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Local to Global Maps III
Quantum analogues of all three classical facts hold when the 

overall evolution is unitary.

Theorem 1: (Local maps imply a unique global map.)

If the global evolution of a composite quantum system is 

unitary, then there exists a unique global map for a given set 

of local maps.

Theorem 2: (Uniform local maps imply a uniform global 

map.)

If the global evolution is unitary, and if all of the local maps 

are the same, then the global map commutes with the shift 

operator.

Theorem 3: (Cell locality implies block locality.)

If the global evolution is unitary, then the composite 

subsystem AB ignores subsystem C whenever A and B, as 

individual subsystems, ignore C.

Proof sketch of Theorem 1:
1.Let     and     be any two unitary maps which lead to the 

same set of local maps. Fix a basis    of product states     .

2.Consider the action of V on all                     , and compare 

the subsystems’ states of                 and                        .

3. is a product state

 Each subsystem’s state of                         is a pure state.

 Each subsystem’s state of                 is pure (by our local 

maps assumption).

 and                are product states whose subsystems’ 

states are equal.

 and      act in the same way on all elements of the 

basis           , up to some relative phase differences.

4.Considering linear combinations proves that all relative 

phases are the same, which implies             .
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AB ignores D!

Proof sketch of Theorem 2:
1.Use uniformity of local maps to show that operators TU 

and UT lead to the same set of local maps (where T is the 

shift map and U is the global unitary operator)

2.Use Theorem 1 to conclude that TU = UT.

Proof sketch of Theorem 3:
We consider a four system case where 

systems A and B both ignore D.

• Since A ignores D, we can 

decompose U into V and W as shown 

at left [1].

• Since U can be decomposed in this 

way, and since B ignores D, all of the 

information needed to determine the 

final state of B is contained in B and 

C, so we can decompose W into X 

and Z.

• Combine the operators V and X into 

Y.

• From this decomposition of U into Y 

and Z, we see that AB only interacts 

with C, which means AB ignores D.
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Local to Global Maps I
For a classical composite system, we can write down 3 trivial 

facts:

1. Local maps imply a unique global map

For each input, the local maps give you a list of the 

individual outputs. Classically, this list is the global output.

2. Uniform local maps imply that the global map commutes 

with the shift operator. (See below.)

3. Cell locality implies block locality

If subsystems A and B ignore subsystem C, then the joint 

system AB ignores C.

Local to Global Maps II
Quantum mechanically, NONE of these hold!

Counterexamples involve two aspects:

~ Non-unitary global evolution (i.e., evolution involving 

irreversible measurement processes)

~ Quantum entanglement

• Classically, a list of the subsystems’ states is a 

complete description of the global state

• Quantum mechanically, there can be aspects of 

the global state that are not apparent in any of the 

subsystems’ states, so it is, in general, impossible 

to reconstruct a global quantum state given the 

subsystems’ states.

Example of a counterexample:

~ Two qubit systems

~ Local functions      and      are constant:

~ Global function is clearly not unique, since any function 

of the form

for any real number     leads to the above set of local 

maps.
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Classical Locality to 

Quantum Locality
As a purely theoretical exercise, we investigated the 

relationship between classical and quantum locality by 

taking some reversible classical system, considering its 

quantum version, and looking at what locality conditions 

remain in the quantum version.

We found the following:

Case 0: Classically, A ignores B, but B does not ignore A:

Quantum mechanically, A does not ignore B. (B influences

A.) This reflects the impossibility of one-way information 

flow between quantum systems.

Case 1: Classically, A and B do not directly interact, but can 

indirectly interact via an intermediate system M:

Quantum mechanically, B can still influence A.

Case 2: Classically, A and B can only indirectly interact via a 

causal chain of two intermediate systems:

Quantum mechanically, it is still undetermined whether B 

can influence A. In the special case where the classical 

systems are all bits, A ignores B in the quantum version.

Case n = 3 or more: Classically, A and B can only indirectly 

interact via three (or more) intermediate systems:

Quantum mechanically, A ignores B.

Lesson: We can make sufficiently strong classical locality 

restrictions in order to ensure quantum locality in a quantum 

version of a reversible classical composite system. While 

quantum locality is not easily obtained from classical locality 

assumptions, it is not impossible.
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Abstract
In this project, we studied the relationship between global 

and local descriptions of the evolution of a general composite 

quantum system. In particular, we asked what knowledge of 

the local evolution can tell us about the global evolution. 

Classically the relationship between local and global 

descriptions of the evolution is trivial. The connection is not 

so simple in the quantum case, but we were able to prove 

several basic local-global connections under the assumption 

that the global evolution is unitary (i.e., reversible).

We also examined the relationship between classical and 

quantum definitions of locality by considering natural 

quantum extensions of classical reversible systems.  We 

asked which classical locality conditions imply quantum 

locality in these extensions. While quantum locality is (as one 

might expect) more complicated than classical locality, it is 

possible to find strong enough classical locality conditions to 

imply quantum locality. 

These questions relate to the theory of quantum cellular 

automata, which provide a computationally universal model 

for quantum computation [2].

Background
We can think of our universe as a vast network of 

subsystems, all interacting and exchanging information. 

These systems cannot interact in any way, however, for the 

dynamics of our universe are local – the description of the 

evolution of a small subsystem need not contain information 

about other subsystems which are located far away. For 

example, in the figure below, system A directly interacts only 

with B and C, so a description of the local evolution of A 

would not depend on the states of the unlabelled systems.

Mathematically, the state of a quantum system can be 

represented by a state vector        in some Hilbert space    . 

Alternatively, the global system’s state can be represented 

by a density operator , which is an element of        , the 

Hilbert space of bounded linear operators acting on    . The 

global evolution is described by a quantum operation

. The local evolution is described by a

collection of operations of the 

form                                 where 

N(A) is the set of subsystems 

that directly interact with sub-

system A, and          and      are 

the state spaces of subsystems 

N(A) and A, respectively.

This notation is handy, since it 

allows us to quantitatively 

express what we mean by 

locality [1]. We say that system 

A ignores system B if there 

exists a local map        such that 

B is not contained in N(A). In 

other words, to find A, we do 

not need to know B.
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In this diagram, a dotted line 

between two systems indicates 

direct interaction. Since 

systems D and A have no line 

connecting them, A ignores D. 

Equivalently, there exists a 

map        that describes the 

local evolution of system A.
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