Kenyon College
 Digital Kenyon: Research, Scholarship, and Creative Exchange

Triangular and Polygonal Triples

Daniel Franz

Follow this and additional works at: https://digital.kenyon.edu/summerscienceprogram
Part of the Mathematics Commons

Recommended Citation

Franz, Daniel, "Triangular and Polygonal Triples" (2009). Kenyon Summer Science Scholars Program. Paper 117
https://digital.kenyon.edu/summerscienceprogram/117

Triangular and Polygonal Triples

Daniel Franz, Advisor Judy Holdener
Department of Mathematics, Kenyon College, Gambier, OH 43022

Abstract

The equation $a^{2}+b^{2}=c^{2}$ is one of the most famous equations in the world, due to its role in the Pythagorean Theorem. One generalization of this is the equation $a^{n}+b^{n}=c^{n}$, which is well the Pythagorean oneorem. One generalization of this is the equation $a^{n}+b^{n}=c$, which is w
known because of Fermat's Last Theorem. Recognizing that a Pythagorean triple (a, b, c) known because of Fermat's Last Theorem. Recognizing that a Pythagorean triple (a, b, c)
corresponds to three square numbers a^{2}, b^{2}, and c^{2}, the last of which is the sum of the first two, we can examine a second way of generalizing Pythagorean triples. In particular we consider the question "when is the sum of two triangular numbers a triangular number?" or conse generally, "when is the sum of two polygonal numbers a polygonal number?" The answer is found parametrically, by finding polygonal triples of the form ($n, x, n+k$), where x and n can be calculated given a value for k. The triangular case will be covered in detail, and examples of the general polygonal solution will be given.

Triangular Numbers

A triangular number is a natural number that can be put into the shape of an equilateral triangle. The $n^{\text {th }}$ triangular number is denoted by T_{n}. Examples of triangular numbers are shown below.

Each triangular number can be constructed by adding a row to the previous triangular number. For example, $T_{5}=T_{4}+5$. Each successive row is one piece longer than the previous row, suggesting the formula

$$
T_{n}=1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

Triangular Triples

A positive integer triple (a, b, c) is a triangular triple if $T_{a}+T_{b}=T$
Example: $T_{3}+T_{5}=6+15=21=T_{6}$
-Example: $T_{6}+T_{5}=T_{8}=T_{6+2}$. This is because the bottom two rows of T_{8} form T_{5}. So if the bottom k rows of T_{n+k} form some triangular number T_{x}, then $T_{n}+T_{x}=T_{n+k}$

Assume $T_{n}+T_{x}=T_{n+k}$, where $x, k \in N$. Then $n(n+1)+x(x+1)=(n+k)(n+k+1)$, so $x(x+1)=2 n k+k(k+1)$. Therefore n will be an integer exactly when
$x(x+1) \equiv k(k+1) \bmod (2 k)$. Since we need n to be a positive integer for $(n, x, n+k)$ to be a triangular triple, we can use this congruence to find values of x and k that force n to be a triangular tripe, we can use this congruence to find values of x and k that force n to be a
positive integer when $T_{n}+T_{x}=T_{n+k}$. This congruence can be solved by fixing k and using the prime factorization of k. Theorem 1 provides a complete description of triangular triples with odd k.

Theorem 1

Let k be an odd positive integer with prime factorization $k=\prod p_{i}{ }^{r}$. Let $n=\frac{x(x+1)-k(k+1)}{2 k}=\frac{T_{x}-T_{k}}{k}$. Then $(n, x, n+k)$ is a triangular triple if and only if $x>k$ and $x \equiv 0$ or $-1\left(\bmod p_{i}^{r_{i}}\right)$ for $1 \leq i \leq s$

Proof of Theorem

Fix k odd. Recall that n is an integer if and only if $x(x+1) \equiv k(k+1)(\bmod 2 k)$ so we start by solving this congruence. Since by assumption k is odd, $(k+1) / 2$ is an integer, so $k(k+1) \equiv 2 k \frac{(k+1)}{2} \equiv 0(\bmod 2 k)$. Because 2 and k are relatively prime, $x(x+1) \equiv 0(\bmod 2 k)$ if and only if $x(x+1) \equiv 0(\bmod 2)$ and $x(x+1) \equiv 0 \bmod (k)$. One of $x, x+1$ is always even, so the former congruence is always true. To solve the latter congruence, note that each prime power factor of k is relatively prime, so $x(x+1) \equiv 0(\bmod k)$ if and only if $x(x+1) \equiv 0\left(\bmod p_{i}^{{ }^{i}}\right)$ for $1 \leq i \leq s$. Because x and $x+1$ are relatively prime, each congruenc $x(x+1) \equiv 0\left(\bmod p_{i}{ }^{i_{i}}\right)$ has only the solutions $x \equiv 0\left(\bmod p_{i}^{{ }^{i}}\right)$ and $x \equiv-1\left(\bmod p_{i}^{r_{i}}\right)$. Therefore $x(x+1) \equiv 0(\bmod 2 k)$ and n is an integer if and only if $x \equiv 0$ or $-1\left(\bmod p_{i}^{r_{i}}\right)$ for $1 \leq i \leq s$. But if $x \leq k$, then n is not positive, so for $(n, x, n+k)$ to be a triangular triple we require the additional constraint that $x>k$ Note that $T_{n}+T_{x}=T_{n+k}$ by construction, so $(n, x, n+k)$ is in fact a triangular triple

Theorem 2

Let k be an even positive integer with prime factorization $k=2^{t} \prod_{i=1}^{s} p_{i}^{r_{i}}$. Let $n=\frac{x(x+1)-k(k+1)}{2 k}=\frac{T_{x}-T_{k}}{k}$. Then $(n, x, n+k)$ is a triangular triple if and only if $x>k, x \equiv 2^{t}$ or $2^{t}-1\left(\bmod 2^{t+1}\right)$, and $x \equiv 0$ or $-1\left(\bmod p_{i}^{r_{i}}\right)$ for $1 \leq i \leq s$.

Example for Odd k

Suppose that $k=45=3^{2} \cdot 5$. