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This paper describes an attempt to improve estimation of bounds of orbital energies in the
Hiickel model. New expressions for handy estimation of the bounds are presented. The handy
estimation uses only elementary graph-theoretical quantities as the number of sites and that
of bonds. Furthermore, the expressoins are extended to enable us to estimate the bounds, in
principle, as exactly as required. Numerical examples for typical 7 -electron systems are given

to illustrate how the expressions work.
1. Introduction

Let us confine ourselves to the simple Hiickel model which specifies a system solely by
the adjacency of sites. Making a system in the simple Hiickel model correspond to a
simple graph, we can translate everything in Hiickel theory into its counterpart in
graph theory. Since the present subject is not inherent only to chemistry, the graph-
theoretical terminology is used throughout. No dictionary will be necessary for the
translation.

For the present purpose, it is sufficient to consider simple connected graphs. The
adjacency matrix of a simple connected graph is irreducible and real-symmetric,
consisting of nonnegative components, 0 and 1. The largest eigenvalue is, therefore,
positive, nondegenerate, and not exceeded by other eigenvalues of the graph even in
absolute value by virtue of Frobenius’ theorem. In what follows, simple connected
graphs are called graphs for brevity. The whole of eigenvalues of a graph is called the
spectrum of the graph.

Throughout this paper, the number of vertices and that of edges of a graph are
denoted by n and m, respectively, and » eigenvalues {4,} of the graph are numbered in
nonincreasing order as

Ay A= 22, (1)
The smallest eigenvalue 4,, being necessarily negative, can be equal to —A,. In such a
case, 4, is nondegenerate and the graph is necessarily bipartite (Lovasz, 1993a). Then,

the upper bound A, of the spectrum leads us immediately to the lower bound. In

—137(650)—



Review of Economics and Information Studies

general, the upper bound provides a possible approximation of the lower bound by
chainging the sign.

It is well-known that the spectrum of a graph is bounded by the largest degree
d .z Of vertices in the graph as

TGnaxSASdp,,  G=100 1), (2)
which is presumably ascribable to Frobenius (Coulson, 1950). This property has a
great conceptual significance, but is not so useful because of its crudeness. It can
provide nothing within varieties of graphs of an identical d_,,,.

A remarkable expression for handy estimation of the largest eigenvalue of a graph

1s known (Hall, 1977). Using the degree d; of vertex i, we have
> ) dd/Ydl 3)
edgei <j 7
This provides a good approximation to the largest eigenvalue, but has no direct
relation with the bounds of the spectrum naturally.

As a handy estimation of the upper bound with the number of vertices and that of
edges, the following is given as an exercise (Lovasz, 1993b).

L<Vem(n—1D/n. (4)
Although this leads us to exact bounds for complete graphs, it works quite
insatisfactorily within varieties of chemical graphs, that is, rather sparse graphs as
Hiickel graphs. For example, the right-hand side yields 3.16 for the monohex graph,
4.45 for the dihex one, and 2.89 for the 6-vertex linear chain!

No method for refining estimates of bounds, somehow, seems to have been devised
or, at leaset, to be known in prevalent literature. The primary reason for this is
probably that our interest concentrates rather in “exact” bounds and that obtaining
exact bounds is naturally replaced, for individual graphs, with solving the eigenvalue
problem itself.

This paper aims to improve the above-mentioned estimation for bounds of spectra of
graphs. New expressions for handy estimation are presented. The handy estimation
uses only elementary graph-theoretical quantities as the number of vertices and that
of edges. Furthermore, the expressions are extended to enable us to estimate the
bounds, in principle, as exactly as required. Numerical examples for typical Hiickel

graphs are given to illustrate how the expressions work.
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2. Handy Estimation

Let A be the adjacency matrix of a graph and denote the trace of the k-th power of A
by T which equals the k-th power sum of {4,}:

T,=Tr(49 =) (5)
j=1

The preceding expression (4) is essentially based on the Cauchy-type inequality
(T,—2)*< (n—D(T,— ). : (6)
Here, note that 7; in the left-hand side necessarily involves a number of negative
eigenvalues and that this makes the inequality quite loose. The straightforward way
for improvement is, therefore, to use 2 in place of 4,. In addition, when the number
v of zero eigenvalues is known, we can make an improvement by taking it into
account. Thus, let us take the inequality
(T,— 2D’ <(A—D(T,—2) (7
with
ni=n—y. (8)
If v is unknown, we have to content ourselves with neglecting v. This does not violate
the inequality at all, though may degrades it somewhat as the case may be.
Now, for the sake of convenience in description, let us introduce the auxiliary
quantity
t.= T,/ . 9)
Then, by a little elementary calculation, the inequality above leads to
=)’ < (=D (t,— . (10)
Since the quantity in the parenthesis of the left-hand side is not negative, we can

obtain

A<Vt (A= 1) (t—tD) . (11)

