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ABSTRACT 
Semen evaluation is an important component for the assessment of the stallion breeding potential, as well as for the diagnosis of subfertility/infertility 

cases. Furthermore, accurate estimation of the damage suffered by the sperm cell after cooling or freezing procedures is necessary for the development 

of newer procedures to maintain sperm integrity and function. Nevertheless, commonly used methods for sperm quality evaluation (sperm motility or 

sperm morphology) are not completely associated with the fertilizing potential of the spermatozoa under in vitro conditions, and in the best-case 

scenario are poor- to- moderately associated with in vivo fertility. In recent years, the introduction of advanced methods based on the use of 

fluorochromes for sperm evaluation has improved the clinician’s and researcher’s capacity to account for the differences on the fertility potential 

between sires, as well as critically evaluate the effect of several methods to preserve stallion sperm. The aim of this paper was to review some of the 

current fluorescence-based methods used for the evaluation of equine semen as an alternative for the selection of breeding stallions, the diagnosis of 

subfertility/infertility, and the estimation of optimal protocols for sperm preservation under laboratory conditions. 
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RESUMEN 
 

La evaluación del semen es un componente importante en  la evaluación del potencial reproductivo de sementales, así como para el diagnóstico de casos de 

subfertilidad / infertilidad. Además, es necesario realizar una estimación precisa del daño sufrido por la célula espermática después de los procedimientos de 

refrigeración o criopreservación para el desarrollo de nuevos procedimientos a fin de mantener la integridad y la función del espermatozoide. Sin embargo, 

los métodos comúnmente utilizados para la evaluación de la calidad espermática (motilidad o morfología espermática) no están completamente asociados con 

el potencial de fertilización del espermatozoide en condiciones in vitro, y en el mejor de los casos están poco a moderadamente asociados con la fertilidad in 
vivo . En los últimos años, la introducción de métodos avanzados basados en el uso de fluorocromos para la evaluación espermática ha mejorado la capacidad 

del clínico y del investigador para explicar las diferencias en el potencial de fertilidad entre los sementales, así como evaluar críticamente el efecto de varios 

métodos para preservar el espermatozoide equino. El objetivo de este trabajo fue revisar algunos de los métodos actuales basados en fluorescencia que están 

siendo  utilizados para la evaluación del semen equino como una alternativa para la selección de sementales reproductores, el diagnóstico de subfertilidad / 

infertilidad y la estimación de protocolos óptimos para la preservación del espermatozoide bajo condiciones de laboratorio. 
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INTRODUCTION 

 
The equine breeding industry has increased exponentially in the last 30 years in different countries around the world, where the use of 

different assisted reproductive technologies (ARTs) such as artificial insemination (AI) with cooled or frozen semen, embryo transfer (ET) and 

more recently intracytoplasmic-sperm injection (ICSI) are now considered as a routine procedure for veterinarians (Hinrichs, 2018; Panarace 

et al., 2014). The possibility to spread genetics from superior sires worldwide has increased the popularity of these ARTs among breeders, 

owners and stud farms, which highlights the importance of correctly assessing the reproductive potential of stallions.  

As compared to other domestic species such as bulls or boars, wherein the selection or culling criteria are almost based on their reproductive 

capacity, stallions are selected by their pedigree, conformation and/or athletic performance. Thus, there is a significant percentage of stallions 

whose semen does not satisfy the “high-quality” criteria used for other species, leading to an important proportion of studs with marginal 

semen quality with possible impaired fertility (Varner, 2016; Miró-Morán et al., 2013). Moreover, while the use of semen technologies such as 

sperm cryopreservation or sex-sorting is highly developed in other species, their use in the equine breeding industry is relatively scarce. This 

is mainly related to several physiological characteristics of the equine spermatozoa, which makes it more susceptible to cellular and molecular 

damage during cooling, freezing, and sex-sorting. Although the mechanisms related to those effects are beyond the scope of this paper, the 

main effects of those techniques are related to osmotic and oxidative imbalances, which culminates on several alterations in cellular organelles 

such as plasma membrane, acrosome, mitochondria and DNA integrity, among others (Peña et al., 2015; Balao da Silva et al., 2016; Martín-

Muñoz et al., 2015). It is therefore imperative to use a battery of tests for semen evaluation in order to correctly estimate semen quality and 

fertility of a given group of stallions. The aim of this paper is to review the current techniques used for analyze stallion sperm quality, either 

in clinical or laboratory situations.  

 

 

ARE THE SPERM MOTILITY AND MORPHOLOGY EVALUATION ENOUGH AS ASSAYS TO ESTIMATE 

STALLION SPERM QUALITY? 

 
Traditionally, assessment of sperm motility and morphology have been considered landmarks of stallion semen evaluation. The Manual for 

Clinical Assessment of Stallion Fertility published by the Society for Theriogenology (SFT) uses both tests to classify the fertility potential of a 

stallion. Based on the SFT guidelines, a stud must ejaculate a minimum of 1 billion of progressively motile-morphologically normal sperm to 

be considered as a satisfactory prospective breeder (Kenney et al., 1983). These two semen quality tests were included in the stallion breeding 

soundness examination by their easiness to be conducted under field conditions with limited equipment and were adapted from the SFT bull 

breeding soundness examination guidelines (Ball et al., 1983; Hopkins & Spitzer, 1997).  

 

In general, the estimation of sperm motility is performed using a conventional light microscope or a phase-contrast microscope at 200-400X 

equipped with a warmed stage to control temperature fluctuations that could reduce sperm motility and generate interpretation  errors. As 

quality endpoints, the clinician or researcher determines subjectively the percentage of sperm displaying any kind of motion (total motility, 

TMOT), the percentage of sperm displaying a straight-forward motion (progressive motility, PMOT), and in some cases sperm velocity. 

