Kenyon College
 Digital Kenyon: Research, Scholarship, and Creative Exchange

When Thue-Morse Meets Koch

Jun Ma

Follow this and additional works at: https://digital.kenyon.edu/summerscienceprogram
Part of the Mathematics Commons

Recommended Citation

Ma, Jun, "When Thue-Morse Meets Koch" (2004). Kenyon Summer Science Scholars Program. Paper 299.
https://digital.kenyon.edu/summerscienceprogram/299

When Thue-Morse Meets Koch

Jun Ma, Class of 2005, Kenyon College, Dr. Judy Holdener, Mathematics Department, Kenyon College

Left: The third iteration of the Koch Snowflake.
Acknowledgements: Thanks to the
Kenyon College Summer
Science Kenyon College Summer Science
Scholars program for providing me the research opportunity and also to Dr Judy Holdener for her guidance and support
along the line of the project. along the line of the projec

Abstract

In the project, we revealed a remarkable connection between Thue-Morse sequence and the Koch Snowflake. Using turtle geometry and polygon maps, we realized the ThueMorse sequence as the limit of polygonal curves in the plane. We also proved that a sequence of such curves converges to the Koch snowflake in the Hausdorff metric. In the final section we considered generalized Thue-Morse sequences and provided a characterization of those
hat encode curves converging to the Koch snowflake

Introduction

The Thue-Morse sequence and the Koch snowflake have much in common. Both are defined iteratively. Both exhibit properties of self-similarity. Both first appeared in the early 1900's (the Koch snowflake in 1906 and the Thue-Morse sequence in 1912). And both continue to appear frequently - yet independently - in popular mathematical writing today.

The Thue-Morse sequence is a two symbol sequence typically defined by iterating
titution map σ. Given the alphabet $A=\{a, b\}$, define the morphism $\sigma: A^{*} \rightarrow A^{*}$ by setting $\sigma(a)=a b$ and $\sigma(b)=b a$. If $\sigma^{0}=a$, we see that σ generates the sequence of words: $\left\{\sigma^{n}(a)\right\}_{n \geq 0}=a, a b, a b b a, a b b a b a a b, a b b a b a a b b a a b a b b a$,
This sequence converges to what is commonly known as the Thue--Morse sequence
$t=\lim \quad \sigma^{n}(a)=a b b a b a b b a a b a b a b a b a b a b b a a b a b a a b$
$t=\lim _{n \rightarrow \infty} \sigma^{n}(a)=a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b \ldots$
A classical fractal object, the Koch snowflake was first introduced by Helge von Koch in length, extracting the middle thir and replacing in $1 / 3$ (see Figure 1). The process is continued segments of length equal to $1 / 3$ of the line segment.

Figure 1. Edge replacement in the Koch snowflake
The Koch snowflake is commonly defined by way of a Lindenmayer system with initial string F and rewriting rule $F \rightarrow F-F++F-F ;$ " "+" denotes a counterclockwise rotation of $\pi / 3$ rad and "- a clockwise rotation by the same amount. This rewriting rule can be easily translated into Turtle Program.

Turtle Geometry

A turtle program is defined to be any word over the alphabet $\Sigma=\{L, F\}$ where F denotes a forward motion of the turtle by one unit and L a counterclockwise rotation by some fixed angle θ. If $\theta=2 \pi / N$ (we use $\theta=\pi / 3$ in our project), then the set of all words over Σ subject to the
relation $R=\left\{L^{N}=\varepsilon\right\}$ is denoted by Σ_{R}. \quad A turtle state is an ordered pair $(\overline{\mathrm{r}}, \vec{V})$ consisting of a position vector $\overline{\mathrm{r}} \in \mathbf{R}^{2}$ and a unit
vector \bar{v} describing the turtle's heading. The command F represents the basic transformation T_{E} mapping the state (\bar{r}, \bar{v}) to the state $(\bar{r}+\bar{v}, \bar{v})$, and L represents the transformation T_{L} mapping \bar{V} \bar{v}) to $\left(\bar{r}, R_{\theta} \bar{v}\right.$), where R_{θ} is a rotation matrix. A string w of F s and L s then describes the general turtle transformation T_{w} consisting of compositions of these two basic transformations in the
 positive integer k. As described in [5], the set of pairs (M, R) forms a group under the binary
operation $\left(M_{1}, R_{1}\right)\left(M_{2}, R_{2}\right)=\left(M_{1}+R_{1} M_{2}, R_{1} R_{2}\right)$ and there is a homomorphism $\psi: \Sigma_{R}{ }^{*} \rightarrow G$.