As is well known, 7, is simply equal to 2m, while 7, can be evaluated quite easily
with 7, m, the number 7, of 4-vertex rings, and the number n, of vertices of degree d
other than 2 and 3 as

T,=2(9m—6n) +4(n,+ D) +8r, (12)
where the quantity

D=—3 (d-D(d-n, (13)
d=4
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standing for the contribution from vertices of degree larger than 3. When the fourth
coefficient a, (the coefficient for the (n-4)-th power) of the characteristic polynomial is
known ahead, the relationship
T,= —4a,+2m’ (15)
immediately gives 7, (Dias, 1985).
For bipartite graphs, we can or rather must make a further improvement. Since the
contribution from A, is exactly as large as 1/ itself, it is relevant to treat 27 as A% as
(T,—223)*< (A—2) (T,—22%), (16)

from which it follows that

llﬁ/t2+/(g——l)(t4~t§). (17)

Let n vertices of a bipartite graph be partitioned into 7ne black and 7o white vertices.

Denote ne—70 by p and assume p to be nonnegative. Unless p vanishes, the graph has
o zero eigenvalues at least. Zero eigenvalues can still exist even if p vanishes. Then, it
is appropriate, if it is easy, to check whether or not the algebraic structure count
vanishes, but no general simple way to know v seems to have been found (Cvetkovié,
1979; Trinajstié, 1991). Hence, if v is unknown, we have to content ourselves to use

“the number of zero eigenvalues known to exist” in place of v, which is often p,
naturally not less than o, and has the same parity as n.

In particular, for bipartite Hiickel graphs having neither end vertex nor 4-vertex
ring, merely using # and

d=2m/n(=ty), (18)

the “modified” mean degree of vertices, we have

AIS\/J+—;—\/<%—1>(33—(9—2(1)2). (19)

If n and m are fixed with vanishing v, an identical estimate follows to all. This may be

regarded rather as a reflection of the well-known fact that the largest eigenvalues of
polyhex graphs consisting of the same number of vertices and the same number of

edges are, more or less, close to each other.

3. Exact Estimation

First, let us consider the case where |4, differs from 4,. As a natural extension of the

preceding treatment, starting with the inequality
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(T — < (-1 (Ty— 21 (20)
with an arbitrary natural number k, we have an estimate b(k) for the upper bound of
the spectrum of a graph as

bR =%ty V(1) (2~ 15 21)

It must be preferable for the purpose here to convert this into

_ AN Ty 1N\ 1
b(k)_zt/n’(\/(l n><7§%’: n>+n> (&)

which is ready to show that b(k) approaches A, as k increases, because %/ T, does 1,
and T,/ T, unity. 4
For sufficiently large k, the approximation up to the 4k-th order of {;/2,(G>1)}

leads to

b(k 1 2
i R (mk— ﬁ”jq) (23)
with
Nox= Z (}\j/ll)Zk- (24)
j=2

The behavior of b(k) is thus found to be remarkably advantageous, compared with that
of the “unprocessed” T,,-level estimate 4/ 7}, , that is,

YT, =2,(1+n,/AK)). (25)

However, when n becomes large in sparse graphs, the present estimation loses its
efficiency as well. It should be noted that we need not be attentive with the number of
zero eigenvalues here.

For bipartite graphs, the modification shown in the preceding section is effective

for efficiency. The adjacency matrix A of a bipartite graph can be written in the form

A —< 0 B> (26)
‘B 0
with an neXno submatrix B and its transpose ‘B, so that we have
e (BB 0 o
0 (BB)/)

where (B'B)* and ('"BB)” are, respectively, ne X7e and 7o X7no submatrices. Since all

nonzero eigenvalues participate in the trace of each submatrix, we may calculate the
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smaller
Fp=Tr(('BB)") (28)
in place of T,. Thus , with

u=n/2=m—v)/2, (29)

_ 1 &__1.) 1
b(k) 2’{/F2’“<\/< u)(in I +u>’ S0

which behaves for sufficiently large k as

we have

b 1 ;
Z‘) =1+ <g=4k— fj"l ) 31)
with
n—1
Ez}c:% Z ()sj/}kl)Zk (32)
=2

similarly but much preferably to the nonbipartite case.