Historically the percentage of progressively motile sperm has been associated with high sperm quality. A value of 60% PMOT in fresh semen, 

30% PMOT in cooled semen (after 24-48 hours of storage), and 30% PMOT in frozen/thawed semen have been considered as threshold values 

for fertile stallions (Kenney et al., 1983; Hurtgen, 1992; Loomis & Graham, 2008).  

Recently, the use of computer-assisted sperm analyzers (CASA) is considered as the most reliable method to evaluate sperm motion 

characteristics in different species, including the stallion (Amann & Waberski, 2014; Loomis & Graham, 2008; Jasko et al., 1992). These systems 

not only can estimate the percentages of total and progressive motility but also can determine different sperm subpopulations  based on 

velocity indexes or motion characteristics that are associated with physiological status such as hyperactivation (Amann & Waberski, 2014). 

Several studies about the relationship between sperm motion analyzed by CASA and stallion fertility have been published (Jasko et al., 1992; 

Quintero-Moreno et al., 2003; Kuisma et al., 2006; Love, 2011); however, most of those studies consistently demonstrate a low relationship 

between sperm motion characteristics and pregnancy rates. Jasko et al. (1992) reported that the assessment of sperm total motility by CASA 

was poorly correlated with per cycle fertility rate of stallions (r = 0.34; P < 0.01), while Love (2011) observed that the only sperm motion 

feature (analyzed by CASA) that had a high association with seasonal pregnancy rate, percent pregnant/cycle and percent pregnant/first cycle 

was total motility (r = 0.42, 0.59, and 0.64, respectively; P < 0.05). Moreover, the capacity to obtain consistent results of sperm motion 

characteristics by CASA in a non-biased manner is highly dependent on the type of chamber, dilution factor used before testing, type of sample 
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analyzed (raw, extended, frozen), and even between brands of sperm analyzers (Yesté et al., 2018; Hoogewijs et al., 2012; Hoogewijs et al., 

2011). These factors partially explain why there is no consensus between laboratories, research stations or stud farms about the motion 

characteristics that could be used for classifying a stallion as fertile or subfertile. In fact, a study conducted by Janson-Whitesell et al. (2014) 

showed how the same group of stallions could be classified as satisfactory prospective breeders or not, just by using two different CASA 

settings for sperm motion analysis. 

Assessment of sperm morphological features has been commonly conducted using samples prepared with background stains, such as  eosin-

nigrosin or trypan-blue (using conventional light microscopy), wet mount samples fixed with buffered-formalin solution (using phase-contrast 

or differential interference contrast-DIC microscopy), or more advanced techniques such as computed assisted sperm morphometry or electron 

microscopy (Voss et al., 1981; Veeramachaneni et al., 1993; Gravance et al., 1996; Love et al., 2000; Brito et al., 2011). Although various sperm 

morphology classification systems have been published in the literature, these are based mainly in the estimation of the percentage of normal 

sperm cells, and the percentages of head, midpiece, and principal piece abnormalities. Based on these types of defects, some studies have 

reported a low relationship between the percentage of morphologically normal sperm and per cycle fertility (r = 0.34, P < 0.01; Jasko et al., 

1990), percent of pregnant/cycle and percent of pregnant/first cycle (r = 0.42 and 0.39, respectively; P < 0.05; Love, 2011). Likewise, Love et 

al., (2000) observed that the sperm morphological defects that had an influence on the odds of pregnancy were the percentages of abnormal 

heads (OR: 0.970, P < 0.02), detached heads (OR: 0.888, P < 0.05), abnormal midpieces (OR: 0.883, P < 0.0001), coiled tails (OR: 0.839, P < 

0.002), and premature germ cells (OR: 0.421, P < 0.0005).  

As mentioned above with sperm motility, the evaluation of sperm morphology is particularly dependent of other factors inherent to the 

technique, such as processing method, type and quality of the equipment used, training of the personnel conducting the evaluation, 

environmental conditions in which the test is performed, among others (Brito et al., 2011; Murcia-Robayo et al., 2018). In general, the use of 

the wet mount technique is superior to the use of background stains such as eosin-nigrosin, due to the potential effect to induce artifactual 

changes on the sperm shape during processing (particularly coiled and bent tails, or detached heads; Brito et al. , 2011); it also limits the 

capacity to detect subtle but fertility limiting defects, such as abnormalities on the midpiece, head or acrosome (Love, 2018). However, the use 

of wet-mount samples requires the investment on high-quality phase-contrast or DIC microscopes, which are expensive, and require special 

training of the personnel involved in sperm evaluation.  

 

 

FLUORESCENT-BASED METHODS FOR OBJECTIVE EVALUATION OF STALLION SPERMATOZOA 
 

Since the late 80’s, several researchers have proposed the use of a wide battery of tests to evaluate different sperm features that could be 

related with male fertility or could explain why the sperm do not survive well after cooling or cryopreservation (Amann & Hammerstedt, 1993; 

Colenbrander et al., 2003). In a review published, Varner & Johnson (2007) proposed a list of several processes that the spermatozoa must 

undergo during its development, maturation, and ejaculation, as well as several attributes that a spermatozoon must possess to fertilize an 

oocyte (Table 1). These traits include several characteristics of the sperm plasma membrane, acrosome membrane, mitochondria,  DNA and 

molecular mechanisms which cannot be assessed directly or indirectly by the simple determination of sperm motility and morphology.  

Therefore, the incorporation of techniques that allow the evaluation of the characteristics mentioned above is necessary for the clinical and 

research arena. Recent developments on computational based technologies for somatic cell analysis such as flow cytometry have increased 

also the use of these technologies in andrology. Nowadays, it is common to find laboratories around the world where the sperm quality 

evaluation in different species, including the stallion, is based on flow cytometry or fluorescence microscopy analysis. Among the fluorescence-

based techniques, evaluation of sperm plasma membrane intactness, acrosome membrane intactness and function, mitochondrial functionality, 

DNA integrity, oxidative stress status and some molecular pathways related with the fertilization process are frequently reported. Part of this 

manuscript will be focused on the most common probes that could be used for this purpose. 

