
JOURNAL OF VETERINARY ANDROLOGY ISSN 2542-3045 
 VOL 3(1) (ENERO-JUNIO/JANUARY-JUNE 2018) 

 

 
 

Review Article/Artículo de revisión 

THE IMPORTANCE OF ANTIOXIDANTS IN SPERM QUALITY AND IN 
VITRO EMBRYO PRODUCTION  

IMPORTANCIA DE LOS ANTIOXIDANTES EN LA CALIDAD ESPERMÁTICA Y LA 

PRODUCCIÓN IN VITRO DE EMBRIONES 
 

Maria P. Tsantarliotou*, Visiliki G. Sapanidou 

 

Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece. 

*Correspondence should be addressed to (La correspondencia debe dirigirse a): M.P. Tsantarliotou; email: mtsant@vet.auth.gr 

 

ABSTRACT 
Oxidative stress (OS) is the imbalance between the production of Reactive Oxygen Species (ROS) and the protective effect of the responsible antioxidant 

system for their neutralization and/or removal. OS has been identified as one of the main factors associated with male or female infertility. Indeed, the 

excessive production of ROS affects the structural and functional integrity of gametes and embryos either in vivo or in vitro. In particular, OS damages 

proteins, lipids, DNA and accelerates cell apoptosis. These events have been implicated with impaired sperm quality and low fertilization rates. The 

increased amounts of ROS have also been correlated with poor outcome in assisted reproductive techniques (ART) settings. The biological systems are 

equipped with antioxidant agents in order to counteract the negative effects of the ROS overproduction. Thus, ROS generation due to pathological 

conditions of the genital tract or the handling of gametes and embryos at high oxygen tension during ART, render the use of antioxidants essential, to 

protect the cells from the detrimental consequences of OS. A volume of recent published data indicates that both oral administration and in vitro 

supplementation of antioxidants are very promising strategies in order to maintain sperm quality characteristics and to ensure fertilization. 

Nevertheless, further studies should be addressed in order to provide answers on the safety, effectiveness, mechanism of action and combination of 

different antioxidants, depending on the circumstances. This review summarizes the consensus on the role of oxidative stress and antioxidants in animal 

and human reproduction. An emphasis is given in the critical role of plant derived antioxidants; this new knowledge may contribute in achievement of 

high fertilization rates. 
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RESUMEN 
El estrés oxidativo (OS) es el desbalance entre la producción de Especies Oxigeno Reactivas (ROS) y el efecto protector del sistema antioxidante 

responsable de su neutralización y/o remoción. EL OS ha sido identificado como uno de los principales factores asociados con la infertilidad masculina 

y femenina. En realidad, la excesiva producción de ROS afecta la integridad estructural y funcional de gametos y embriones ya sea in vivo o in vitro. En 

particular, el OS daña proteínas, lípidos, DNA y acelera la apoptosis celular. Estos eventos han sido implicados con disminución de la calidad espermática 

y bajas tasas de fertilización. Altas cantidades de ROS han sido también correlacionadas con pobres resultados de técnicas de reproducción asistida 

(ART). Los sistemas biológicos están equipados con agentes antioxidantes con la finalidad de contrarrestar los efectos negativos de la sobreproducción 

de ROS. Por lo tanto, la generación de ROS debido a condiciones patológicas del tracto genital o por la manipulación de gametos y embriones bajo una 

alta tensión de oxígeno durante las ART, hace esencial el uso de antioxidantes, para proteger a las células de las consecuencias negativas del OS. Un 

volumen de información recién publicada indica que tanto la administración oral como la suplementación in vitro de antioxidantes son estrategias muy 

promisorias para mantener la calidad espermática y mejorar la fertilización. Sin embargo, estudios adicionales deber ser realizados a fin de proveer 

respuestas sobre la seguridad, efectividad, mecanismo de acción y la combinación de diferentes antioxidantes, según las circunstancias. Esta revisión 

resume el conceso sobre el rol del estrés oxidativo y los antioxidantes en la reproducción animal y humana. Se ha hecho énfasis en el crítico rol de los 

antioxidantes derivados de plantas; este nuevo conocimiento puede contribuir al logro de altas tasas de fertilización. 
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INTRODUCTION 
 

Aerobic processes demand oxygen for controlled oxidation of molecules with subsequent release of energy. Even under physiological 

conditions, aerobic metabolism entails the formation of intermediate products, called Reactive Oxygen Species (ROS), which are playing an 

intriguing role in cell physiology. ROS are formed during oxygen reduction and interact with all cell components (Halliwell & Gutteridge, 2007). 

Although most of the available studies emphasize in the consequences resulting from the overwhelming production of ROS, their involvement 

in important physiological cell processes, such oxidative burst, gene expression and cell proliferation, is critical (Kohen & Nyska, 2002). 