In real situation, it is not necessary at all to calculate b(k) successively for every
natural number k. Starting with 4, we can reach the 2s-th power of A by s times
matrix multiplications and, hence, 4(2°~%). If refinement with very large s is intended,
then, to avoid numerical explosion, we should use 4/5, in place of A with a tentative
estimate b, of 1,, for example, d,, or b(1) obtainable ahead. Although computational
details is left to be devised, it is certain that the expressions above provide a method

for estimating bounds of spectra by simple elementary procedure.

4 . Numerical Examples and Concluding Remarks

Table 1 and Table 2 show numerical examples for typical Hiickel graphs. Table 1
concerns nonbibartite graphs, while Table 2 does bipartite. The tables include
b(k)’s until the agreement with the largest eigenvalue up to the sixth decimal place.
The result of the handy estimation by (11) or (17) is naturally identical with b(1).
The expressions (11) and (17) work adequately considering its simplicity. Although
their estimation is, so to speak, semi-quantitative, they yield even the exact result for
small graphs as monotetra and monohex besides complete graphs and star graphs.

When the number of vertices in a graph becomes large with its sparsness kept, the
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expressions will fail to give meaningful estimates. It should be noted that the 7;-level
estimate b(2) is clearly better than the 7,-level one b(1). Therefore, if we find an
expression of T; in terms of elementary graph-theoretical quantities, a good handy
estimation follows immediately. As an approximation to the largest eigenvalue,
Hall's expression (3) provides much better result than b(1).

The method for exact estimation using (22) or (30) works quite satisfactorily. If the
number of vertices contained is not so large, the estimation reaches the “exact”
result instantaneously with the use of an ordinary personal computer. However, the
present method may suffer from loss of its efficiency for graphs having dense
distribution of eigenvalues near the largest as any method for the eigenvalue problem
does.

The present method can be extended for application to a general real-symmetric
matrix whose components are not only nonnegative. A crucial key for the extension
will be how to find or to involve the multiplicity of the largest eigenvalue in
computational procedures. Ample room for development is left untouched, in

particular, concerning computational devising.

Accepted April 15, 2003

Table 1. b(k)’s in Nonbipartite Hiickel Graphs

>- O °o- >0 <A

b(1) 2.236068 2.197368 2.377285 2.640760 2.713189
b(2) 2.177743 2.050026 2.193077 2.432218 2.434463
b(4) 2.170282 2.004537 2.128298 2.367120 2.336695
b(8) 2.170087 2.000072 2.115769 2.359255 2.313051
b(16) 2.170086 2.000000 2.114915 2.359029 2.310339
b(32) 2.114908 2.310277
Aopax 3 2 3 3 3
4" 2.449490 2.828427 3.162278 3.968627 4.449719
3" 2.111111 2.000000 2.076923 2.333333 2.280000

1) the left-hand side of (4) 1) the left-hand side of (3), an approximation to the largest eigenvalue from

the lower side
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Table 2. b(k)’s in Bipartite Hiickel Graphs

b(1) 1.852161 2.420951 2.676507 2.176835 2.407148
b(2) 1.808315 2.414339 2.622767 2.141134 2.359611
b(4) 1.802097 2414214 2.618084 2.135895 2.355726
b(8) 1.801938 2.618034 2.135779 2.355674
Arnax 2 3 3 3 3
OX 2.886751 3.415650 4.183300 3.741657 3.968627
3)™ 1.777778 2.411765 2.615385 2.117647 2.333333
O o0 O oo 05)
b(1) 2.375064 2.431467 2.632113 2.601340 2.601340
b(2) 2.313328 2.323987 2.546276 2.463000 2.472992
b(4) 2.303123 2.284176 2.532607 2.420239 2.438279
b(8) 2.302776 2.278562 2.532090 2.414366 2.434816
b(16) 2.278414 2.532089 2.414214 2.434764
Armax 3 3 3 3 3
@" 4.449719 4.882194 5.066228 5.451081 5.451081
(3) 2.280000 2.241379 2.470588 2.368421 2.394737
P o S K W
b(1) 2.736383  2.768875 2.768875 2.768875 3.055715
b(2) 2.575826  2.562980 2.578078 2.586807 2.777311
b(4) 2.535312  2.486480 2.512402 2.536290 2.687842
b(8) 2.532124  2.468308 2.499755 2.532127 2.675454
b(16) 2.532089  2.466750 2.499050 2.532089 2.675131
b(32) 2.466732 2.499046
Armax 3 3 3 3 3
" 5.968668  6.298148 6.298148 6.298148 7.582875
3™ 2489362  2.411765 2.450980 2.470588 2.615385

1) the left-hand side of (4) 1t) the left-hand side of (3), an approximation to the largest eigenvalue from

the lower side
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