 

 

PLASMA MEMBRANE INTACTNESS: THE CONCEPT OF THE LIVE/DEAD SPERM 

 
The sperm plasma membrane is a bilayer composed mainly by phospholipids, cholesterol, transmembrane proteins and glycocalyx (Parks & 

Lynch, 1992; Gadella, 2008). Its main functions are related to physiological processes such as osmoregulation, ionic interchange, and the 

preparation of the sperm capacitation and subsequent acrosome reaction (Boerke et al., 2008; Gadella et al., 2008; Drobnis et al., 1993). Given 

this, an intact and functional plasma membrane is vital for both sperm survival after cooling, freezing/thawing or sex-sorting, as well as when 
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assessing stallion sperm quality and fertility. The concept of viability has been commonly associated with plasma membrane intactness, and 

several methods for its assessment are based on the use of fluorochromes or fluorescent dyes (Peña et al. , 2018; Love, 2012; Love et al., 

2003; Casey et al., 1993).  

 

 

Table 1. A partial list of attributes that stallion sperm must to possess in order to successfully travel 

through the mare’s reproductive tract, fertilize an oocyte and produce an embryo. Adapted from Varner 

& Johnson, 2007. 

Attribute 
Mechanisms and methods associated with its 

function 

Capacity to move from the insemination site, 

through the uterus, until the oviduct 

Fully functional machinery related to energy production-

mitochondrial function; assessment of sperm motion 

characteristics 

Highly compacted chromatin as a protective 

mechanism against environmental injury 

DNA integrity assessment through SCSA, COMET, TUNEL or 

8OHdG techniques 

Alterations in the sperm plasma membrane 

during formation of spermatozoal reservoir 

within the oviduct, and acquisition of 

maturational changes required for zona pellucida 

binding 

Plasma membrane and acrosome intactness; evaluation of 

sperm capacitation by immunolabeling of protein tyrosine 

phosphorylation 

Penetration through the cumulus-oocyte-complex 

and zona pellucida 
Intact and fully functional acrosome membranes 

Oocyte activation and embryo development Spermatozoon-derived factor-Phospholipase C Zeta 

Pronucleus formation in the zygote 
DNA integrity assessment through SCSA, COMET, TUNEL or 

8OHdG techniques 

 

 

The most commonly used techniques for assessing sperm plasma membrane intactness include the combination of 2 or even 3 fluorescent 

probes. The use of membrane impermeable probes such as propidium iodide (PI) or ethidium homodimer-1 (EthD-1) in combination with 

membrane permeable probes such as SYBR-14 or 6-carboxyfluorescein diacetate (CFDA) is among the most common methods both in clinical 

and research settings (Garner & Johnson, 1995; Merkies et al., 2000). Others have included to these combinations the use of bisbenzimides or 

membrane permeable dyes (particularly Hoechst 33342), mostly when flow cytometry is used, for gating out of the analysis all the non-sperm 

particles that could generate interpretation errors (Martínez-Pastor et al., 2010). Regardless of their chemical classification, all these probes 

are targeted to bind the DNA and differ fundamentally in their capacity to cross intact or damaged plasma membranes, emitting a fluorescent 

signal when excited using the appropriate wavelength (Table 2). After excitation with a laser or a fluorescent beam, SYBR-14 and CFDA emit 

green fluorescence, PI and EthD-1 emit red fluorescence, and Hoechst 33258 and 33342 emit blue fluorescence; thus, after the use of an 

adequate combination of fluorescent probes the clinician or researcher is able to determine percentages of intact and damaged sperm plasma 

membrane (Figure 1). All the fluorescent probes mentioned above can be used either with fluorescence microscopy or flow cytometry, being 

the last one considered as a more reliable, fast and objective method for sperm analysis (Peña et al., 2016; Petrunkina et al., 2007). It can 

also be combined with other compartmental probes such as acrosomal or mitochondrial probes for the simultaneous analysis of sperm integrity 

and function (Love et al., 2003; Hernández-Avilés et al., 2018a). Furthermore, there is a commercially available automated-cell counter 

(NucleoCounter SP-100®, Chemometec, Allerød, Denmark) for evaluation of stallion sperm plasma membrane intactness (Love, 2012; Foster et 

al., 2011). This device uses disposable cassettes loaded with propidium iodide to determine the total sperm number in the sample, and then 

the proportion of that sperm with damaged plasma membranes based on the exclusion of PI in less than 2 minutes, being particularly useful 

in research stations and stud farms.  
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Table 2. Fluorescent probes commonly used in clinical and research situations for multiparametric assessment of 

stallion sperm quality using either flow cytometry or fluorescence microscopy. 

Organelle or function Interpretation Fluorescent probe Excitation/Emission 

wavelength 

Staining pattern 

Plasma membrane 

intactness 

Damaged plasma 

membrane 

Propidium iodide 535/617 nm Red staining over the sperm 

head 

Hoechst 33258 352/461 nm Blue staining over the 

sperm head 

Ethidium homodimer 528/617 nm Red staining over the sperm 

head 

Intact plasma 

membrane 

SYBR-14 485/517 nm Green staining over the 

sperm head 

6-Carboxyfluorescein-

diacetate 

492/517 nm Green staining over the 

sperm head 

Acrosome membrane 

intactness 

Damaged/reacted 

acrosome 

FITC-PSA or FITC-PNA 490/525 nm Green staining over the 

acrosomal region 

Mitochondrial 

membrane intactness 

and function 

Mitochondrial 

intactness 

Rhodamine 123 or 

MitoTracker Green 

490/534 nm Strong green fluorescence 

over the midpiece 

High mitochondrial 

membrane potential JC-1 

535/590 nm Red-orange staining over 

the midpiece 

Low mitochondrial 

membrane potential 

485/530 nm Green-none staining over 

the midpiece 

DNA Integrity 

Intact DNA 
Sperm Chromatin 

Structure Assay (SCSA) 