Various biological functions, including reproduction are affected by ROS. Low and moderate amounts of ROS mediate physiological processes, 

such as spermatogenesis, sperm hyperactivation, acrosome reaction (AR), interaction and fusion of gametes, oocyte maturation and embryo 

development (de Lamirande & Gagnon, 1993; O’ Flaherty et al., 1999; Pasqualotto et al., 2004). In bulls, superoxide anion and hydrogen 

peroxide are essential for in vitro sperm capacitation and AR, respectively (O’ Flaherty et al., 1999, 2003; Rivlin et al., 2004). However, elevated 

levels of ROS reduced sperm motility in vitro directly in equine (Baumber et al., 2000) and ram spermatozoa (Bucak et al., 2007), or indirectly 

via the induction of lipid peroxidation (LPO) in bovine (Bansal & Bilaspuri, 2008), caprine (Bucak et al., 2009), rabbit (Alvarez & Storey, 1984) 

and boar (Cerolini et al., 2000) spermatozoa. 

The role of OS in the control of female reproduction has not been fully elucidated in animal species, comparing to human. Nevertheless, it 

seems that the balance disruption between ROS production and antioxidant defense can influence reproductive processes, such as follicular 

atresia, selection and dominance of the graafian follicle at different levels (Pasqualotto et al., 2004; Agarwal et al., 2006). The exaggerated 

production of ROS is controlled by the endogenous antioxidant defense (especially superoxide dismutase-SOD), which varies according to the 

stage of oocyte development in bovine species (Lonergan et al., 2003). The integrity of the antioxidant defense within the different stages of 

oocyte development may contribute to the overall quality of oocytes (Lonergan et al., 2003). Finally, ROS overproduction is leading to embryo 

death, despite the fact that embryos are equipped with internal antioxidant mechanisms, while similar mechanisms are present in the oviductal 

fluid. ROS can lead to embryo death due to LPO, DNA fragmentation and alterations in mitochondrial structures and enzymes (Takahashi et al., 

2000; Guérin et al., 2001). 

 

TYPES AND SOURCES OF ROS 
 

Reactive Oxygen Species are oxygen-derived, short-lived and powerful molecules, which are mainly formed as intermediate products during 

oxidative phosphorylation in all cell types. ROS represent a broad category of molecules, including radical (e.g. superoxide anion, hydroxyl 

radical) and non-radical (e.g. hydrogen peroxide) derivatives (Fuchs et al., 1997). 

There is evidence that spermatozoa may generate ROS in two ways: 1) the nicotinamide adenine dinucleoatide phosphate (NADPH) oxidase 

system at the level of the sperm plasma membrane and 2) the NADPH-dependent oxido-reductase (diphorase) at the level of mitochondria 

(Gavella & Lipovac 1992; Lopes et al., 1998). However, ROS produced by mammalian spermatozoa are mainly of mitochondrial origin (Ford 

2004). Moreover, the main endogenous potential sources of ROS in male reproductive system are leukocytes and immature/abnormal 

spermatozoa, containing cytoplasmic droplets (Garrido et al., 2004; Bansal & Bilaspuri, 2011). ROS generation in immature spermatozoa is as 

a consequence of a defect that takes place during spermiogenesis causing retention of cytoplasmic droplets. Interestingly, there is evidence 

supporting a negative effect of immature spermatozoa in boar semen used in artificial insemination programs (Larsson et al., 1984). 

Furthermore, in bovine semen, ROS are produced primarily by dead spermatozoa via an aromatic amino acid oxidase catalyzed reaction 

(Shannon & Curson, 1972). 

Regarding oocytes, little is known about their contribution to OS. In human, low levels of follicular fluid ROS and LPO are potential markers 

for predicting pregnancy (Pasqualotto et al., 2004). In bovine, there is evidence that the production of ROS remained unaltered between 

immature and in vitro matured oocytes (Dalvit et al., 2005). Mammalian embryos produce ROS mainly via oxidative phosphorylation (Guérin 

et al., 2001). A gradual increase in ROS production is detected from 2-cell bovine embryo up to late morula stage (Dalvit et al., 2005). This can 

be attributed to the sustained consumption of oxygen, glucose and pyruvate uptake during embryo development (Thompson et al., 1996). ROS 

production begins to decrease in the blastocyst stage due to the contribution of glycolysis to ATP supplementation (Thompson et al., 1996) and 

to the induction of antioxidant defense (Harvey et al., 1995). 
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OXIDATIVE STRESS AND OXIDATIVE DAMAGE IN GAMETES AND EMBRYOS 
 

Oxidative stress is the imbalance between ROS production and the protective effect of the responsible antioxidant system for their 

neutralization and/or removal. In general, the uncontrolled production of ROS is harmful to all cellular components of gametes and embryos 

including proteins, lipids, nucleic acids and affects the fertilizing capacity. There is a great deal of evidence associating an increase in OS with 

a decrease in antioxidant protection. However, whether such changes are a cause or a consequence of ROS generation is still under 

investigation. One thing is certain that in the absence of (endogenous or exogenous) antioxidant protection, gametes and embryos are 

vulnerable to free radical attack (Aitken & Baker, 2006; Bansal & Bilaspuri, 2011) leading to pathological processes. Some of  the main 

pathological effects and the importance of them in the field of reproduction are discussed below. 