Thue-Morse Turtle Programs
Thue-Morse turtle programs of degree n , denoted by TM_{n} and TM_{n}, are defined to be the word in $\Sigma_{\mathrm{R}}{ }^{*}: \mathrm{TM}_{\mathrm{n}}=\sigma^{\mathrm{n}}(\mathrm{F})$ and $\mathrm{TM}_{\mathrm{n}}=\sigma^{\mathrm{n}}(\mathrm{L})$. Their trajectories turn out to be very interesting.

Indeed, the trajectories corresponding to the even terms of the Thue-Morse sequence are starting to resemble the familiar Koch snowflake! Skeptical? Consider $T M_{14}$
${ }^{2}$
Figure 3. Trajectory of the Thue-Morse turtle program of degree 14

The Polygon Map

Our next goal is to realize turtle programs (in particular Thue-Morse turtle programs) a polygonal curves in the plane. Let S be a subset of Σ_{R}^{*} and let $H\left(\mathbf{R}^{2}\right.$) be the set of nonempty compact
 $: S \rightarrow H\left(\mathbf{R}^{2}\right)$ that assigns a polygon to each word over S. As F . M. Dekking presents in [[4], p. 80],
define the polygon map $K[\bullet \bullet$ on $s \in S$ to be $K[s]=\{\alpha g(s): 0 \leq \alpha \leq 1\}$, and extend the map to all words define the polygon map $K[\bullet]$ on $s \in S$ to be $K[s]=\{\alpha g(s): 0 \leq \alpha \leq 1\}$, and extend the map to all words
over S by requiring that $K[V W]=K[V] U(g(V) \oplus K[W)$ for any $V, W \in S *$ where $g(V) \oplus K[W]=g(V)$ over S by requiring th
$+\pi_{2}^{\circ} \psi(V) \times K[W]$.

As indicated above, there can be many different ways of realizing a turtle program in the plane. The most general polygon map is obtained by defining $S=\Sigma^{*}$. In this case, Kturt : $\Sigma^{*} \rightarrow \mathbf{R}^{2}$ is the map one typically associates with turtle geometry, assigning to each word $w=a_{a} a_{2} a_{3} \ldots a_{k} \in \Sigma^{*}$ the trajectory traversed by a turte that follows each command $a_{i} \in\{\mathrm{~F}, \mathrm{~L}\}$, in turn, starting with a_{1} and finishing with
a_{k}. For all integers $\mathrm{k} \geq 0$, if $\Omega_{2 k}=\left\{\mathrm{TM}_{2 k}, \overline{T M_{2 k}}\right\}$ then the polygon maps $\left\{\mathrm{K}_{2 k}: \Omega_{2 k}^{*} \rightarrow H\left(\mathbf{R}^{2}\right)\right\}$ produce a_{k}. For all integers $\mathrm{k} \geq 0$, if $\Omega_{2 k}=\left\{\mathrm{TM}_{2 k}, \mathrm{TM}_{2 k}\right\}$ then the polygon maps $\left\{\mathrm{K}_{2 k}: \Omega_{2 k}{ }^{*} \rightarrow H\left(\mathbf{R}^{2}\right)\right\}$ produce
polygonal curves constructed out of the basic component edges $\mathrm{K}_{2 k}\left[\mathrm{TM}_{2 k}\right.$ and $\mathrm{K}_{2 k}\left[\mathrm{TM}_{2 k}\right.$. As illustrated in Figure 4, these polygon maps play a critical role in the proofs of the convergence theorems.