500/526 nm Green staining over the 

sperm head 

Damaged DNA 460/650 nm Orange-red staining over 

the sperm head 

ROS production and 

oxidative stress 

Cellular superoxide 

anion production 

Dihydroethidium 518/605 nm Red staining over the sperm 

head 

Mitochondrial 

superoxide anion 

production 

MitoSOX Red 510/580 nm Red staining over the 

midpiece 

Lipid peroxidation C11-BODIPY 510/590 nm Shift from red to green 

staining over the sperm 

head and midpiece Capacitation Protein tyrosine 

phosphorylation 

FITC-conjugated 

monoclonal antibody 

490/525 nm Green staining pattern over 

the sperm principal piece 

Oocyte activation 

after fertilization 
Phospholipase C-Zeta 

FITC-conjugated 

monoclonal antibody 
490/525 nm 

Green staining pattern over 

the acrosome region and 

sperm principal piece 
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More recently, other authors have proposed the use of fixable stains for sperm viability assessment such as Fixable Live/Dead Red stain 

(Thermo Fisher Scientific, Waltham, MA, USA; Teague et al., 2018; Trentin et al., 2018). These probes are based on the binding of the dye to 

free cellular amines, resulting in an intense fluorescent staining in dead cells. The advantages of these fixable stains are related to the 

easiness to fix the samples in a remote location for further analysis in a suitable laboratory, without incurring on artifactual changes induced 

by storage conditions or storage time. Additionally, their unique emission spectra allow to use multicolor flow cytometry for  simultaneous 

assessment of several sperm features (Peña et al., 2018; Peña et al., 2016). 

Other authors have proposed the use of dyes that measure the fluidity of the sperm plasma membrane such as Merocyanine-540 or Yo-Pro-1, 

to determine subtle changes on the plasma membrane related to capacitation or apoptosis (Gallardo-Bolaños, 2014; Rathi et al., 2001). These 

researchers argue that the use of those fluorescent probes could enhance the detection of early stages of plasma membrane damage; 

nevertheless, a recent study conducted by Stump et al. (2014) determined that no advantage on the detection of plasma membrane changes 

was obtained with the combination of Yo-Pro-1/EthD-1 as compared to the use of SYBR-14/PI and flow cytometry in stallion sperm cooled and 

stored up to 10 days.  

 

 

 

Figure 1. Frozen-thawed stallion spermatozoa stained using the combination of SYBR-14 and propidium iodide, for analysis of sperm 

plasma membrane intactness. Green spermatozoa are considered as spermatozoa with intact plasma membrane (live sperm), while red 

spermatozoa are considered as spermatozoa with damaged plasma membrane (dead sperm). 400X magnification.  
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ACROSOME MEMBRANE: INTACTNESS, FUNCTION AND THEIR RELATIONSHIP WITH STALLION 

FERTILITY 

 
The sperm acrosome is a single, modified organelle located in the anterior portion of the sperm head, between the plasma membrane and 

nuclear envelope. This organelle is enclosed by two membranes, inner and outer acrosomal membrane, which fuses with the sperm plasma 

membrane during the acrosome reaction and contains several hydrolytic and glycolytic enzymes that are intended for the sperm penetration 

process through the cumulus-oocyte complex and zona pellucida during fertilization (Eddy & O´Brien, 1994). Due to its relevance during the 

fertilization process, the assessment of acrosomal status is commonly performed during sperm evaluation in reference laboratories around 

the world (Love, 2018), particularly for cooled or frozen semen (Bosard et al., 2005; Bedford et al., 2000).  

Most frequently used techniques for assessment of acrosome intactness are based on the use of molecules derived from plants, known as 

lectins, which have a high affinity for carbohydrate residues that are expressed in the inner or outer acrosome membrane. These lectins are 

conjugated to fluorescent molecules, such as fluorescein isothiocyanate-FITC, which emits a fluorescent green signal when excited with an 

appropriate wavelength (Table 2). Commercial reagents based on the combination of FITC with the lectins Pisum sativum (PSA) or Arachis 
hypogaea (PNA) are the most reported stains for stallion sperm acrosome evaluation (Farlin et al., 1992; Cheng et al., 1996). Both conjugated 

lectins are commonly combined with viability stains such as propidium iodide or Hoechst 33258 to evaluate simultaneously the plasma 

membrane and acrosome membrane intactness (Figure 2). This method is particularly useful when flow cytometry is used to evaluate cooled 

or frozen/thawed semen since the proportion of acrosomal damage is low in stallion fresh sperm unless plasma membrane damage is 

sustained first (Bedford et al., 2000). With this combination of fluorescent probes, the clinician and researcher can distinguish four different 

sperm subpopulations: 1) Viable/acrosome-intact sperm, 2) Viable/acrosome damaged sperm, 3) Non-viable/acrosome-intact sperm, 4) Non-

viable/acrosome damaged sperm (Figure 3).  