 

a. DNA fragmentation 

DNA damage is induced by OS (Twigg et al., 1998). The existing positive correlation between ROS production and DNA fragmentation supports 

the hypothesis that the ongoing impairment of DNA affects the fertilizing capacity of spermatozoa (Simões et al., 2013). Spermatozoa are 

mainly protected from ROS detrimental effect by the tight packaging of DNA and the presence of antioxidants in the seminal plasma (Lopes et 

al., 1998). However, the seminal plasma containing high concentrations of ROS scavengers is removed during in vitro embryo development 

(Agarwal et al., 2006). The oxidative damage of spermatozoa impairs not only the fertilizing capacity, but also its competence to support 

normal embryo development (Simões et al., 2013). Spermatozoa are unique in that they lack DNA repair mechanisms. It is important that 

oocytes and zygotes have been shown to repair sperm DNA damage, so the effect of sperm DNA fragmentation depends on the combined 

effects of sperm chromatin damage and the capacity of oocytes to repair it (Ashwood-Smith & Edwards, 1996). However, bovine spermatozoa 

with affected motility and extended DNA fragmentation would still be able to fertilize, but the embryo development would be arrested before 

reaching the blastocyst stage (Simões et al., 2013). 

 

b. Lipid peroxidation 

Spermatozoa are especially susceptible to OS due to high energy demand, abundance of polyunsaturated fatty acids (PUFAs) of their plasma 

membrane and low concentration of intracellular antioxidant enzymes (Kodama et al., 1996; du Plessis et al., 2008). Lipid peroxidation, a self-

propagating cascade of reactions, is induced by ROS, especially by hydroxyl radicals and affects the fluidity and integrity o f sperm plasma 

membrane and thus decreases the fusogenic ability impairing fertilization (Aitken & Baker, 2006). The main product of LPO is malondialdeyde 

(MDA), which is highly toxic and interacts with cell components. The model of ROS evoking loss of sperm motility and genetic integrity is further 

supported by evidence that LPO is a major cause of motility loss and DNA fragmentation in spermatozoa (Kodama et al., 1996; Sapanidou et 

al., 2016). 

 

c. Protein oxidation 

Proteins are one of the initial targets of ROS. The oxidative damage is caused directly or indirectly, via the by-products of LPO, especially MDA, 

which interacts with the sulphydrylic groups of proteins (Halliwell & Gutteridge, 2007). Protein oxidation affects the functionality of specific 

receptors and the activity of intracellular enzymes. Some of these enzymes are related to the acquisition of fertilizing capacity and ATP 

supplementation (Guérin et al., 2001). Another hypothesis suggests that the excessive production of ROS decreases axonemal protein 

phosphorylation, resulting in reduction of membrane fluidity and sperm immobilization, both of which negatively affect sperm-oocyte fusion 

(de Lamirande & Gagnon, 1992; Baumber et al., 2000; Bansal & Bilaspuri, 2011). 

 

ANTIOXIDANTS 
 

Biological systems are equipped with antioxidant defense mechanisms in order to maintain ROS levels within certain range. According to 

Halliwell & Gutteridge (2007) an antioxidant is any substance that when is present at low concentrations, compared to that of an oxidizable 

substrate, significantly delays or inhibits oxidation of that substrate. Antioxidants are subdivided in two categories: enzymatic such as 

superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidases (GPx) and non-enzymatic such as vitamins A, E, glutathione (GSH), 

melatonin, carotenoids, polyphenols, etc. (Al Gubory et al., 2010). The key difference between enzymatic and non-enzymatic antioxidants is 

that the former destroy or quench free radicals in the cellular environment, while the latter have various functions including stimulation of 

enzymatic antioxidants and radical scavenging (Sies 1997). 
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ENZYMATIC ANTIOXIDANTS 
 

Enzymatic antioxidants are also known as natural antioxidants. They neutralize excess ROS and prevent the damage of cellular structure. 

These enzymes are part of the first line defense against OS. Spermatozoa possess primarily enzymatic antioxidants, with SOD being the most  

predominant. SOD scavenges both intracellular and extracellular superoxide radical and prevents LPO of plasma membrane. However, it 

should be conjugated with CAT and GPx to prevent the action of hydrogen peroxide, which promotes the formation of hydroxyl radicals (Sikka 

et al., 1995; Makker et al., 2009). There is a wide difference in SOD activity among spermatozoa of different mammalian species which explains 

the variability in sensitivity to ROS that can be encountered in mammalian spermatozoa. Donkeys, rats and stallions are those with the highest 

sperm enzymatic activity (Alvarez & Storey, 1984; O’Flaherty 2014). On the other hand, spermatozoa remove hydrogen peroxide with a 

reaction catalyzed by CAT. This enzyme has been localized in bovine sperm (Bilodeau et al., 2000). GPx is the final member of  the seminal 

enzymatic antioxidant triad. GPx consists of a family of antioxidants (GPx1-5) that are involved in the reduction of hydroperoxides using GSH 

as an electron donor. The activity of GSH-Px is determined by the regeneration of reduced GSH, which is carried out by glutathione reductase 

(GSSG-R). The balance and interaction between GSH-Px, GSSG-R and GSH play an important role in protecting sperm from oxidative damage 

(Alvarez & Storey 1989). 

