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Cloning the AHRR Open Reading Frame (ORF)

Figure 2. X. laevis AHRR opening reading frame (ORF) cDNA sequence was determined via reverse 

transcriptase PCR and RACE (Rapid Amplification of cDNA Ends). Partial cDNA encoding AHRR (AZ 

Sample 13) was amplified from stage 62-64 TCDD-dosed total RNA using degenerate primers designed 

based on a putative AHRR sequence from the Xenopus tropicalis genome database.  From total RNA, 

RACE was used to synthesize cDNA  with adaptor sequences on each 5’ end. Primers designed to bind 

to my partial cDNA sequence and primers specific to the adaptor sequences provided by Clontech were 

used to extend the 5’ and 3’ ends of the DNA. Sequence for the 5’ end of the X. laevis AHRR gene was 

determined by Shana Scogin using the GeneRacer kit (5’ RACE: SS1).  PCR Conditions: 95°/10 min; 

[94°/30s; 60°/30s; 72°/90s] x 5 cycles; [94°/30s; 58°/30s; 72°/90s] x 5 cycles; [94°/30s; 

55°/30s; 72°/90s] x 27 cycles; 72°/7 min.  RACE PCR: [94°/5s; 72°/3 min] x 5 cycles; [94°/5s; 

70°/10s; 72°/3 min] x 3 cycles; [94°/5s; 67°/10s; 72°/3 min] x 35 cycles. Nested RACE PCR: 

[94°/5s; 66°/10s; 72°/3 min] x 25 cycles; 72°/4 min.

Conclusions: X. laevis AHRR cDNA is 2769 bp long, including ~220 bp 5’ UTR and ~280 bp 3’ 

UTR.   AHRR cDNA encodes for a protein of 85.3 kDa (754 amino acids).  The full length AHRR 

ORF was synthesized and cloned into the pCMVTNT expression vector by Epoch Biolabs (Texas).

Figure 2. The PAS domains of AHR and AHRR proteins were aligned in ClustalX and a phylogenetic 

tree was constructed using the Neighbor-Joining approach.  Numbers at the branch point represent 

bootstrap values based on 1000 samplings. Mouse (Mus musculus) ARNT1 (GenBank accession 

number U14333) was used as an outgroup. All other sequences obtained from GenBank.

Conclusions: Analysis places X. laevis AHRR in the AHRR clade, distinct from AHR proteins. An 

alignment of the deduced X. laevis AHRR amino acid sequence with AHRR amino acid sequences 

from other vertebrates demonstrates high levels of conservation in the N-terminal regions, 

particularly in the bHLH and PAS-A domains and a region following the PAS-A domain (data not 

shown). The 85.3 kDa X. laevis AHRR protein shares 52-55 percent identity with the aligned 

bHLH/PAS domains of AHRRs from mammals and fish.

Phylogenetic Analysis of AHRR & AHR Proteins
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• Does the lack of TCDD toxicity and CYP1A inducibility during early frog life stages result from 

constitutive AHRR expression?

• Does AHRR repress transcriptional activity of the two X. laevis AHR proteins: AHR1 and 

AHR1?

• What is the temporal and TCDD inducible expression pattern of AHRR mRNA?

Xenopus laevis and other frogs are extremely insensitive to the toxic effects of xenobiotic ligands 

of the aryl hydrocarbon receptor (AHR), including 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD).  

Embryos and premetamorphic life stages are especially insensitive, and they are refractory to 

induction of Cytochrome P4501A6 (CYP1A6), the most highly induced target gene in older 

tadpoles.  The aryl hydrocarbon receptor repressor (AHRR) is a member of the AHR gene family.  

AHRR expression is ordinarily induced by TCDD in an AHR- and ARNT-dependent fashion.  The 

AHRR protein then binds ARNT and represses AHR transcriptional activity in an apparent negative 

feedback loop.  In this study, we sought to test the hypothesis that constitutive AHRR expression 

underlies the lack of CYP1A6 induction and TCDD toxicity in early frog life stages.  Using an RT-

PCR approach, we determined the sequence of a single AHRR cDNA encoding a protein of 85.3 

kDa sharing 52-55 percent identity with the aligned bHLH/PAS domains of AHRRs from mammals 

and fish.  In transient transfection assays, X. laevis AHRR inhibited TCDD-induced reporter gene 

expression mediated by either X. laevis AHR paralog, AHR1 or AHR1.  AHRR mRNA was not 

detectable by quantitative RT-PCR in X. laevis embryos (Nieuwkoop-Faber stage 33-38; 

approximately 52 h.p.f.), even following overnight exposure to 3H-TCDD (59.4 ng/g wet weight).  In 

contrast, AHRR was induced 2- to 4-fold in whole tadpoles at stages 52-55 (prometamorphic; ~4 

weeks post-fertilization) and in isolated viscera of stage 62 tadpoles (in the metamorphic climax; ~ 

7 weeks post-fertilization), even at much smaller TCDD body burdens (3-8 ng/g).  Although the 

magnitude of induction was much smaller, the temporal pattern of AHRR expression and 

inducibility resembled that previously observed for CYP1A6.  Thus, attenuated transcriptional 

activation of AHR target genes and low TCDD toxicity in X. laevis embryos cannot be explained by 

constitutive, high-level expression of AHRR. 