 

 

 

 

 

 

 

Figure 2. Cooled-stored stallion spermatozoa stained using the combination of Hoechst 33258 and FITC-PNA for 

simultaneous assessment of sperm plasma membrane and acrosome intactness. Blue spermatozoa are considered as 

spermatozoa with damaged plasma membrane, while the green staining over the acrosomal region is associated with 

acrosomal damage or premature acrosome reaction. 400X magnification.  
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The assessment of acrosome function is fundamental for the evaluation of stallion fertility, particularly in cases of stallions with good sperm 

motility, morphology, and even viability but with unexplained subfertility/infertility. Several compounds have been reported to induce 

acrosome reaction in stallion sperm, as a method to evaluate its functionality, including heparin (Varner et al., 1993), progesterone (Meyers 

et al., 1995; Rathi et al., 2003), zona-pellucida extracts (Meyers et al., 1996), and calcium ionophores (Varner et al., 2001; 2002). Among these 

inducers, calcium ionophore is the most commonly used for the clinical assessment of acrosome reaction, mainly because the difficulty to 

obtain equine oocytes for zona-pellucida binding, or the relatively weak response of the spermatozoa to progesterone stimulation (Meyers et 

al., 1995). Varner et al. (2001) were the first to report the failure of acrosome reaction after stimulation with calcium ionophore A23187 in a 

group of five stallions with a history of subfertility or infertility (per cycle fertility rate less than 20%) but with satisfactory semen quality and 

testicular size based on SFT guidelines. In this study, they evaluated acrosome reaction by transmission electron microscopy,  considered as 

the gold standard. However, the use of electron microscopy is limited by the cost associated with the technique and equipment, as well as the 

personnel training involved in the sample processing, and the number of spermatozoa that could be evaluated (100-200 sample). Later, this 

same group of researchers reported the induction of acrosome reaction by calcium ionophore stimulation with the use of flow cytometry and 

FITC-PSA staining (Figure 4; Bosard et al., 2005), making it easier and faster to conduct. They reported that 36% of the sperm from fertile 

stallions were able to acrosome react after exposure to A23187, as compared to 11% of the sperm from subfertile stallions. Although a cause 

of the acrosome reaction failure in stallions has not been clearly established, Brinsko et al. (2007) reported that cholesterol to phospholipids 

ratio in sperm and seminal plasma from subfertile stallions was increased as compared to fertile stallions, implying that an excess of 

cholesterol and subsequent reduction of the fusogenic capacity of the plasma and acrosome membranes during the acrosome reaction could 

explain the altered fertility. Moreover, Raudsepp et al. (2012) reported the association of a genetic trait in the chromosome 13 (FKBP6) with 

the failure of acrosome reaction of spermatozoa from seven Thoroughbred stallions after exposure to calcium ionophore.  

 

 

Figure 3. Flow cytometry scattergram representing the simultaneous assessment of sperm plasma membrane and 

acrosome intactness using the combination of FITC-PSA and propidium iodide in cooled stored stallion sperm, and the 

corresponding staining patterns after observation under fluorescence microscopy. Left lower quadrant: sperm with intact 

plasma membrane and acrosome. Right lower quadrant: sperm with intact plasma membrane and disrupted acrosome. Left 

upper quadrant: sperm with damaged plasma membrane and intact acrosome. Right upper quadrant: sperm with damaged 

plasma membrane and acrosome. 
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ASSESSMENT OF MITOCHONDRIAL INTEGRITY AND FUNCTION: IS THE MITOCHONDRIA ONLY AN 

ENERGY FACTORY FOR THE SPERM? 

 
Sperm mitochondria are located in the mid-piece and are organized in a helicoidal pattern around the axoneme. As compared to other species, 

such as bulls and boars, in which energy production is dependent on the presence of glycolytic enzymes in the flagellum, stallion spermatozoa 

seem to be mainly dependent on the mitochondrial oxidative phosphorylation pathway to produce ATP required for motility and plasma 

membrane function (Plaza-Dávila et al., 2016; Gibb et al., 2014). Furthermore, the evidence suggests that sperm mitochondria are severely 

affected by cooling and cryopreservation, partially explaining the alterations on motility, plasma membrane intactness, and longevity 

(Hernández-Avilés et al., 2018a; Peña et al., 2015; Macías-García et al., 2012). Given this, the evaluation of sperm mitochondrial function seems 

to be relevant, particularly when different protocols of stallion semen preservation are tested.  

 

Most methods for mitochondrial evaluation are based on the use of fluorescent probes in combination with flow cytometry or fluorescence 

microscopy. Rhodamine 123 and MitoTracker, particularly MitoTracker Green, are dyes which are transported by active diffusion  into the 

mitochondrial matrix during respiration. The higher the mitochondrial function, the brighter is the fluorescent green signal over the sperm 

midpiece that is emitted by these fluorochromes. However, these dyes have not been commonly used for stallion sperm analysis and cannot 

distinguish between functional states of the mitochondria. Other probe, 5,5´, 6,6´-tetrachloro-1,1´, 3,3´-tetraethyl-benzimidazolyl-

carbocyanine iodide, or JC-1 have been extensively used for analysis of stallion sperm mitochondrial function (Ortega-Ferrusola et al., 2009b; 

Love et al., 2003; Gravance et al., 2000). This dye has the peculiarity of producing a differential staining pattern, depending on whether the 

mitochondria have a high or low membrane potential. Thus, under high mitochondrial membrane potential (associated with high functionality), 

the probe emits a red-orange fluorescence when excited, whereas under low mitochondrial membrane potential, the probe emits a green 

fluorescence. Using fluorescence microscopy, we have observed that the probe is easily vanished from the mid-piece in sperm with non-

functional mitochondria, low motility, and plasma membrane damage, which gives an unstained pattern to the mitochondrial helix (Figure 5). 

Others have also observed inconsistent results when determining the sperm mitochondrial function using JC-1 and flow cytometry, particularly 

in cooled stallion semen or freshly ejaculated human sperm (Uribe et al., 2017; Stump et al., 2014; Love et al., 2003).   