 

NON-ENZYMATIC ANTIOXIDANTS 

The variety of enzymatic antioxidants is enriched with other substances present in the diets that pass to the seminal plasma such as 

carotenoids, flavonoids, vitamin E and C (Sikka et al., 1995; Makker et al., 2009). The non-enzymatic substances, also known as synthetic 

antioxidants or dietary supplements, are taking part in the first line of defense (Agarwal et al., 2005). Non-enzymatic antioxidants are also 

participating in the second line of defense against ROS which involves molecules characterized by the ability of rapid inactivation of radicals 

and inhibition of LPO such as melatonin, carotenoids etc. Some of the non-enzymatic antioxidants stimulate enzymatic antioxidants indicating 

that both types act synergistically to maintain or reestablish redox homeostasis (Saraswat et al., 2016; Mirończuk-Chodakowska et al., 2017). 

Finally, non-enzymatic antioxidants are classified into two categories: hydrophilic and lipophilic (Nogushi & Nikki 1999). 

 

ANTIOXIDANT CAPACITY OF SEMINAL PLASMA AND FOLLICULAR FLUID 

Seminal plasma plays an important role in protection of spermatozoa from the oxidative attack. Spermatozoa are susceptible to ROS due to 

the small volume of cytoplasm, low concentration of intracellular antioxidant enzymes, as well as the inability for protein synthesis (Kodama 

et al., 1996; du Plessis et al., 2008). Endogenous antioxidant defense system includes three major enzymatic antioxidants (SOD, CAT and GPx), 

in addition to a great variety of non-enzymatic ones (ascorbate, vitamin A and E, albumin, taurin etc). 

Antioxidant defense mechanisms are present in the follicular fluid, as well as in embryos and the oviductal fluid (Guérin et al. 2001). The 

bovine follicular fluid contains the enzymatic antioxidants, including Mn-superoxide dismutase (MnSOD), cytosolic Cu/Zn superoxide dismutase 

(Cu/ZnSOD), GPx (Lonergan et al., 2003), as well as lipid- and water- soluble non-enzymatic antioxidants, such as α-tocopherol, β-carotene, 

ascorbic acid (Dalvit et al., 1998; Hoshi 2003). Oocytes and embryos are protected by these scavengers that are present both in the follicular 

and oviductal fluid. Oocytes are also protected by cumulus cells, containing enzymatic antioxidants, especially SOD and GSH (Dalvit et al., 

2005). 

Recent data support that high levels of ROS are accompanied with suppressed seminal and follicular antioxidant capacity. The decreased 

scavenging capacity and the elevated ROS levels play a significant role in fertilization and embryo formation. Consequently, under in vivo 

conditions, dietary supplementation of antioxidants would be very promising to avoid the negative effects of OS (Zini & Al-Hathal 2011). 

 

ORAL (DIETARY) SUPPLEMENTATION OF ANTIOXIDANTS 

Despite the large body of literature on the effect of oral administration of antioxidants, it remains unclear which is the best antioxidant agent 

depending on the pathological condition. There are no studies which establish the optimal dose, the combination and the duration of treatment. 

In brief, a dietary antioxidant should be effectively absorbed and distributed, while it should enhance the antioxidant capac ity of the genital 

tract. Comhaire et al. (2000) suggested that it is important to accomplish the determination of ROS levels, DNA fragmentation index and Total 

Antioxidant Capacity (TAC) assay before and after the administration of any antioxidant agent in order to evaluate its effect  on fertilizing 

capacity in the seminal plasma or in the follicular fluid. Nevertheless, to date many clinical trials have demonstrated a significant improvement 

in semen parameters and pregnancy outcome in human. Zini & Al-Hathal (2011) discussed the rationale of oral antioxidant therapy in infertile 

men and suggested that antioxidant dietary supplements (such as astaxanthin, vitamin E, etc.) improved sperm quality parameters compared 
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to the placebo group. Similar studies have been undertaken in animals, more specifically in rabbits, where the supplementation of drinking 

water for 12 weeks with vitamin E (1 g/L), ascorbic acid (1.5 g/L) or a combination of them reduced lipid peroxidation levels and improved 

rabbit semen quality. Interestingly, the best results were obtained from vitamin E (Youssef et al., 2003). 

Plant derived antioxidants have been also tested in vivo. Saffron (100 mg/kg) also improved sperm motility and morphology and preserved 

chromatin integrity after 60 days of oral administration in rats (Mardani et al., 2014), while the supplementation of diet with catechins of green 

tea (200 ppm/kg) alleviated the effects mediated by the enrichment of rabbit spermatozoa with PUFA by preventing LPO (Kokoli et al., 2010). 

Catechins also inhibited apoptosis after 40 days of oral administration in rabbits. The supplementation with 400 ppm/kg was not so effective, 

compared to the lower dose (Kokoli et al., 2010). Additionally, quercetin per os for 28 days in low doses (<20 mg/kg) augmented sperm count, 

motility and viability and enhanced the activity of CAT and SOD in male rats (ElMazudy et al., 2015). 

