Kenyon College
 Digital Kenyon: Research, Scholarship, and Creative Exchange

Abundancy Spiral - Exploring Diagonal Patterns

Ziyue Guo

Follow this and additional works at: https://digital.kenyon.edu/summerscienceprogram
Part of the Mathematics Commons

Recommended Citation

Guo, Ziyue, "Abundancy Spiral - Exploring Diagonal Patterns" (2008). Kenyon Summer Science Scholars Program. Paper 419. https://digital.kenyon.edu/summerscienceprogram/419

Abundancy Spiral -Exploring Diagonal Patterns
 Ziyue Guo, Class of 2010, Dr. Judy Holdener, Mathematics Department, Kenyon College, Gambier, OH

Abstract

In this project, we look at average abundancy of numbers along certain diagonals in the Ulam Spiral. Modular arithmetic is one of the most important tools we use to find divisors of numbers along some abundant or deficient diagonals and general factorizations of quadratic formulae that represent thes diagonals. We explore the relationship between these diagonals and the distribution of prime numbers using algebra and empirical data. We also introduce a new algorithm to compute the average abundancy of numbers of certain forms.

The Ulam Spiral

In 1964, Stein, Ulam, and Wells
 proposed an idea for visualizing the distribution of primes. This idea resulted in a graph called the "Ulam Spiral" which exhibited a strongly nonrandom appearance of the primes. If we write down positive integers in the way shown to the left (top), we can see that the primes tend to line up along certain diagonals. The 200×200 Ulam Spiral, shown to the left (bottom) where the black dots indicate primes, shows even stronger nonrandom distribution of primes. Some of the patterns have been explained, but some still remain unknown.

Abundancy Index

The abundancy index $I(n)$ of a positive integer n is defined as $\sigma(n) / n$, where $\sigma(n)$ is the sum of divisors function. It is evident that $I(n)$ is a rational number. If $I(n)$ has an integer value, then n is called a multiperfect number. As alluded to above, if $l(n)=2$, then n is a perfect number. If $l(n)>2$, then n is abundant, and if $/(n)<2$, then n is deficient

Color Scale

In order to visualize the abundancy index, we assign a color to each positive integer N depending on the value of its abundancy index.
$\begin{array}{llllll}1-1.5 & 1.5-2 & 2-2.5 & 2.5-3 & 3-3.5 & 3.5-4\end{array}$
With this coloring, deficient numbers are colored in shades of green and yellow-green, while abundant numbers are colored with blues, purples and red.

Abundancy Spiral: Pictures, Observations and Explanations

We take an idea similar to Ulam's spiral to create the abundancy spiral as shown below. We start from the center of the grid and color each grid according to the abundancy index of the number corresponding to the grid in Ulam's spiral. We see again the diagonal patterns in the new picture.

High chance of being multiples of 6
$4 x^{2}-28$ and $4 x^{2}$ number and multiples of 6 are abundant. In diagonals such as $4 x^{2}+4 x-12$ 8 and $4 x^{2}+8,2 / 3$ of the numbers are multiples of 6 . Take the diagonal $4 x^{2}+8$ for example. When $x \equiv 0(\bmod 3), 4 x^{2}+8 \equiv 2(\bmod 3)$ which means it's not a multiple of 3 . When $x \equiv 1$ or $2(\bmod 3)$, $4 x^{2}+8 \equiv 4+8(\bmod 3) \equiv 0(\bmod 3)$ which means it is a multiple of 3 . Since x takes on every positive integer value, $2 / 3$ of the numbers along diagonal $4 x^{2}+8$ are multiples of 3 . Since all numbers along these diagonals are multiples of 4 , they appear prevalently abundant. But we can still see the "blue-blue-green" pattern which shows how being a multiple of 6 affects the abundancy index of a number.

In exploring the average abundancy of these diagonals, we come up with an algorithm which can be expressed in the closed form described on the right:

Conjecture

The average abundancy of positive integers of the form $x(x+1)$ is $\frac{\pi^{2}}{6} \Pi_{i=1}^{\infty}\left(\frac{1}{p_{i}^{2}}+1\right)$ where p_{i} is the i th prime.