Figure 4. Freshly ejaculated stallion sperm incubated with calcium ionophore A23187 and stained with FITC-PNA for 

assessment of acrosome function. Some staining patterns can be observed in this image, related to different stages 

during the acrosome reaction: a. Non-reacted acrosome. b. Partially reacted acrosome-spermatozoa undergoing 

acrosome reaction. c. Fully reacted acrosome. 400X magnification. 
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Other fluorescent probes have also been reported for stallion sperm mitochondrial analysis, including MitoTracker Deep Red, a fluorescent 

probe with  the same ability of JC-1 to discriminate between functional and non-functional mitochondria but with the flexibility to be fixed 

before staining, allowing the use of this dye in remote locations prior to submission to an appropriate laboratory, or its combination with 

viability stains for multiparametric flow cytometric analysis (Peña et al., 2018). Recently, a group of researchers has validated an approach to 

evaluate the function of stallion sperm mitochondria based on the rate of oxygen consumption (Darr et al. , 2016a; Darr et al., 2016b). These 

researchers reported the use of a biosensor plate system, which allows a high-throughput analysis of oxygen consumption in a time-dependent 

manner, as an approach to quantify the capacity of the mitochondria to undergo cellular respiration and subsequently ATP production. Although 

this approach allows objectively estimate mitochondrial function, the cost and time required to run this assay make it impractical for a clinical 

scenario and limited to a few laboratories around the world.  

Nevertheless, the evaluation of sperm mitochondrial function has been mainly used to determine the capacity of the stallion spermatozoa to 

survive during freezing regimens, and more importantly to predict the capacity of a given ejaculate to survive a freezing protocol, when 

assessment of mitochondrial function is combined with other assays of sperm quality, such as the presence of apoptotic or oxidative stress 

markers (Yesté et al., 2015; Ortega-Ferrusola et al., 2009b).  

 

 

DNA INTEGRITY AND STABILITY: EXPLORING THE CAUSES OF EARLY EMBRYONIC DEATH 

 
Due to the high grade of sperm chromatin and associated nucleoproteins compaction that takes place during the spermatogenesis process, it 

is commonly assumed that the sperm DNA is “non-functional” until the fertilization process occurs. However, this grade of compaction is 

necessary to protect the sperm DNA during transport through the male and female reproductive tract, and proper fertilization, and embryo 

development (Evenson et al., 2000; Evenson et al., 1980). Indeed, studies conducted in bovine and primate models have demonstrated that 

Figure 5. Frozen-thawed stallion spermatozoa stained with the combination of propidium iodide and JC-1 for simultaneous assessment 

of plasma membrane intactness and mitochondrial function. Spermatozoa with orange midpieces and no staining over the head are 

considered as sperm with intact plasma membrane and high mitochondrial membrane potential, while spermatozoa with faint green 

staining over the midpiece and red staining over the head are considered as sperm with damaged plasma membrane and low 

mitochondrial membrane potential. 1000X magnification. 
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impaired sperm DNA quality is highly associated with embryo apoptosis and early embryonic death (Burruel et al., 2013; Fatehi et al., 2006). 

Among the different methods for DNA evaluation in stallion spermatozoa, the most commonly used in clinics and laboratories is  the Sperm 

Chromatin Structure Assay (SCSA), developed initially by Evenson et al. (1980), and validated later for stallion sperm by Kenney et al. (1995). 

This technique measures the susceptibility of DNA to be denatured after exposure to an acid-detergent solution. The sample is then stained 

with a metachromatic dye, acridine orange, which binds to the phosphate groups present in single-stranded DNA, generating an orange-red 

staining pattern over the sperm head; or binds to the double-stranded DNA, generating a green staining pattern over the sperm head. Thus, 

the sperm exhibiting green staining are considered to have intact DNA, whereas the sperm exhibiting orange-red staining are considered as 

to have denaturated DNA (Evenson, 2016; Love, 2005). This technique requires the use of a flow cytometer to analyze the proportion of single-

stranded or “damaged” DNA in a sample, and several indexes are calculated based on this number (Figure 6). Of particular interest, the 

percentage of COMP-αt or Cells Outside the Main Population is the most commonly used parameter to determine the extent of DNA damage 

(Love, 2005). The SCSA has been successfully used to determine the relationship between DNA damage and subfertility in Thoroughbred 

stallions (Love & Kenney. 1998), and the effect of cooling regimens on the DNA quality and subsequently stallion fertility (Love et al. , 2005; 

Love et al., 2002).  

 

 

 

 

Other tests used for sperm DNA evaluation are the COMET and TUNEL (Terminal deoxynucleotidyl transferase biotin-dUTP Nick End Labeling) 

assays. The COMET assay is a single-cell gel electrophoresis with the formation of a “tail” caused by the migration of a broken DNA strand 

(Evenson, 2016). This technique has been used to estimate the extent of damage on stallion sperm DNA after cooling, stallion sperm exposed 

to reactive oxygen species, or in stallions exposed to heat stress (Serafini et al., 2015; Baumber et al., 2003a; Linfor & Meyers, 2002). On the 

other hand, the TUNEL assay quantifies the incorporation of FITC-labeled-deoxyuridine triphosphate (dUTP) nicks in the DNA strand. These dUTP 

nicks bind to the single or double DNA strains, depending on the number of spaces available for the nick (Evenson, 2016). Thus, a sperm with 

compromised DNA will allow the binding of a higher proportion of nicks, leading to a higher proportion of fluorescent light in the sperm head. 

This technique has been also used for stallion sperm DNA analysis (Serafini et al., 2018); however, comparisons between the COMET and TUNEL 

assays with the SCSA and their relationship with stallion fertility have not been conducted yet. In any case, the use of these techniques requires 

the use of high-cost pieces of equipment, such as flow cytometers, as well as highly qualified personnel for conducting the assay and 

Figure 6. Flow cytometric analysis of DNA integrity in freshly ejaculated stallion sperm using the Sperm Chromatin Structure Assay (SCSA). The 

image on the left demonstrates an scattergram used for the analysis of the sperm where the green dots represents spermatozoa with intact DNA, 

while the blue dots represents spermatozoa with susceptible DNA (COMPαt). The image on the right, is a histogram of the analysis to quantify the 

percentage of COMPαt or sperm with damaged DNA.  



 
 

12 
 

CESICA 2019 

Journal of Veterinary Andrology 2019 4(1):01-19 
ENERO-JUNIO/JANUARY-JUNE 
ISSN 2542-3045  

Hernández-Avilés et al. Non-conventional stallion semen evaluation 

interpreting the results, making its use less common in a clinical situation, with few laboratories in North America, Europe and Latin America 

performing these assays for evaluation of stallion fertility.  

 

 

 

REACTIVE OXYGEN SPECIES-ROS AND OXIDATIVE STRESS RELATED CHANGES IN SPERM 

FUNCTION 

 
As mentioned above, the stallion spermatozoa mainly rely on the oxidative phosphorylation pathway to produce energy for the maintenance 

of motility and viability (Plaza-Dávila et al., 2016). Although energy production through this method is highly efficient, as compared to 

glycolysis, the formation of toxic-by-products such as reactive oxygen species (ROS) is also constant (about 2% of the oxygen utilized is 

transformed in ROS; Aitken et al., 2016). This implies that stallion spermatozoa are constantly faced to a relatively high level of oxidative 

stress, which could be assumed as normal under certain conditions (Aitken, 2017; Gibb et al., 2014). However, when procedures such as 

centrifugation to remove seminal plasma, cooling, cryopreservation or sex-sorting are performed, the production of ROS is exacerbated 

leading to self-perpetuating cycle, in which mitochondria, plasma membrane, motility, and DNA integrity are mainly affected (Martín-Muñoz 

et al., 2018; Balao da Silva et al., 2016; Martín-Muñoz et al., 2015; Baumber et al., 2000). The close relationship between stallion sperm quality 

and oxidative stress was established approximately 15 years ago, with the pioneering works conducted by Barry Ball and Stuart  Meyers at 

the University of California, Davis. Since then, a whole new set of fluorescence probes and techniques for the assessment ROS production and 

its effects on the stallion spermatozoa have been published.  

 

As superoxide anion (O2
●) is the main ROS produced by stallion sperm mitochondria either in physiological and pathological conditions 

(Burnaugh et al., 2010; Sabeur & Ball, 2006; Baumber et al., 2003b), the detection of this metabolite is crucial for the study of oxidative stress, 

particularly when different semen storage protocols are tested (Ertmer et al., 2017; Yesté et al., 2015). Burnaugh et al. (2007) were the first 

to report the use of the probe dihydroethidium, for assessment of O2
● production in freshly-ejaculated, capacitated, acrosome-reacted and 

oxidized stallion spermatozoa. This fluorophore is oxidized into ethidium after getting in contact with O2
●, generating a red fluorescent light 

when excited using an appropriate wavelength (Table 2). However, some researchers argue that this probe cannot discriminate between 

mitochondrial O2
● and cytosolic O2

● production, which has some implications when physiological or pathological ROS production is assessed. 

Thus, a new generation of probes called MitoSOX red (Molecular Probes, OR, USA) has been used in stallion spermatozoa to discriminate O2
● 

production not only from mitochondrial or cytosolic origin but also from live and dead spermatozoa when combined with membrane permeable 

probes (Gibb et al., 2015).  

Another approach that has been commonly used for assessment of oxidative stress in stallion sperm is the use of probes for detection of the 

pathological effects that ROS has on the plasma membrane or DNA. One of the most common causes of sperm death is related to the effect 

that ROS has on the lipids of the plasma membrane, in a process known as lipid peroxidation (Alvarez & Storey, 1984). For the evaluation of 

lipid peroxidation, the probe C11-BODIPY has been extensively used with stallion spermatozoa (Ortega-Ferrusola et al., 2009a; Neild et al. 

2005; Ball & Vo, 2002). This lipophilic dye binds to the lipids of the plasma membrane, changing its fluorescent light from red to green when 

the lipids are oxidized. Thus, in sperm suffering lipid peroxidation, the fluorescent signal that is emitted by C11-BODIPY will be green when 

excited with an appropriate wavelength (Table 2). More recently, lipid peroxidation has been also evaluated in stallion sperm using 

fluorescent-conjugated antibodies for 4-hydroxynonenal (4-HNE) production (Gibb et al., 2016; Martin-Muñoz et al., 2015). This electrophilic 

aldehyde is produced during the lipid peroxidation cascade, mainly after degradation of lipids by peroxyl or alkoxyl radicals and has several 

implications on the perpetuation of plasma membrane degradation and reduction on sperm motility (Aitken et al., 2012).  

In the past 5 years, other fluorescent-conjugated antibodies for detection of DNA damage from oxidative origin have been reported (Serafini 

et al., 2018; Gibb et al., 2015). The 8OHdG technique measures the production of guanine adducts in the DNA chain using a fluorescent-

conjugated 8-hydroxy-2´-deoxyguanosine (8OHdG) antibody, either in nuclear and mitochondrial DNA, which is particularly useful for 

establishing a relationship between oxidative damage due to storage procedures and causes of reduced stallion fertility due to early 

embryonic death.  
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MOLECULAR PROCESSES RELATED TO SPERM FERTILITY: CAPACITATION AND OOCYTE 

ACTIVATION 

  
Nowadays, the advancement on the understanding of sperm physiology in different species such as mice or humans has allowed the discovery 

of several factors involved in the capacitation process, which can be extrapolated to the stallion sperm. From these, probably the most 

important molecular event is the protein tyrosine phosphorylation, which is considered a landmark of sperm capacitation (Galantino-Homer et 

al., 1997; Visconti et al., 1995). Tyrosine phosphorylation has been usually analyzed by western blotting of proteins present in the sperm 

plasma membrane, including in stallion spermatozoa (McPartlin et al., 2008; González-Fernández et al., 2013); however, this technique is time-

consuming and expensive. Therefore, the use of monoclonal antibodies labeled with fluorescent markers is an excellent alternative for 

assessment of tyrosine phosphorylation and has been successfully reported in stallion sperm being the fastest, the most reliable and easy-

to-conduct method used in clinical and research arena (Macías-García et al., 2015; Leemans et al., 2014; González-Fernández et al., 2013).  