The influence of antioxidants in the female reproductive tract has also been reported. For example, lack of vitamin E affected the release of 

gonadotrophins from adenohypophysis (Das & Chowdhury, 1999), while the oral administration of ascorbic acid stimulated their release in 

female rats (Lee et al., 2007). In dairy cows, the administration of vitamin E in combination with selenium has been reported  to reduce the 

incidence of postpartum reproductive disorders such as retained fetal membranes, cystic ovaries and to improve fertility (Arechiga et al., 

1994). In general, the deficiency of antioxidant minerals (e.g. Zn, Se) or vitamins (e.g. folic acid, vitamin B12) reduces the survival and growth 

of embryos and fetuses. 

 

OXIDATIVE STRESS IN ASSISTED REPRODUCTIVE TECHNIQUES (ART) AND ANTIOXIDANT 

SUPPLEMENTATION 

 

Despite the rapid expansion and developments achieved in in vitro embryo production (IVEP), the outcome remains unsatisfactory. The 

proportion of fertilized oocytes reaching to the blastocyst stage is still limited, ranging 30-40% in bovine (Rizos et al., 2008). The handling and 

culture of gametes and embryos in vitro renders them susceptible to high risk of OS because the oxygen tension in the oviduct is approximately 

one-quarter to one-third of atmospheric tension (Hoshi 2003). Hence, Catt & Henman (2000) proposed three possible ways to counteract the 

negative effects of OS: a) decreasing the oxygen in the gas phase used for culture, b) modification of the media with components designed to 

protect cells from OS and c) reducing the co-incubation period for sperm and oocytes to minimize oxidative damage due to sperm metabolism. 

The idea of modified media with antioxidant agents during the different stages of IVEP seems to be very promising in order to improve the 

blastocyst rate. 

 

a. In vitro maturation (IVM) 

In the majority of IVM techniques in domestic animals, cumulus cell expansion and nuclear maturation are concomitant phenomena during the 

culture period (Salavati et al., 2012). The role of ROS and the impact on oocyte maturation and embryonic development still remains 

controversial. Controlled amounts of ROS contribute to oocyte maturation in cow (Blondin et al., 1997) and swine (Taemoto et al., 2000). 

However, the in vitro conditions render the oocytes to higher oxygen concentration than in vivo, leading to overwhelming production of ROS, 

which is associated with meiotic arrest and chromosomal errors (Guérin et al., 2001). Oocytes are protected by cumulus cells,  containing 

enzymatic antioxidants, especially SOD and GSH. However, Cetica et al. (2001) reported that under standard culture conditions, no increase 

was observed in ROS production during IVM of bovine oocytes and between denuded matured and immature oocytes. This implies that oocyte 

is capable of controlling the increase in ROS due to its own enzymatic antioxidant activity. Indeed, Lonergan et al., (2003) found that mRNA 

expression of enzymatic antioxidants is significantly higher in matured oocytes in cow animal model. On the contrary, cumulus cells have a 

critical role in protecting in vitro matured porcine oocytes against OS–induced apoptosis through the enhancement of glutathione content 

(Taemoto et al., 2000). 

 

Despite the endogenous protection of oocytes, researchers tried to modify the medium of IVM in order to ensure a certain production of ROS 

during IVM which is required to increase blastocyst production (Blondin et al., 1997). There is evidence that the modification of the medium 

with β-mercapthoethanol (β-ME) and cysteamine enhanced GSH synthesis in bovine (De Matos & Furnus, 2000) and in buffalos (Gasparrini et 

al., 2000), resulting in the improvement of embryo development. Furthermore, Ali et al. (2003) have focused on the possible effect of cysteine, 

CAT and SOD on bovine oocytes. The addition of cysteine to the maturation medium revealed a significant improvement of the developmental 

competence of the oocytes. On the other hand, SOD and CAT had no effect, which can be attributed to the fact that cysteine permeates the 

cumulus oocyte complexes (COCs), while enzymatic antioxidants not (Ali et al., 2003). 
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The role of vitamins as antioxidants in the maturation medium is converging, depending on species. For example, the beneficial effect of 

vitamin E on oocyte maturation and embryo development was recorded in porcine (Tao et al., 2010) and ovine oocytes (Natarajan et al., 2010), 

but not in canine oocytes (Salavati et al., 2012). 

The literature regarding the supplementation of IVM medium with melatonin is conflicting. Dimitriadis (2006) found that the presence of 

melatonin at the final stages of IVM improved the percentage of blastocyst production in bovine, while Tsantarliotou et al., (2007) suggested 

that the supplementation of maturation medium with different concentrations of melatonin did not improve cleavage and blastocyst rates, 

compared with the control group. Furthermore, the presence of melatonin in IVM medium of porcine oocytes resulted in lower levels of ROS 

and significantly higher percentage of mature oocytes, compared with the untreated group, but no increase in cleavage frequency or blastocyst 

cell number was observed (Kang et al., 2009). 

So far, plant derived antioxidants proved to be beneficial for the oocytes during IVM. Interestingly, the addition of aqueous extract of saffron 

(40μg/ml) resulted in significantly higher percentage of matured oocytes in vitro in mice (Maleki et al., 2014), while crocin (10μg/ml), one of 

the main bioactive constituents of saffron, improved both nuclear maturation and subsequent developmental competence (Maleki et al., 2016). 

