower sensation-seeking (rLSS; μ= 20.87 ± 2.75, N=
15) groups, which were subsequently compared. Even among a group
of risk-takers, rHSS showed less anticipatory anxiety in the minutes
prior to the jump, as demonstrated by blunted baseline-corrected corti-
sol response (rHSS: μ = 3.33, SE = .73; rLSS: μ = 13.23, SE = .83;
F(1) = 5.02, p = .04) and less self-reported state anxiety (rHss:
F(1) = 3.70, p = .08).

Our hypothesis that this diminished response to threat—a signature
of HSS (De Pascalis et al., 2007; Joseph et al., 2009; Kruschwitz et al.,
2012)—would be associatedwith a heightened threshold for threat per-
ception, was supported by behavioral results on the Ambiguous Threat
Detection Task, taken during the same 15 minute window preceding
the skydive. As shown in Fig. 3, we found significant differences
between groups for the inflection point—that is, the point at which
individuals transitioned, from perceiving stimuli as neutral, to perceiv-
ing stimuli as aggressive (F(1) = 5.23, p = .03). For our morphed
images, the theoretical mid-point between neutral and angry poles
(i.e., maximum ambiguity) was 50%. Individuals who were rLSS first
identified the faces as aggressive just above this mid-point, at 51.95%
(SE = 2.23). In contrast, rHSS failed to perceive faces as threatening
until they were 58.76% (SE= 1.98) aggressive. Importantly, this differ-
ence in judgment on the part of rHSS was not due to impulsivity, or
making decisions with less information than rLSS. In fact, rHSS took
slightly longer to make a decision, and therefore (because images grad-
ually emerged out of the white noise) were making their judgments
about an image that was less perceptually distorted (rHSS: μ =
1622 ms, SE = 29 ms; rLSS: μ = 1524 ms, SE = 34 ms; F(1) = 4.9,
p= .04).Moreover, just as therewere nodifferences in baseline cortisol
between the two groups (F(10,18) = .64, p = .76), the behavioral dif-
ferences between these two groups of risk-takers were apparent only
during challenge. At baseline, the groups responded equivalently in de-
tecting threat (μ= 53.56%, SE= 1.15%; F(1)= .02, p= .883), an effect
that was unrelated to previous exposure to the stimuli with respect to
order between the skydive and baseline days (skydive → baseline:
F(1) = .06, p = .81; baseline→ skydive: (F(1) = 1.47, p = .24).

Structural equation modeling

To provide a more integrated conceptual organization of how the
neural (based upon stepwise linear regression), cortisol/fear, and cogni-
tivemeasuresfit togetherwith the sensation-seeking trait, we conducted
structural equation modeling of the dominant results, using Ωnyx/
OpenMx (Boker et al., 2011). Modeling used five manifest variables:
amygdala reactivity (aversive N benign activation), IFG/Brodmann Area 45
regulation (PSSI), cortisol response (baseline-corrected late-anticipation to
early recovery-period), threat-detection (inflection-point), and sensation-
seeking, whichwenormalized formutual comparison.We created one la-
tent variable, neural arousal response, which comprised both reactivity
and regulation. Cognitive inputs were defined both by baseline brain fea-
tures, aswell as by stress-induced cortisol response,which can acutely af-
fect the brain and thus cognition (Butts et al., 2011; Lupien andMcEwen,
1997; Mujica-Parodi et al., 2009b). Endocrine and cognitive components
were designated as inputs to the psychological construct, “sensation
seeking,” to assess their relative importance in defining self-reported
personality.

Fit parameters (Standardized Root Mean Square Residual,
SRMR = 0.0552, Comparative Fit Index, CFI = 0.9255) confirmed that
the model provided a good fit to the data using established cutoffs of
SRMR ≤0.08, CFI ≥0.90 (Hu and Bentler, 1999). As per Fig. 4, variance
in sensation-seeking was accounted for more by an increased threshold
for threat-detection (.22) than by blunted cortisol (.13). Variance in
threat-detection was accounted for more by the neural arousal response
(32.77) than by cortisol (4.36). Finally, the neural arousal response was
affected roughly equally by amygdala reactivity (2.04) and prefrontal
regulation (2.06). Taken together, our model suggests that a brain-

based cognitive deficit in perception of threat leads to a trait tendency
towards sensation-seeking—a differential pattern seen even within a
sample of risk-takers.

Discussion

Animal studies show that the tendency to seek novelty at the
expense of caution is primarily biological in nature, strongly heritable,
and a function of dopaminergic pathways in the limbic and reward
circuits (Ballaz et al., 2008, 2013; Stead et al., 2006). Indeed, our linear
regression demonstrated that neurobiological measures were more
reliable than psychological self-report in predicting the fear response.