Hausdorff Metric

The distance between two subsets of a metric space is defined using the Hausdorff metric (see [2]). Given the complete metric space \mathbf{R}^{2} under the Euclidean metric d and $H\left(\mathbf{R}^{2}\right)$, the space of nonempty compact subsets of \mathbf{R}^{2}, the Hausdorff distance between two points $A, B \in H\left(\mathbf{R}^{2}\right)$ is defined by

$$
\begin{gathered}
h(A, B)=d(A, B) \vee d(B, A) \\
\text { unclidean distance between tw }
\end{gathered}
$$

where $d(A, B)$ is the Euclidean distance between two sets:
$d(A, B)=\operatorname{maxx}\{d(x, B): x \in A\}$,
and $d(A, B) \vee d(B, A)$ denotes maxi $d(A, B), d(B, A)\}$.
$\frac{\text { A particularly simple situation is the case where the two sets are parallel line segments } \overline{A B}}{\overline{C D}}$ and $C D$. By considering two simple cases, the Hausdorff distance $h(\overline{A B}, \overline{C D})$ is computed easily sing the (Euclidean) distances between the endpoints of the parallel line segments.

Main Results
Theorem 5.0.13, 5.0.14 (Convergence Theorem I, II) For positive integer $n \geq 5$, let k_{n} be $1 / 2 n$ if n is ven, and be $(\mathrm{n}+1) / 2$ if n is odd. Then the sequence of compact sets $\left\{S_{\mathrm{n}} \mathrm{K}_{2 \mathrm{kn}}\left[\mathrm{TM}_{2 n}\right]\right\}_{n \geq 5}$ where S_{n} is the

Generalization

If $w, w^{\prime} \in \Sigma_{R}{ }^{*}$ satisfying the following two properties(Theorem 6.0.18)

and σ is the same substitution map defined in the introduction, a generalized Thue-Morse sequence is defined to be the limit $\lim _{n \rightarrow \infty} \sigma^{2 n}(w)$. Following figures show two interesting examples:

Conclusion and Further Research
The Convergence Theorems prove that with the use of sufficiently coarse polygon maps K_{22} the Thue-Morse sequence does indeed encode the Koch snowflake. Generalization shows that there are, in fact, many pairs $\left\{\{w, w\}\right.$ that encode the Koch snowflake under iteration of the substitution map σ^{2}. One
simply needs to define w and w 'to be such that they satisfy properties (1) and (2) of Theorem 60.18 . simply needs to define w and w 'to be such that they satisfy properties (1) and (2) of Theorem $\mathbf{6 . 0 . 1 8}$ It is worth noting, however, that in the original Thue-Morse sequence, w ' is closely linked to w. In
particular, $w^{\prime}=\bar{w}$ is obtained from w by changing all F s to L^{\prime} s and all L 's to F '. This leads us to further research opportunity: Is it possible to find a $w \in \Sigma_{\mathrm{R}}{ }^{*}$ that is different from $\mathrm{TM}_{2 \mathrm{n}}$ or $\mathrm{TM}_{2 \mathrm{n}}$ such that the pair $\left\{w, w^{\prime}\right\}=\{w, \bar{w}\}$ generates turtle programs $\left\{\sigma^{2 n}(w)\right\}_{n \geq 0}$ that encode turtle trajectories converging to the Koch snowflake?

This, it appears, is a much more difficult question to answer. We have not been able to find such a w, nor have we proved that one does not exist. What is clear, however, is that such a w would have to meet
a much more stringent set of criteria. If the Thue-Morse turtle programs $T M_{2}$ and $T M_{2}$ were the only words of the form $\{w, \bar{w}\}$ encoding the Koch snowflake, then this would establish an even tighter link between the Thue-Morse sequence and the Koch snowflake.

References

[^0]
[^0]:

 M. Lothare. Combinatorcics on worts, Addison-Westey, 1983 .

 12. A. Thue, A D ber
 .H. von Koch. Une melode geomerique elementaire pour r eeude de cercaines quesions de la theorie des courbes planes, Acta Matt
 30