This observation has been attributed to the increase in GSH content in the matured oocytes. Interestingly, crocin had a dose-dependent effect 

on GSH concentration and cytoplasmic maturation (Maleki et al., 2016). Similarly, the anthocyanin treatment of porcine oocytes during IVM 

improved the developmental competence of embryos, most likely by increasing intracellular GSH synthesis and reducing ROS level (You et al., 

2010). Furthermore, the addition of green tea polyphenols (15 μM) in IVM medium had beneficial effects on subsequent bovine embryo 

development, which could be attributed to the protective effect of polyphenols on oocytes against OS (Wang et al., 2007). 

 

b. In vitro fertilization 

i. Sperm cryopreservation, sperm preparation and antioxidant supplementation. 

The use of cryopreserved sperm in farm animals IVEP is a common practice. The handling of spermatozoa in high oxygen tension compared to 

that of the genital tract and the removal of seminal plasma triggers the production of ROS (Bilodeau et al., 2000) and diminishes the activity 

of GPx and SOD (Chatterjee & Gagnon, 2001). Consequently, spermatozoa are often more susceptible to LPO and their fertilizing capacity after 

thawing is affected. Several studies have focused in supplementing the freezing medium with antioxidants. In bovine spermatozoa, vitamin E 

(1 mg/ml) supplementation in the extender medium reduced LPO, enhanced CAT and GSH activity and improved motility parameters (Hu et al., 

2011). Furthermore, the addition of SOD combined with GSH in the freezing medium resulted in the improvement of post thaw quality 

parameters (motility, viability, hyposmotic swelling test), associated with the enhancement of SOD and GPx activity and the diminution of LPO 

in bovine spermatozoa (Karaji et al., 2014). 

 

Besides, the hormone melatonin has been evaluated as antioxidant agent in the semen extenders. The supplementation of 2 mM or 3 mM 

melatonin in the freezing extender of bovine spermatozoa improved the quality of post thawed semen which can be attributed to the reduction 

of LPO and the enhancement of total antioxidant capacity and enzymatic activity (Ashrafi et al., 2013). Similarly, Succu et al. (2011) showed 

that 1 mM melatonin in ram freezing extender medium led to higher viability rates, higher percentages of total motile and progressive motile 

spermatozoa, higher intracellular ATP concentrations and significant DNA integrity, compared to the untreated group. 

Likewise, the presence of plant derived antioxidants has been evaluated in semen extenders. Lycopene (1 mg/ml), a carotenoid pigment, 

improved post thaw motility and viability and protected DNA when added in the freezing medium of bovine spermatozoa (Bucak et al., 2015). 

Resveratrol has been also evaluated, but the results are conflicting among species. For example, although the addition of 50 μM resveratrol 

had no effect on motility and viability parameters, the supplementation of the extender reduced OS and improved membrane stability and in 
vitro fertilizing capability of buffalo spermatozoa (Longobardi et al., 2017). On the contrary, the addition of resveratrol (1 mM) in bovine sperm 

was accompanied with significant improvement in post thaw sperm quality parameters (motility, viability, DNA integrity) (Bucak et al., 2015). 

In any case, it is important to underline that the maintenance of sperm integrity and its fertilizing capacity also depends on the 

cryopreservation protocol.  

The selection of the ideal sperm preparation technique is crucial to minimize the effects of ROS. The density gradient technique separates 

normal spermatozoa from the potential risk factors of OS, such as dead spermatozoa and leukocytes (Chen & Bongso, 1999). Besides, Gadea 

et al. (2005) proposed that the supplementation of the media with antioxidants right after thawing blocks the production of ROS or counteracts 

oxygen toxicity. 

Furthermore, enzymatic antioxidants have been tested in vitro but the data are also disputable. The addition of CAT (200 U/mL) and GSH (10 

mM) protected equine spermatozoa from OS-induced DNA damage and loss of motility (Baumber et al., 2005), while the addition of reduced 
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GSH (1 mM and 5 mM) to the thawing medium of boar spermatozoa resulted in increased penetration rate of oocytes, although not significant 

(Gadea et al., 2005). 

The role of melatonin has also been investigated in sperm preparation medium. In bovine, the addition of melatonin (1 μM) protected 

spermatozoa after 1 hour incubation from the induced OS, in terms of motility (Tsantarliotou et al., 2012). Da Silva et al. (2011) reported that 

the incubation of equine spermatozoa with melatonin (50 pM-1 μM) for 3 h had no effect on motility parameters, assessed by Computer 

Assisted Sperm Analyzer (CASA), despite the fact that LPO was suppressed. Nevertheless, melatonin, probably due to the controlled amounts 

of lipid hydroxyperoxides, reduced changes in the spermatozoa related to apoptosis (increased sperm membrane permeability  and lowered 

mitochondrial membrane potential-ΔΨm). Similar evidence exists in red deer spermatozoa, where melatonin at 0.1 mM or 1 mM did not 

improve sperm status after 4-h incubation (Domínguez-Rebolledo et al., 2010), and in ram spermatozoa, where melatonin failed to protect 

both sperm kinematic parameters and viability (Casao et al., 2010). Nevertheless, the pre-treatment of ram spermatozoa with melatonin (100 

pM) for 1 h caused a significant increase in the fertilization rate following IVF (Casao et al., 2010). The ameliorative effect of melatonin has 

been also confirmed in porcine where the incubation of spermatozoa with melatonin (100 nM) for 6 hours protected spermatozoa from the 

induced OS and improved the developmental ability of IVM/IVF embryos (Jang et al., 2010). 

