Kenyon College
 Digital Kenyon: Research, Scholarship, and Creative Exchange

Harmonic Measure Distribution Functions in Complex Domains Mathematics

Kevin Gerstle

Follow this and additional works at: https://digital.kenyon.edu/summerscienceprogram
Part of the Mathematics Commons

Recommended Citation

Gerstle, Kevin, "Harmonic Measure Distribution Functions in Complex Domains Mathematics" (2010). Kenyon Summer Science Scholars Program. Paper 144.
https://digital.kenyon.edu/summerscienceprogram/144

Harmonic Measure Distribution Functions in Complex Domains

Kevin Gerstle '11, Marie Snipes
 Department of Mathematics, Kenyon College

Abstract:

Brownian particles follow a mathematical model of randon movement in some fixed number of dimensions. We start a Brownian particle in some two-dimensional domain and allow the particle to move until it first reaches the boundary of its domain. In boundary of its domain within a set distance r from its starting point. ff we find these probabilities for different values of r we can then construct the harmonic measure distribution function (h-function) as function of r for the particle in that domain. These functions provides interesting information about the size and shape of their domains

In this project, we have found various complex differentiable functions that were used to construct h-functions for several types of domains. We have also developed a program that produces these functions for different domains by simulating movement of Brownian particles. Finally, we have explored a special type of domain called circle domains which have particularly interesting h functions. In analyzing circle domains with one inner boundary arc, we learned that decreasing the radius of that arc will increase the probability that a Brownian particle will first hit that arc.

Definition of H-Functions:

We first start a Brownian particle at point zo in a domain and let it un until hits the boundary of the domain (see Figure 1). We know it istance r and consider the probability the particle will first hit the boundary within distance r from the basepoint z_{0} (see Figure 2).

Figure 1: Brownian motion in rectangle

Figure 2: Boundary section of interest in rectangle

In other words, what is the probability a Brownian particle starting at zo_{0} will first hit the boundary in the red section? By considering these probabilities as a function of the radius r, we find the harmonic measure distribution function, or h-function, for this basepoint in this domain

H-Function Properties:

-All go from 0 towards 1 (reaching 1 in the case of a bounded domain) -All go from 0 towards (reaching - If the boundary of the domain or the a different h-function will be produced

Geometric Approach to Finding H-Functions:

We constructed conformal mappings using techniques from complex analysis that mapped each domain to the inside of a circle. From there, we found the angles of the arcs subtended by the image of the boundary angles ad took the su

Circle Domains:

The boundaries of these domains each consists of an outer circle along with inner arcs that are all centered around the basepoint.

Computational Approach to Finding H-Functions:

One goal this summer was to construct a series of programs in Matlab that would simulate Brownian motion. We wrote programs that simulate h-functions for all of the domains seen to the right as well as for any type of circle domain. These simulations were the only way to find h -functions for circle domains.
approach will not work with circle domains due to the fact that they are not simply connected, meaning they cannot circle. Instead, to find the h functions of these domains, we must use the computational approach outlined below:

Examples:

Strip Domain
$h(r)$

Off Center-Circle

Half-Plane
$h(r)$

Circle Domain H-Functions:

In fact, the h -function of any circle domain is a step function going from 0 to 1 .

1-Arc Circle Domains:

If we fix the subtended angle θ of the inner arc in a circle domain with one arc, we find that by changing the radius of that arc, we will change the hitting probabilities:

We found that as the radius of the inner arc approaches 0 , the probability that the particle will hit that arc as opposed to the outer circle first will increase to 1 . As that the probability of hitting that arc will approach $\theta / 2 \pi$.

Acknowledgements:

I would like to thank Dr. Marie Snipes for advising me in my study of harmonic measure distribution functions. I would also like to thank the Kenyon Mathematics Department an the Kenyon Summer Science Program for research. Finally, I would like to thank Pi Mu Epsilon for allowing me to present my resear their annual conference in August, 2010.

References:

1] SAFF, E. B., AND SNIDER, A. D. Fundamentals of omplex Analysis with Applications to Engineering and Science. Prentice Hall, Upper Saddle River, New Jersey, 2003.
[2] SNIPES, M. A., AND WARD, L. A. Realizing step functions as harmonic measure distributions of planar domains. Ann. Acad.
Sci. Fenn. Math. 30,2 (2005), $353-360$.

