Kenyon College Digital Kenyon: Research, Scholarship, and Creative Exchange

Kenyon Summer Science Scholars Program

Summer Student Research Scholarship

Summer 2009

Triangular and Polygonal Triples

Daniel Franz

Follow this and additional works at: https://digital.kenyon.edu/summerscienceprogram Part of the <u>Mathematics Commons</u>

Recommended Citation

Franz, Daniel, "Triangular and Polygonal Triples" (2009). *Kenyon Summer Science Scholars Program*. Paper 117. https://digital.kenyon.edu/summerscienceprogram/117

This Poster is brought to you for free and open access by the Summer Student Research Scholarship at Digital Kenyon: Research, Scholarship, and Creative Exchange. It has been accepted for inclusion in Kenyon Summer Science Scholars Program by an authorized administrator of Digital Kenyon: Research, Scholarship, and Creative Exchange. For more information, please contact noltj@kenyon.edu.

Abstract

The equation $a^2 + b^2 = c^2$ is one of the most famous equations in the world, due to its role in the Pythagorean Theorem. One generalization of this is the equation $a^n + b^n = c^n$, which is well known because of Fermat's Last Theorem. Recognizing that a Pythagorean triple (a,b,c)corresponds to three square numbers a^2 , b^2 , and c^2 , the last of which is the sum of the first two, we can examine a second way of generalizing Pythagorean triples. In particular we consider the question "when is the sum of two triangular numbers a triangular number?" or more generally, "when is the sum of two polygonal numbers a polygonal number?" The answer is found parametrically, by finding polygonal triples of the form (n, x, n+k), where x and *n* can be calculated given a value for *k*. The triangular case will be covered in detail, and examples of the general polygonal solution will be given.

Triangular Numbers

shown below.

Each triangular number can be constructed by adding a row to the previous triangular number. For example, $T_5 = T_4 + 5$. Each successive row is one piece longer than the previous row, suggesting the formula $T_n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{n}$

Triangular Triples

A positive integer triple (a, b, c) is a triangular triple if $T_a + T_b = T_c$. Example: $T_3 + T_5 = 6 + 15 = 21 = T_6$

•Example: $T_6 + T_5 = T_8 = T_{6+2}$. This is because the bottom two rows of T_8 form T_5 . So if the

bottom k rows of T_{n+k} form some triangular number T_x , then $T_n + T_x = T_{n+k}$.

Assume $T_n + T_x = T_{n+k}$, where $x, k \in N$. Then n(n+1) + x(x+1) = (n+k)(n+k+1), so x(x+1) = 2nk + k(k+1). Therefore *n* will be an integer exactly when $x(x+1) \equiv k(k+1) \mod(2k)$. Since we need *n* to be a positive integer for (*n*, *x*, *n+k*) to be a triangular triple, we can use this congruence to find values of x and k that force n to be a positive integer when $T_n + T_x = T_{n+k}$. This congruence can be solved by fixing k and using the prime factorization of k. Theorem 1 provides a complete description of triangular triples with odd *k*.

Triangular and Polygonal Triples Daniel Franz, Advisor Judy Holdener

Department of Mathematics, Kenyon College, Gambier, OH 43022

Theorem 1

Let k be an odd positive integer with prime factorization $k = \prod_{i=1}^{r_i} p_i^{r_i}$. Let $n = \frac{x(x+1) - k(k+1)}{2k} = \frac{T_x - T_k}{k}$. Then (*n*, *x*, *n+k*) is a triangular triple if and only if x > k and $x \equiv 0$ or $-1 \pmod{p_i^{r_i}}$ for $1 \le i \le s$.

Proof of Theorem 1

Fix k odd. Recall that n is an integer if and only if $x(x+1) \equiv k(k+1) \pmod{2k}$ so we start by solving this congruence. Since by assumption k is odd, (k+1)/2is an integer, so $k(k+1) \equiv 2k \frac{(k+1)}{2} \equiv 0 \pmod{2k}$. Because 2 and k are relatively prime, $x(x+1) \equiv 0 \pmod{2k}$ if and only if $x(x+1) \equiv 0 \pmod{2}$ and $x(x+1) \equiv 0 \mod(k)$. One of x, x+1 is always even, so the former congruence is always true. To solve the latter congruence, note that each prime power factor of k is relatively prime, so $x(x+1) \equiv 0 \pmod{k}$ if and only if $x(x+1) \equiv 0 \pmod{p_i^{\prime_i}}$ for $1 \le i \le s$. Because x and x+1 are relatively prime, each congruence $x(x+1) \equiv 0 \pmod{p_i^{r_i}}$ has only the solutions $x \equiv 0 \pmod{p_i^{r_i}}$ and $x \equiv -1 \pmod{p_i^{r_i}}$. Therefore $x(x+1) \equiv 0 \pmod{2k}$ and *n* is an integer if and only if $x \equiv 0$ or $-1 \pmod{p_i^{r_i}}$ for $1 \le i \le s$. But if $x \le k$, then *n* is not positive, so for (n, x, n+k) to be a triangular triple we require the additional constraint that x > k. Note that $T_n + T_x = T_{n+k}$ by construction, so (n, x, n+k) is in fact a triangular triple.