Two main bioactive constituents of saffron, crocin and crocetin have been also evaluated in vitro. More specifically, the addition of crocin (1 

mM) resulted in maintenance of bovine and red deer sperm quality parameters (motility, viability, DNA integrity) by regulating intracellular 

levels of ROS (Domínguez-Rebolledo et al., 2010; Sapanidou et al., 2015) and ongoing LPO (Sapanidou et al., 2015). The ameliorative effect of 

crocin on motility and viability was also observed even when exogenous OS was induced by hydrogen peroxide (Tsantarliotou et al., 2016). 

On the other hand, the supplementation with crocetin (2.5 μM) was accompanied with significant lower production of ROS and lipid 

hydroxyperoxides, resulting in maintenance of sperm fertilizing capacity (Sapanidou et al., 2016). 

The addition of resveratrol (25-50 μM) in sperm preparation medium alleviated the effects of the induced OS and, consequently, prevented 

the decline of functional activity and antioxidant capacity of bovine spermatozoa after 6 h of incubation. The effect was attributed to the 

enhancement of SOD and GSH activity (Tvrdá et al., 2015). On the contrary, the treatment of ram spermatozoa with resveratrol (up to 75 μM) 

negatively affected plasma membrane integrity and motility parameters after 1 hour of incubation (Silva et al., 2016). Finally, the 

supplementation of sperm preparation medium with a polyphenol-rich grape pomace (5 μg/ml) extract suppressed MDA production and 

protected sperm quality parameters, motility and plasma membrane integrity of bovine spermatozoa (Sapanidou et al., 2014).  

ii. Antioxidant supplementation during IVF 

The antioxidant requirements of gametes during fertilization seem to be paradoxical for oocytes and spermatozoa, depending on the balance 

between the amounts of ROS generated and scavenged (Blondin et al., 1997). The involvement of specific ROS may depend on the incubation 

conditions and on the species, while the molecular mechanism of action is not well defined in all species. ROS may induce capacitation/AR 

either directly or indirectly, through regulation of specific enzymes, such as phospholipase A2 (PLA2) which is present in sperm plasma 

membrane (de Lamirande et al., 1997; O’Flaherty et al., 1999). Capacitation studies indicate an asynchrony in the events related to fertilization. 

In capacitating human spermatozoa, superoxide anion production starts at the beginning of the incubation period while sperm hyperactivation 

peaks 1-3 h later and capacitation progressively increases over the 6 h incubation (de Lamirande & Gagnon, 1995). One of the first changes 

that occur during sperm capacitation is cholesterol efflux (Davis et al., 1980), which is partially regulated by ROS (Aitken & Nixon, 2013). 

Consequently, the addition of any antioxidant agent should be done with respect to the fine balance between production and scavenging of 

ROS, as well as the adequate timing for the phenomena related to the acquisition of sperm fertilizing capacity. 

 

Despite the fact that the data regarding antioxidant supplementation during conventional IVF are conflicting the objective of this technique is 

to ensure alive and highly motile spermatozoa with intact DNA and plasma membrane. The addition of enzymatic antioxidants in the IVF 

medium was accompanied with controversial results. More specifically, the combination of SOD and catalase in different concentrations 

resulted in lower morula and blastocyst production, compared to the control group in bovine species (Iwata et al., 1998; Ali et al., 2003). 

Similarly, the presence of β-ME and cysteine at low concentrations during IVF did not improve embryo development to the blastocyst stage 

(Gonçalves et al., 2010). On the other hand, the addition of taurine (50mM), the main end product of cysteine in mammals, stimulated embryonic 

development up to the blastocyst stage in bovine (Tsuzuki et al., 2010). 

The addition of green tea polyphenols during bovine IVF at low concentration (10μM) had no effect, while higher concentrations reduced the 

cleavage and blastocyst rates (Wang et al., 2007). On the contrary, the addition of crocin (1 mM) or crocetin (2.5 μM) in the IVF medium resulted 

in significantly higher blastocyst production compared to the negative control (Sapanidou et al., 2015, 2016). Consequently, the data are 
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conflicting to describe whether the supplementation of IVF medium is necessary or not. However, the addition of any antioxidant should be  

committed with respect to all redox-regulated physiological processes. 

c. In vitro culture (IVC) 

IVC is another crucial step during IVEP. ROS production increases dramatically between 2-cell embryo and late morula in bovine species (Dalvit 

et al., 2005). The handling of zygotes/embryos under atmospheric oxygen tension and high glucose concentration induces in overproduction 

of ROS (Iwata et al., 1998). Other potential exogenous sources of ROS are the metallic cations in the media, the visible light and ROS producing 

spermatozoa that remain outside (Guérin et al., 2001). 