These neurobiological measures suggest that individuals less
responsive to the very real risks inherent in jumping out of a plane
were not ‘super-regulators,’ but rather showed dysregulation of the
prefrontal-limbic meso-circuit symmetric to that seen in highly trait
anxious individuals. To compare our prefrontal-limbic regulation results
across a wider spectrum of fear reactivity, we normalized1 across a larg-
er sample of N = 96 participants scanned with fMRI (Rădulescu and
Mujica-Parodi, 2014). These included a separate sample of N = 65
(Mujica-Parodi et al., 2009a), for which we assessed trait anxiety via
the State-Trait Anxiety Inventory (STAI min/max = 21–67; M =
38 ± 10), this article's sample of N = 30 first-time tandem skydivers
(STAI min/max = 20–53; M = 33.07 ± 7.11), as well as a single case
study of a bomb squad technicianworking in support of Navy SEALmis-
sions. Individuals at the middle of the spectrum—those who showed
low trait anxiety and a robust fear/cortisol response to their skydives—
were in the pink noise (optimally balanced) range for both excitatory
and inhibitory components of the prefrontal-limbic system. In contrast,
individuals at the extremeends of the fear-reactive spectrum (either ex-
ceptionally trait anxious, or else exceptionally non-responsive to the
skydive) had prefrontal-limbic PSSI shifted towards white noise. This
may indicate that the same prefrontal-limbic circuit is dysregulated in
different ways that produce deficits in risk assessment with distinct
clinical features.2 Or, it may mean that the inferior frontal gyrus is not
simply inhibitory, but also plays a more complex, if equally critical,
role in threat-assessment (e.g., acting as a comparator or filter). Future
work, using control systems approaches to probe the dynamics of the
circuit in greater detail, will explicitly address this question.

1 Interpretation of PSSI across studies is complicated by the fact that this type of analysis
has developed in parallel within the physics and physiology literatures, but with slightly
different methods and notations that profoundly impact meaning of the results. Within
the physics literature, PSSI is typically calculated from the raw time-series, whereas in
the physiology literature, PSSI is typically calculated from the first-derivative of the raw
time-series. Thederivative shiftsβ by a constant, such thatβderivative=βraw+2.Moreover,
PSSI is sometimes defined as S(f)∝ f−β (for which β for white, pink, and brown noise are
defined as 0, +1, +2 respectively) and sometimes defined as S( f) ∝ f β (for which β for
white, pink, and brown noise are defined as 0, –1, –2 respectively). Unfortunately, these
discrepancies can mean that smaller β can refer to greater complexity following one set
of conventions, and lesser complexity following another. Thus, for this comparison, we
recalculated PSSI identically across both more (LSS) and less (HSS) reactive populations,
using definitions provided in the above Methods section.

2 Our PSSI analyses suggest that dysregulation of theprefrontal-limbic system is present
both in populations for which threat perception thresholds are abnormally high (high
sensation-seekers) as well as abnormally low (high trait anxiety). This (seemingly
counter-intuitive) symmetry is common for dysregulatory disorders in physiology. For ex-
ample, both Type 1 and Type 2 diabetes are caused by dysregulation of the same (excitato-
ry) glucose-(inhibitory) insulin control circuit. However, in Type 1 diabetes, the pancreas
produces insufficient insulin (causing a feedforward dysregulation); whereas, in Type 2 di-
abetes, insulin fails to trigger a subsequent decrease in glucose (causing a feedback dysreg-
ulation). Thus, the twometabolic disorders are caused by different types of dysregulation of
the same circuit. As with the symmetry we see at the extreme ends of our threat response
spectrum, Type 1 and 2 diabetics show both clinical similarities (since glucose levels are
elevated in both, symptoms associated with hyperglycemia are present in both), as well
as clinical presentations that can appear to be opposites of one another (e.g., because insu-
lin is linked to fat production, Type 1 diabetics show abnormally low body fat, whereas
Type 2 diabetics show abnormally high body fat). Future work will be needed to probe
the prefrontal-limbic circuit with system identification techniques (coupled differential
equations that describe the entire circuit), in order to establish the self-interacting dynam-
ics by which the system evaluates threat.
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Both ends of the fear-reactive spectrum had PSSI differences
that specifically implicated the amygdala and inferior frontal gyrus
(Brodmann area 45). The amygdala is the primary excitatory compo-
nent of the control system regulating emotional arousal. Within it, the
most significant association between the PSSI values and cortisol
responses was observed in bilateral superficial nuclei that are anatomi-
cally and functionally linked with the orbitofrontal cortex (Bach et al.,
2011; Zald et al., 2014). We found that individuals who showed less
amygdala reactivity in response to threat also showed a blunted cortisol
response to the jump. This result was robust, replicating across not only
our primary study (N=30), but also our pilot study (N=22), using dif-
ferent tasks (passive viewing of fearful faces, anticipation of aversive
noise) designed to activate the same prefrontal-limbic system. This
amygdala activation appears to reflect efficiency of interaction with
the prefrontal cortex network, most likely via direct synaptic connec-
tions with the orbitofrontal cortex. The inferior frontal gyrus, on the
other hand, is a prefrontal region implicated in affect processing
(Yamasaki et al., 2002), suppression of emotion (Depue et al., 2007;
Vanderhasselt et al., 2013), and response inhibition (Aron et al., 2003;
Sagaspe et al., 2011), mediated by its extensive connection with other
prefrontal cortical regions (Croxson et al., 2005). The present results,
showing a positive association between chaotic PSSI of the prefrontal
cortex and cortical thinning, suggest that less-effective control may be
linked to cortical structure, as per models of this control circuit linking
complexity and connectivity (Rădulescu and Mujica-Parodi, 2014).

