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It turns out, there are rational numbers that are not abundnacy 

indices for any number.  These fractions are called abundancy 

outlaws.  Understanding when abundancy outlaws occur is 

important for determining the conditions necessary for the existence 

of an odd perfect number.    

Weiner’s Outlaws:  If  
ℎ

𝑘
 is in lowest terms and 𝑘 < ℎ <  𝜎(𝑘) then 

ℎ

𝑘
  is an abundancy outlaw.   

For instance, 
5

4
 is an abundancy outlaw since 5 <  𝜎(4) = 7.  

If we follow the same process that we used to color the lines of 

fractions with denominators 4 and 5, we get the following picture.  

Below, we also update our picture by coloring the bricks 

corresponding  to rational numbers that are abundancy outlaws red.  
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The abundancy index is a function that  assigns each positive integer a 

rational number that describes the sum of the divisors of that number 

relative to the number’s size.   This function is defined as: 

𝐼 𝑛 =  
𝜎(𝑛)

𝑛
 

where 𝜎 is the sum of divisors function.   

A  perfect number is a number that has an abundancy index equal to 2.   

Six is the smallest perfect number since : 

 

𝐼 6 =  
1 + 2 + 3 + 6

6
= 2 

 

Notice that we cannot yet identify any rational numbers that have 

prime denominators as abundancy outlaws.  

If we recreate our geometric representation by considering only 

rational numbers with prime denominators, we get the following 

picture.  Notice that the 𝑛𝑡ℎ row for the bottom corresponds to the 

𝑛𝑡ℎ prime number (rather than n  itself).    
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In general, if 𝑝 and 
1

𝑘−1
𝑝 + 1  are both prime, then  

𝐼(
𝑝+1

𝑘−1
𝑝) = 

𝑝+𝑘

𝑝
.   

It turns out that all of the abundancy indices having prime denominators 

greater than 2  identified so far that are  less than or equal to  

3

2
(𝑝+1)

𝑝
    

are of this form.  This suggests that any rational number in this range 

that does not satisfy the criteria above is an abundancy outlaw.   

Some of the oldest open problems in mathematics involve perfect 

numbers.  These numbers are integers whose sum of proper divisors 

equals the number itself.  More formally, a positive integer, n, is said to 

be perfect if the sum of divisors, 𝜎(n), is equal to 2n.    In Elements, 

Euclid proved that if 2𝑝 − 1 is a prime number (a Mersenne prime), 

then 2𝑝−1(2𝑝 − 1) is a perfect number.  Close to two thousand years 

later, Euler than showed conversely that the even perfect numbers are 

exactly those of this form . The smallest perfect number is 6,  and there 

are 47 known perfect numbers, corresponding to the known Mersenne 

primes.  In fact, it is still unknown whether there are infinitely many 

Mersenne primes, and equivalently, even perfect numbers. Moreover, 

even the existence of an odd perfect number is unknown. 

Background 

The Abundancy Index  

Generalization of Patterns 

  

We created a geometric representation of the abundancy index to find 

patterns.  Here we have rational numbers with denominators of 4 and 5, 

lying in the range from 1 to 2.  Whenever we find a number that has the 

abundancy index of one of our rectangles, we color this rectangle blue.   

Examples: 

  𝐼 2 =  
2+1

2
=

3

2
     𝐼 5 =  

5+1

5
=

6

5
   

  

In fact, if p is prime,  then 𝐼 𝑝 =  
𝜎(𝑝)

𝑝
=

𝑝+1

𝑝
. 

 

𝐼 4 =  
𝜎(4)

4
=

1+2+4

4
 =  

 7

4
    I(1)= 

𝜎(1)

1
= 1 

 
𝜎 is multiplicative, so if a and b are relatively prime, then 𝜎 𝑎𝑏 =
 𝜎 𝑎 𝜎 𝑏 .    

 𝐼 10 =  
𝜎(10)

10
=

𝜎(2)𝜎(5)

10
=

3(6)

10
=

9

5
 

 

 

 

 

 

 

 

 

 

Although we have looked at very large numbers, we haven’t yet found a 

number that has the abundancy index of  
7

5
 or  

5

4
.   

5/4 

10/5 9/5 8/5 7/5 6/5 5/5 

4/4 8/4 7/4 6/4 

Abundancy Index Unknown 

If we look at rational numbers with denominators as large as 80, we 

get the following picture.  The orange bricks correspond to a form 

of outlaws discovered a few years ago by Stanton and Holdener.   

Abundancy Index Unknown Abundancy Outlaw 

Notice the curved vertical stripes running down our picture.  It turns 

out that these stripes can be easily explained.  For instance, the 

stripe down the middle, approaching 3/2 are all fractions of the 

form  

3

2
(𝑝+1)

𝑝
.   

For all p > 2, 𝐼 2𝑝 =
𝜎(2)𝜎(𝑝)

2𝑝
=

3(𝑝+1)

2𝑝
 =

3

2
(𝑝+1)

𝑝
 .  

The stripe approaching 4/3 are all fractions of the form 

4

3
(𝑝+1)

𝑝
.   

If 𝑝 ≡ 1 mod 3, then 𝐼 3𝑝 =
𝜎(3)𝜎(𝑝)

3𝑝
=

4(𝑝+1)

3𝑝
=

4

3
(𝑝+1)

𝑝
 

 

Fractions of the form 
𝑝+2

𝑝
 (rational numbers lying in the second 

column from the left) appear to be outlaws, but we are currently 

unable to prove that a number cannot possibly have an abundancy 

index of this form.   

Abundancy indices of the form 
𝑝+3

𝑝
  (rational numbers lying in the 

third column from the left) can occur when both p and 
𝑝+1

2
 are both 

prime numbers.  

𝐼(𝑝 
𝑝+1

2
) = 

𝜎(𝑝)𝜎(
𝑝+1

2
)

𝑝
𝑝+1

2

=  
(𝑝+1)(

𝑝+1

2
+1)

𝑝
𝑝+1

2

=
2(

𝑝+1

2
+1)

𝑝
=  

𝑝+3

𝑝
 

  

Classifying sequences of  rational numbers as abundancy outlaws is a 

very difficult problem.  This stems from the fact that we must prove that 

a particular form of rational number cannot be an abundancy index for 

any number.  Even still, the abundancy index function can give us 

insight into the forms of the indices that do occur.  As a part of our 

research this summer, we created a geometric representation of a set of 

rational numbers to help us find these patterns.  As a result, we have a 

better idea of when abundancy indices with prime denominators  occur 

and conjectures for when they cannot occur.   

• If 𝑘 ≤
1

2
(𝑝 + 3) and  k  is even and 2𝑘 − 3 is composite, then 

𝑝+𝑘

𝑝
 is 

an abundancy outlaw.  

• If 𝐼 𝑁 =  
𝑝+𝑘

𝑝
 for 𝑘 ≤

1

2
𝑝 + 3 , then 𝑝|𝑁 exactly once.   

• This implies that p is the largest prime number dividing N.   

• This conjecture  also implies that the rational number 
𝑝+2

𝑝
 is an 

abundancy outlaw for any prime number not equal to 2.   

Abundancy Outlaws 

Patterns  

Prime Denominators 

Discussion 

Conjectures 

Abundancy Index Unknown Abundancy Outlaw 
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