Periodicity

When we take a closer look at the diagonals going down-left direction that we labeled, we can find that they all have distance 12 from the adjacent ones. Also, the diagonals going up-right direction except $(2 x+1)^{2}-3^{2}$ have distance 12 from the adjacent ones. As we discussed above, some of these diagonals are abundant because of high chance of being multiples of 6 and all being multiples of 4 . These properties are preserved when we add or subtract 12 from these diagonals. There is also periodicity of 6 between diagonals $2 x(2 x+1), 2 x(2 x+1)-6$ and $2 x(2 x+1)-12.2 / 3$ of numbers along diagonal $2 x(2 x+1)$ are multiples of 6 , but only half of them are multiples of 4 . Therefore, when we add or subtract 6 from it, these properties are preserved. But since numbers along $2 x(2 x+1)$ are all multiples of two adjacent integers which gives higher chance of having more divisors and this property cannot be preserved by adding or subtracting 6 from the expression, the periodicity becomes weaker as we go farther from the original diagonal.

Results

Lemma

The average abundancy of numbers not divisible by a fixed prime p is $\frac{\pi^{2}}{6} \frac{p^{2}-1}{p^{2}}$.

Proof
Let's partition the positive integers into the sets: $A_{i}=\left\{n \in \mathbb{N}: p^{i}| | n\right\}$ where $i \geq 0$. Clearly, if we multiply every number in A_{i} by p, we get all numbers in A_{i+1}. Let x be the average abundancy of the set A_{0} Since p is prime, all numbers in A_{0} are relatively prime to p. $\quad x+1$ Therefore, the average abundancy of numbers in A_{1} is $x(p)=x-p$,
in A_{2} is $x I\left(p^{2}\right)=x \frac{p^{2}+p+1}{p^{2}}, \ldots$, in A_{i} is $x I\left(p^{i}\right)=x \frac{p^{i}+p^{i-1}+\cdots+p+1}{p^{i}}$

We know that among all positive integers, $(p-1) / p$ of them are not divisible by p (i.e in the set A_{0}) $(p-1) / p^{2}$ of them are multiples of but not p^{2} (i.e. in the set A_{1}) , ($\left.n-1\right) / p^{3}$ of them are multiples of p^{2} but not p^{3} (i.e. in the set A_{2}) and so forth. Since the sets A_{i} s partition the positive integers, when we take the average of the average abundancies of the sets according to the proportions they take among all positive integers, we should get the average abundancy of all natural numbers, which is $\pi^{2} / 6$. Thus we get the following equation:

$$
\begin{aligned}
& \frac{p-1}{p} x+\frac{p-1}{p^{2}} x \frac{p+1}{p}+\cdots \\
& \quad+\frac{p-1}{p^{i+1}} x \frac{p^{p^{2}}+p^{i-1}+\cdots+p+1}{p^{i}}=\frac{\pi^{2}}{6}
\end{aligned}
$$

Simplifying and solving the equation will give us the proposed expression for x.

Theorem

The average abundancy of all multiples of a natural number of the form $p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} p_{3}{ }^{k_{3}} \ldots p_{n}{ }^{k_{n}}$ is

$$
\frac{\pi^{2}}{6} \Pi_{i=1}^{n} \frac{p_{i}^{k_{i}+1}+p_{i}^{k_{i}}-1}{p_{i}^{k_{i}+1}}
$$

where p_{i} are distinct primes and k_{i} are positive integers (not necessarily distinct).

Reference

*Stein, M. L.; Ulam, S. M.; and Wells, M. B. (1964), "A Visual Display of Some Properties of the Distribution of Primes." American Mathematical Monthly 71, 516-520
*Hardy, G.H.; Wright, E.M., An Introduction to the Theory of Numbers, $5^{\text {th }}$ ed. New York: Oxford University Press, 1979

Acknowledgement

would like to thank Professor Judy Holdener for her guidance, patience and enthusiasm. I would also like to thank Kenyon College Summer Science Scholars program fo providing me the wonderful opportunity.

