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Algebraic Coding Theory
Ben Johnson, Class of 2006;   Nuh Aydin, Assistant Professor of Mathematics

Kenyon College Summer Science Scholars Project, Summer 2004

Abstract.
Almost since the first computers were built, protecting digital signals 

from errors due to naturally occurring noise has been a problem of immense 

practical importance.  Adding redundancy to the message can increase the 

signal’s resistance to noise.  In this project, we first examined some existing 

codes -- procedures for adding redundancy.  Then, with the aid of advanced 

theoretical algebraic tools, we devised some improvements to an existing 

computer program to search for new, “good” codes.

Background:  Finite fields and linear codes
Certain assumptions and ideas are typical in coding theory.  A message 

is composed of one or more blocks of k symbols from some alphabet of q

possible symbols.  All of the codes I worked with are block codes, which 

encode each block independently.  The alphabet is usually a field – a set with 

operations called addition and multiplication where the “usual” rules of 

linear equations – the field axioms – are true.

A systematic code is a very general type of code.  In a systematic code, 

the code constructs an output block to be sent over the noisy channel by 

appending check symbols to the original message, called data symbols.  A 

linear code is a special type of systematic code.  In a linear code, the check 

symbols are computed as a weighted sum of the data symbols.  A weighted 

sum in a finite field looks like

w1*u1+w2*u2+w3*u3+ … +wk*uk for weights wj and inputs uj (field elements)

Field axioms.
Additive Multiplicative

Commutative x+y = y+x x*y = y*x

Associative (x+y)+z = x+(y+z) (x*y)*z = x*(y*z)

Identity x+0 = x x*1 = x

Inverse x+(-x) = 0 x*(x-1) = 1

Distributive x*(y+z) = (x*y)+(x*z)

The Hamming metric
Now that we have discussed some things about the messages and codes, 

let us now focus on the errors.  An error is defined to be the incorrect 

transmission of a single symbol.  If we compare a corrupted message v to the 

originally intended message u, the number of errors is simply the number of 

positions where u and v differ.  This is called the Hamming distance d(u, v).  

The word “distance” will lead the mathematically inclined reader to 

(correctly) suspect a metric space.

How good is a code at detecting errors?  Call the set of possible output 

blocks the set of codewords.  If the receiver rejects any non-codeword 

transmission, then the only case in which the receiver can make a mistake is 

when the errors change one codeword into another.  The number of errors 

necessary to do this is dmin, the minimum Hamming distance between two 

codewords.  For error correction, we will be able to determine the original 

codeword if fewer than dmin / 2 errors occur.

Constacyclic codes
The focus of my project is how to efficiently compute the minimum 

Hamming distance for a specific type of linear code.  First of all,

d(u, v) = d(u-v, 0).  For linear codes, u-v is also a codeword.  So instead of 

finding the minimum distance between pairs of codewords, it suffices to find 

the minimum number of nonzero components of a codeword.  (The number 

of nonzero components of u is called the Hamming weight, w(u).)

This diagram shows an operation called constacyclic shift, denoted with 

Greek letter q (theta).  It just shifts the vector one position to the right; the 

symbol that “falls off” the right edge is multiplied by a nonzero constacyclic 

constant, c.  A constacyclic code is a linear code where every constacyclic 

shift of a codeword is also a codeword.

An orbit of a codeword u under q is just all of the codewords you can 

get from successive constacyclic shifts of u.  A well-known result from group 

theory states that every codeword falls into exactly one orbit; the orbits 

partition the code.

The constacyclic shift preserves the Hamming weight; therefore the 

codewords within any given orbit all have the same weight.  Thus, we can 

find the minimum Hamming weight more efficiently if we only consider one 

codeword from each orbit.

Future work
I am presently working on a computer implementation of my procedure 

for a more general class of codes, the quasi-twisted codes, which are closed 

under qm for some m.  I plan to complete and run this program at the Ohio 

Supercomputing Center at Ohio State University sometime this semester.  I 

also plan to publish a paper detailing my findings and any new, good codes 

found by my computer search.
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Finding representatives:  Zeroes of t
We can think of the orbits as points on a circle and q as a rotation 

operation.  Let us call our representative y.  Going in the direction of q, give 

each point u a label t(u).  Let t(y) = 0 and t(qu) = t(u)+1.  Clearly, then, u = 

qt(u) y.  Now solve for y :y = u q-t(u).  Intuitively, y takes any element from 

the orbit and maps it to a unique representative of that orbit.

Can we construct some function t such that t(qu) = t(u)+1?  I did it, but 

the function is very difficult to describe.  It uses the advanced algebraic tools 

like the theory of polynomial rings, multiple applications of a result known 

as the Chinese Remainder Theorem, and it may require extremely 

computationally intensive discrete logarithms to implement.

Fortunately, though, we don’t have to actually compute t for any specific 

value of u.  Rather, we are interested in the reverse:  we are interested in the 

fixed points of y, which correspond to the zeroes of t; that is, there is exactly 

one point u in each orbit such that t(u) = 0.  So we need to solve t(u) = 0 for u.  

This turns out to be efficiently doable.
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