Psychological constructs, by definition, aim to generalize over
complex phenomena. While the individual variability we observed in
response to challenge shares some similarities to commonly held fea-
tures of ‘sensation-seeking,’ there were also areas of divergence. First,
contrary to the Optimal Level of Arousal hypothesis that HSS are behav-
iorally self-medicating to compensate for lower basal levels of arousal
((Zuckerman, 1994), but see also (Carrol et al., 1982)), the relationships
seen between sensation-seeking, prefrontal-limbic, cortisol, threat-
detection, and state anxiety variables were evident specifically in re-
sponse to physical danger, but not at baseline. Second, themore reckless
aspects of HSS have often been conceptually linked to impulsivity
(Zuckerman, 1993, 1996),whichwould be consistentwith our observed
cortical thinning and impaired prefrontal regulation. However, our be-
havioral results showed that rHSS's failure to perceive threat was not
due to impulsive decision-making, since those who had the highest
threshold for threat-detection also waited for the most information.
Finally, HSS is thought of as not only including diminished sensitivity
to threat, but also increased capacity for reward (Zuckerman, 1994).
However, our results showed that individuals with greater sensation-
seeking had suppressed anxiety and cortisol in response to the jump,
rather than showing heightened euphoria or blood β-endorphin levels
(p N .1).

The ability to accurately evaluate risk (i.e., ‘good judgment’) has
been associated in non-human primates with social dominance, show-
ing an endocrine signature of lower basal cortisol levels aswell as great-
er testosterone response to challenge (Virgin and Sapolsky, 1997).
While basal cortisol levels were equivalent across subjects, males who
showed prefrontal regulation closest to the critical point also showed
the largest plasma testosterone increases in response to the jump (Re-
peated-Measures ANOVA: F = 6.001, p b 0.03, N = 19). Thus, one
area for future investigation is whether optimal prefrontal regulation
may be an important neural feature of social dominance.

Novelty-seeking can lead to addiction, participation in dangerous
recreational activities, and sociopathy, but the willingness to take risks
may also lead to outstanding acts of human achievement and altruism
for the greater good. From a clinical perspective, therefore, it matters
not only whether an individual avoids or embraces risk, but also
whether the response to risk is adaptive or maladaptive. In this context,
we define ‘adaptive’ response to risk as one that permits taking appro-
priate safeguards: that is, which includes both an accurate recognition
of risk, as well as the ability to avoid being paralyzed by fear. From

this perspective, our experiment was unique. Previous studies have
compared populations that are predominantly approach-oriented
(HSS) to populations that are predominantly avoidance-oriented
(LSS). In contrast, each of the subjects recruited to this study had already
independently contacted a local skydiving school to schedule his or her
first tandem-skydive. Skydiving is a high-risk recreational sport, with a
non-trivial risk of fatality. This fact was reinforced frequently during the
brief training that preceded the jumps, as well as by the legal waiver
that all participants signed, which released the skydiving school from
responsibility in the event of the participant's death (the waiver listed
an impressive variety of means by which death might occur, including
plane engine failure, parachute failure, tandem-master error, and failure
by the participant to follow instructions). The fact that—in spite of these
warnings—they all chose to follow through with the jump, indicates
that our study was of a population that would all be considered
approach-oriented. What distinguished them, therefore, was not
their willingness to take risks, but rather how they responded to the
experience: whether or not they recognized the risks, and appropriately
felt afraid.
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