Theorem 2

Let k be an even positive integer with prime factorization $k = 2^t \prod p_i^{r_i}$. Let $n = \frac{x(x+1) - k(k+1)}{2k} = \frac{T_x - T_k}{k}$. Then (*n*, *x*, *n+k*) is a triangular triple if and only if x > k, $x \equiv 2^t$ or $2^t - 1 \pmod{2^{t+1}}$, and $x \equiv 0$ or $-1 \pmod{p_i^{r_i}}$ for $1 \le i \le s$.

Example for Odd k

that $x \equiv 0 \text{ or } -1 \pmod{9}$ and $x \equiv 0 \text{ or } -1 \pmod{5}$. Suppose we pick

Suppose that $k = 45 = 3^2 \cdot 5$. Then to generate a triangular triple, we find some x so $x \equiv -1 \pmod{9}$ and $x \equiv 0 \pmod{5}$. Using the Chinese Remainder Theorem or just by guessing, we see that $x \equiv 35 \pmod{45}$ is the general solution to this system of two congruences. Since we need x > k, one valid choice is x = 80. Calculating n as in Theorem 1, we obtain n = 49. Therefore (49, 80, 94) is a triangular triple.

Example for Even k

Polygonal Numbers

Polygonal numbers are numbers that can be represented as a regular polygon. The n^{th} polygonal number of s sides is $P_n^s = \frac{n((s-2)n - (s-4))}{2}$, or equivalently the sum of an arithmetic series of *n* terms with first term 1 and common difference s-2. Examples of polygonal numbers are shown below. Notice that for any s > 2, the shape P_n^s contains P_{n-1}^s inside of it.

Polygonal Triples

A positive integer triple (a,b,c) is a polygonal triple if for some integer s > 2, $P_a^s + P_b^s = P_c^s$. The methods used to find triangular triples were generalized and used to find polygonal triples, so polygonal triples were found in the form (n, x, n+k). The full solution depends on the common factors of s-2 and k, as well as of s - 4 and k. The solution in the simplest case is stated below. Notice that when *s*=3, this result simplifies to Theorem 1.

Theorem 3

Let k be odd with prime factorization $k = \prod_{i=1}^{r} p_i^{r_i}$. Let s > 2 be an integer and assume gcd(s-2,k) = gcd(s-4,k) = 1. Let $n = \frac{x(x+1) - k(k+1)}{2k} = \frac{T_x - T_k}{k}$. Then (*n*, *x*, *n*+*k*) is a polygonal triple for polygons with *s* sides if and only if x > k, $x \equiv k \pmod{s-2}$, and $x \equiv 0 \text{ or } 1 - 2(s-2)^{-1} \pmod{p_i^{r_i}}$ for $1 \le i \le t$.

I would like to thank Professor Judy Holdener for her insights and advice throughout this project. I would also like to thank the Kenyon College Summer Science program for providing me the opportunity to perform this research.

(1993), no. 2, 135-142. *Monthly* **108** (2001), no. 3, 257-258.

For an example using an even k, let $k = 600 = 2^3 \cdot 3 \cdot 5^2$. Then by Theorem 2, we must find some x satisfying $x \equiv 0$ or $-1 \pmod{3}$, $x \equiv 0$ or $-1 \pmod{25}$, and $x \equiv 8 \text{ or } 7 \pmod{16}$. Suppose we choose $x \equiv 0 \pmod{3}$, $x \equiv -1 \pmod{25}$, and $x \equiv 7 \pmod{16}$. Again, the Chinese Remainder Theorem can be used to determine that the solution to this system of congruences is $x \equiv 999 \pmod{1200}$. Since 999 > 600 we can use this as our x. Then we can calculate n as in the statement of Theorem 2, giving n = 532. Therefore (532, 999, 1132) is a triangular triple.

Acknowledgements

References

Sastry, K.R.S., "Pythagorean Triangles of the Polygonal Numbers," Math. Comput. Ed. 27

Scheffold, E., "Pythagorean Triples of Polygonal Numbers," The American Mathematical