
Digital Kenyon: Research, Scholarship, and Creative Exchange

Kenyon Summer Science Scholars Program Summer Student Research Scholarship

Summer 2004

Algebraic Coding Theory
Ben Johnson

Follow this and additional works at: https://digital.kenyon.edu/summerscienceprogram
Part of the Mathematics Commons

This Poster is brought to you for free and open access by the Summer Student Research Scholarship at Digital Kenyon: Research, Scholarship, and
Creative Exchange. It has been accepted for inclusion in Kenyon Summer Science Scholars Program by an authorized administrator of Digital Kenyon:
Research, Scholarship, and Creative Exchange. For more information, please contact noltj@kenyon.edu.

Recommended Citation
Johnson, Ben, "Algebraic Coding Theory" (2004). Kenyon Summer Science Scholars Program. Paper 300.
https://digital.kenyon.edu/summerscienceprogram/300

www.kenyon.edu?utm_source=digital.kenyon.edu%2Fsummerscienceprogram%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
www.kenyon.edu?utm_source=digital.kenyon.edu%2Fsummerscienceprogram%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.kenyon.edu/?utm_source=digital.kenyon.edu%2Fsummerscienceprogram%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.kenyon.edu/summerscienceprogram?utm_source=digital.kenyon.edu%2Fsummerscienceprogram%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.kenyon.edu/summerscholars?utm_source=digital.kenyon.edu%2Fsummerscienceprogram%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.kenyon.edu/summerscienceprogram?utm_source=digital.kenyon.edu%2Fsummerscienceprogram%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digital.kenyon.edu%2Fsummerscienceprogram%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.kenyon.edu/summerscienceprogram/300?utm_source=digital.kenyon.edu%2Fsummerscienceprogram%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:noltj@kenyon.edu

Algebraic Coding Theory
Ben Johnson, Class of 2006; Nuh Aydin, Assistant Professor of Mathematics

Kenyon College Summer Science Scholars Project, Summer 2004

Abstract.
Almost since the first computers were built, protecting digital signals

from errors due to naturally occurring noise has been a problem of immense

practical importance. Adding redundancy to the message can increase the

signal’s resistance to noise. In this project, we first examined some existing

codes -- procedures for adding redundancy. Then, with the aid of advanced

theoretical algebraic tools, we devised some improvements to an existing

computer program to search for new, “good” codes.

Background: Finite fields and linear codes
Certain assumptions and ideas are typical in coding theory. A message

is composed of one or more blocks of k symbols from some alphabet of q

possible symbols. All of the codes I worked with are block codes, which

encode each block independently. The alphabet is usually a field – a set with

operations called addition and multiplication where the “usual” rules of

linear equations – the field axioms – are true.

A systematic code is a very general type of code. In a systematic code,

the code constructs an output block to be sent over the noisy channel by

appending check symbols to the original message, called data symbols. A

linear code is a special type of systematic code. In a linear code, the check

symbols are computed as a weighted sum of the data symbols. A weighted

sum in a finite field looks like

w1*u1+w2*u2+w3*u3+ … +wk*uk for weights wj and inputs uj (field elements)

Field axioms.
Additive Multiplicative

Commutative x+y = y+x x*y = y*x

Associative (x+y)+z = x+(y+z) (x*y)*z = x*(y*z)

Identity x+0 = x x*1 = x

Inverse x+(-x) = 0 x*(x-1) = 1

Distributive x*(y+z) = (x*y)+(x*z)

The Hamming metric
Now that we have discussed some things about the messages and codes,

let us now focus on the errors. An error is defined to be the incorrect

transmission of a single symbol. If we compare a corrupted message v to the

originally intended message u, the number of errors is simply the number of

positions where u and v differ. This is called the Hamming distance d(u, v).

The word “distance” will lead the mathematically inclined reader to

(correctly) suspect a metric space.