 

On the other hand, there is a recent interest in factors affecting fertilization and embryo development, particularly when assisted reproduction 

techniques are used in humans or horses. From these factors, probably the most evaluated is the presence and function of Phospholipase C-

Zeta (PLC-z), a protein from testicular origin which is related with a rise on intracellular calcium concentrations in the oocyte after fertilization, 

a process necessary for oocyte genome activation and embryonic development (Swann et al., 2006). In infertile men, defects in the expression 

or abnormal localization of PLC-z have been reported as a cause of male infertility, particularly when intracytoplasmic sperm injection or 

semen cryopreservation-artificial insemination is used (Nomikos et al., 2011; Heytens et al., 2009). Bedford-Guaus et al., (2012) were the first 

to report the association between the deficiency on the quantity or localization of PLC-z in sperm from a group of six stallions with normal 

sperm quality parameters, including sperm motility, morphology, and DNA quality, but with low seasonal pregnancy rates (<20%). Recent 

studies conducted in Germany and Brazil have also reported the association between the presence of the gene which codifies for PLC-z and 

stallion per cycle pregnancy rate and seasonal pregnancy rate (Bueno et al., 2018; Schrimpf et al., 2014).  Although those studies determined 

the presence of sperm PLC-z by genetic analysis, preliminary results from Gonzalez-Castro et al., (2018) reported the use of commercial 

fluorescence-conjugated monoclonal antibodies for evaluation of PLC-z in conjunction with flow cytometry and fluorescence microscopy. These 

results suggest that this technique can be also used in the same manner as the assessment of protein tyrosine phosphorylation.  

 

 

HOW RELATED TO STALLION FERTILITY ALL THESE NEW SPERM QUALITY TESTS ARE?  

 
The main question that arouses when reviewing the whole battery of new tests that clinicians and researchers have available for stallion 

sperm quality assessment is: Can those new methods improve the capacity to discriminate between different levels of fertility, or help us to 

establish the cause of reduced fertility in a given stallion? As mentioned above, the spermatozoa have to undergo several physiological 

processes through their journey to reach the oocyte, so a model for stallion fertility prediction must include various tests that could evaluate 

objectively all these requirements (Table 1). Clinicians and researchers must be aware that a single sperm quality test will not allow to 

determine stallion fertility or sperm damage after storage.  

 

To our knowledge, there are few studies that meet these criteria. Barrier-Battut et al. (2016, 2017) reported the use of a model for stallion 

fertility prediction either in fresh, cooled and frozen-thawed semen, which included the assessment of total motility (CASA), plasma membrane 

intactness (SYBR-14/PI), ROS production (peroxides production), acrosome intactness (FITC-PNA and calcium ionophore A23187), DNA integrity 

(SCSA) and hypoosmotic resistance. Likewise, Love et al. (2015) reported that embryo recovery rate increased as sperm total motility 

(subjectively assessed), total sperm number on the insemination dose, sperm plasma membrane intactness (propidium iodide and 

NucleoCounter), DNA integrity (SCSA), and sperm morphology increased. Remarkably, this last study classified stallions in groups of high 

(>65%) and average embryo recovery rate capacity (approximately 50%). Suggested threshold values were: Total motility: ≥65%, 

progressive motility: ≥45%, sperm plasma membrane intactness: ≥71%, morphologically normal sperm: ≥47%, total sperm number in the 

insemination dose: 1.14 billion sperm, and COMPαt: ≤26.8%.  

From all the parameters mentioned above, maybe sperm plasma membrane and DNA intactness could be considered as the most relevant to 

fertility. Kiser et al. (2014) reported no statistical differences on pregnancy rates when a group of mares was bred with cooled semen stored 

for 96 hours that had reduced sperm motility (<5% TMOT) but with high viability (74%), or with fresh semen with high sperm motility (75% 

TMOT) and high viability (80%). Similarly, Hernández-Aviles et al., (2018b) reported that sperm motility but no viability is affected by reducing 

the amount of glucose in the extender, and more importantly that sperm motility can be easily reestablished in cooled semen stored for 5 
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days, just by centrifugation and resuspension in a glucose-containing extender. Furthermore, studies conducted by Choi et al. (2011) suggest 

that freeze-dried sperm, which are immotile, but still viable and with intact DNA can be used for intracytoplasmic sperm injection, with similar 

pregnancy and live foals rates produced by motile spermatozoa. Taken together, these results suggest that even immotile but v iable sperm 

are still able to resume motility and be competent for fertilization, which reinforces the relevance of sperm plasma membrane intactness and 

DNA integrity assessment.  

 

 

CONCLUSIONS 

 
To summarize, there are several methods available for clinicians and researchers for stallion sperm analysis. Most of these methods are 

based on the use of fluorescent markers in combination with fluorescence microscopy or flow cytometry. The utility of these techniques relies 

on the assessment between different sperm organelles and functions, which are needed by the spermatozoa during its travel through the 

male and female reproductive tract, the subsequent oocyte fertilization and early embryo development. Some of these techniques, such as 

motility, plasma membrane intactness, acrosome function, DNA integrity, or genetic markers have the potential to discriminate different levels 

of fertility in a group of stallions, as well as to determine the causes of unexplained subfertility/infertility. Other techniques, such as 

mitochondrial function and ROS production are particularly useful when different protocols for sperm storage are evaluated. In any case, 

clinicians and researchers must be aware that a battery of tests evaluating as many parameters as possible might be necessary to achieve a 

more detailed diagnosis. However, the results of these methods cannot be analyzed by themselves if other factors such as management of 

mare fertility are not considered (Brinkerhoff et al., 2010). 
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