•Dioxin-like compounds, including polychlorinated biphenyls (PCBs) and 2,3,7,8 

tetrachlorodibenzo-p-dioxin (TCDD), comprise a major class of environmental toxins and have a 

widespread impact on the health of ecosystems. 

•These contaminants are released by industrial processes including paper bleaching, metal 

refining, and waste incineration (1).

•Dioxins can accumulate in human and animal tissues and persist up the food chain.

•Exposure to dioxin-like compounds leads to numerous pathologies in most vertebrates, including 

wasting, thymic atrophy, skin lesions, immunological effects, reproductive and developmental 

abnormalities, and death (1,2). 

•Unusually, X. laevis and other frogs are 100 to 1000-fold less sensitive to dioxin-induced 

developmental toxicity than fish (3). 

•Insensitivity of frog embryos to a major class of developmental toxicants suggests the need to re-

evaluate the use of Xenopus as a model organism for developmental toxicity testing.

Questions

Abstract

Dioxin Toxicity

AHR Pathway & AHRR

•AHR pathway is activated by dioxin exposure and 

mediates toxicity by altering expression of genes 

responsible for cell division and detoxification (4) .

•After binding TCDD, AHR enters the nucleus, and 

forms a dimer with the ARNT protein (AhR nuclear 

translocator). 

•AHR-ARNT binds to xenobiotic response elements 

and upregulates transcription of target genes, including 

CYP1A6 and AHRR (AHR Repressor). (5)

•AHRR protein is a member of AHR family, 

documented in mammals and fish (4, 6). 

•AHRR protein competes with AHR for binding ARNT 

and XREs and represses the transcriptional activity of 

AHR (2, 6).
Figure from Mimura et al. (1999)
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Expression of AHRR and CYP1A6 at Sequential Life Stages

Figure 4. Expression and TCDD inducibility of AHRR and CYP1A6 mRNA in X. laevis. Total RNA was 

extracted from X. laevis whole tadpoles at stage 33-38, stage 52-55, and isolated viscera of stage 62-

64  tadpoles following overnight exposure of tadpoles to 3H-TCDD or DMSO control.  RNA was treated 

with DNase to remove contaminating DNA. cDNA was synthesized from 1μg total RNA using random 

hexamers and TaqMan Reverse Transcriptase kit. Primers for AHRR PCR were designed based on a 

deduced X. laevis partial consensus sequence for AHRR. PCR reactions consisted of: 10.25 l H20, 

12.5 l SYBR Green Master Mix, 0.125 l 5’ primer (10 μM), 0.125 l 3’ primer (10μM), and 2 l cDNA.  

PCR conditions: 95°/10 min; [95°/15s; 60°/1 min] x 45 cycles. Error bars = standard error.

Conclusions: The lack of detectable AHRR mRNA in stage 33-38 Xenopus did not support my 

hypothesis that low levels of dioxin sensitivity early in frog development results from high level, 

constitutive AHRR expression.  Although the magnitude of induction is much smaller, the temporal 

pattern of AHRR expression and inducibility resembles that observed for CYP1A6. AHRR and 

CYP1A expression appear to be modulated by a common pathway in frogs and other organisms. 

(7)

Figure 3. A) Cos-7 cells were transfected with 50ng AHRR (or 50ng pCMVTNT), 50ng AHR1 or 

AHR1, 50ng ARNT1, pGudLuc6.1, pRL-TK, and pCMTVTNT to a total of 300ng DNA.  Cells were 

treated with DMSO or 50nM TCDD.  Relative luciferase units are given as a ratio of firefly to Renilla 

luciferase activity. mAHR = mouse AHR  B) COS-7 cells were transfected with 0-100ng of AHRR, 50 

ng ARNT1, 50 ng AHR1 or AHR1,  pGudLuc6.1, pRL-TK, and pCMTVTNT to a total of 300ng DNA.  

Cells dosed and luciferase activity measured as in A.  All plasmid constructs are made from X. laevis

unless noted. Error bars = Standard error.

Conclusions: In transient transfection assays, X. laevis AHRR inhibited constitutive and TCDD-

induced reporter gene expression mediated by either X. laevis AHR paralog, AHR1 or AHR1. 

Repression of AHR1 and AHR1 transactivation by AHRR depends on the amount of AHRR 

used in the transfection, as previously shown in other organisms (4, 6).

Repression of AHR-dependent transactivation by AHRR
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