 

In that cases where the reduction of oxygen tension from 20% to 5% is not possible, the addition of an antioxidant agent to the culture 

medium may offer a way of protecting the embryos. Supplementing culture media with CAT or SOD resulted in an increase in the rate of 

blastocyst formation in bovine (Lauria et al., 1994). 

The addition of vitamins in IVC media has been also proposed and the presence of α-tocopherol (100 μM) significantly improved blastocyst 

production in bovine (Marques et al., 2007). This observation has been verified in porcine where α-tocopherol (100 μM) had an embryotrophic 

effect during IVEP (Kitagawa et al., 2004) while Hossein et al. (2007) suggested that the effect of α-tocopherol depends on the concentration 

and the supplementation time. The latest study also suggests that the supplementation with 100 μM ascorbic acid, 0 and 96h of culture is 

effective, too (Hossein et al., 2007). Furthermore, Feugang et al. (2004) showed that 400 μM Trolox (a water-soluble analogue of vitamin E) 

and β-ΜΕ (100 μM), added separately from the morula stage, prevented apoptosis induced by OS and improved the quality of resulting 

bovine blastocysts. Indeed, a previous study carried out by Takahashi and co-authors (2002) suggested that β-ΜΕ exerted the antioxidant 

role via the promotion of cystine uptake in embryos.  

Many investigators have studied the impact of melatonin supplementation of in vitro culture media in porcine, bovine and ovine embryo 

development, overall demonstrating a beneficial effect. Papis et al., (2007) reported that the addition of melatonin (0.1 mM) had a positive or 

negative effect, depending on the oxygen tension during culture of bovine embryos. The ameliorative effect was observed in 20% oxygen 

tension. The results have been verified by Wang et al., (2014a) where the supplementation of culture medium with low concentrations of 

melatonin (10-9 M and 10-7 M) significantly upregulated the expression of antioxidative (GPx4, SOD1, bcl-2) and developmentally important 

genes, while downregulated the expression of pro-apoptotic genes. Furthermore, melatonin receptor MT1 and MT2 genes were identified in 

bovine embryos (Wang et al., 2014a). The most effective concentration (10 -7 M) was also added to bovine presumptive zygotes in order to 

evaluate the cleavage and fertilization rates and the kinetics of embryo development. Actually, the presence of melatonin promoted blastocyst 

production, accelerated in vitro bovine embryo development and improved quality of blastocysts which was indexed by an elevated 

cryotolerance (Wang et al., 2014b). Moreover, melatonin (10-9 M) had a positive effect on porcine embryo cleavage rates and blastocyst total 

cell numbers (Rodriguez-Osorio et al., 2007) while it improved in vitro embryonic quality and survival in sheep (Abecia et al., 2002). 

Resveratrol (0.5 μM) improved the cryotolerance of in vitro produced bovine embryos and hatching rates (Zullo et al., 2016). A positive effect 

of resveratrol on in vitro embryonic development was also demonstrated in porcine, as indicated by enhanced blastocyst formation and 

improved embryo development (Lee et al., 2010). The catechins of green tea have been also evaluated during IVC in bovine embryos. The 

supplementation with 15 μM catechins was accompanied with significant increase in blastocyst production (Wang et al., 2007). Following trials 

concluded that the antioxidant effect of green tea polyphenols is associated with an increase in the relative transcription of many antioxidant 

enzymes genes (SOD1, CAT, GPx) and decrease in the apoptotic index of bovine embryos (Wang et al., 2014b). 

Ultimately, carotenoids have been also tested during IVC. Zullo et al. (2016) investigated the effect of crocetin during IVC. The authors concluded 

that crocetin (1μM) increased blastocyst production, improved embryo cryotolerance and reduced the incidence of apoptotic cells in the 

blastocysts. 

 

CONCLUSIONS 
 

ROS have a significant impact on gametes’ and embryos’ homeostasis. These metabolites of oxygen are continuously controlled by endogenous 

antioxidant systems creating a redox balance in all cell types. The impairment of antioxidant status disrupts this balance and favors 

ultrastructural and functional damages of gametes and embryos leading to subfertility. In the last decades the concern regarding subfertility, 

poor fertilization outcome of IVEP and inherent relationship with OS is a subject of broad scientific research in both human and animal species. 

The results of in vitro and in vivo studies suggest that enzymatic and non-enzymatic antioxidants can protect cells from oxidative stress. 

However, ROS are critical for successful fertilization and embryo development and therefore antioxidants and ROS scavengers should be used 
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very judiciously with respect to the physiological processes, where ROS are playing a signalling role. This review summarizes  the consensus 

on the role of oxidative stress and antioxidants in human and animal reproduction. An emphasis is given in the cr itical role of plant derived 

antioxidants. Nevertheless, further studies should be addressed in order to elucidate the ameliorative action, the recommended dosage or 

concentration of antioxidants and the possible synergistic role between different antioxidants, depending on the cause of subfertility or the 

stage of IVEP. 
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