How good is a code at detecting errors? Call the set of possible output

blocks the set of codewords. If the receiver rejects any non-codeword

transmission, then the only case in which the receiver can make a mistake is

when the errors change one codeword into another. The number of errors

necessary to do this is dmin, the minimum Hamming distance between two

codewords. For error correction, we will be able to determine the original

codeword if fewer than dmin / 2 errors occur.

Constacyclic codes
The focus of my project is how to efficiently compute the minimum

Hamming distance for a specific type of linear code. First of all,

d(u, v) = d(u-v, 0). For linear codes, u-v is also a codeword. So instead of

finding the minimum distance between pairs of codewords, it suffices to find

the minimum number of nonzero components of a codeword. (The number

of nonzero components of u is called the Hamming weight, w(u).)

This diagram shows an operation called constacyclic shift, denoted with

Greek letter q (theta). It just shifts the vector one position to the right; the

symbol that “falls off” the right edge is multiplied by a nonzero constacyclic

constant, c. A constacyclic code is a linear code where every constacyclic

shift of a codeword is also a codeword.

An orbit of a codeword u under q is just all of the codewords you can

get from successive constacyclic shifts of u. A well-known result from group

theory states that every codeword falls into exactly one orbit; the orbits

partition the code.

The constacyclic shift preserves the Hamming weight; therefore the

codewords within any given orbit all have the same weight. Thus, we can

find the minimum Hamming weight more efficiently if we only consider one

codeword from each orbit.

Future work
I am presently working on a computer implementation of my procedure

for a more general class of codes, the quasi-twisted codes, which are closed

under qm for some m. I plan to complete and run this program at the Ohio

Supercomputing Center at Ohio State University sometime this semester. I

also plan to publish a paper detailing my findings and any new, good codes

found by my computer search.

Acknowledgements and bibliography.
I would like to thank the Kenyon College Summer Science Scholars program

for providing funding for this research; the Ohio Supercomputing Center at

Ohio State University, for providing a grant of supercomputer time; Robert

Lewis of Fordham University for writing and maintaining the free computer

algebra software Fermat; and my faculty advisor, Noah Aydin, for giving this

work encouragement, support, and direction.

Aydin, Nuh. The Structure of 1-Generator Quasi-Twisted Codes and

New Linear Codes. Designs, Codes and Cryptography, 24, 313-326, 2001.

G.-M. Greuel, G. Pfister, and H. Schonemann. Singular 2.0. A Computer

Algebra System for Polynomial Computations. Centre for Computer Algebra,

University of Kaiserslautern (2001). http://www.singular.uni-kl.de

Lewis, Robert. Fermat. Computer algebra software.

http://www.bway.net/~lewis

Pless, Vera. Introduction to the Theory of Error-Correcting Codes. 3rd Ed.

Finding representatives: Zeroes of t
We can think of the orbits as points on a circle and q as a rotation

operation. Let us call our representative y. Going in the direction of q, give

each point u a label t(u). Let t(y) = 0 and t(qu) = t(u)+1. Clearly, then, u =

qt(u) y. Now solve for y :y = u q-t(u). Intuitively, y takes any element from

the orbit and maps it to a unique representative of that orbit.

Can we construct some function t such that t(qu) = t(u)+1? I did it, but

the function is very difficult to describe. It uses the advanced algebraic tools

like the theory of polynomial rings, multiple applications of a result known

as the Chinese Remainder Theorem, and it may require extremely

computationally intensive discrete logarithms to implement.

Fortunately, though, we don’t have to actually compute t for any specific

value of u. Rather, we are interested in the reverse: we are interested in the

fixed points of y, which correspond to the zeroes of t; that is, there is exactly

one point u in each orbit such that t(u) = 0. So we need to solve t(u) = 0 for u.

This turns out to be efficiently doable.

	Digital Kenyon: Research, Scholarship, and Creative Exchange
	Summer 2004

	Algebraic Coding Theory
	Ben Johnson
	Recommended Citation

	PowerPoint Presentation

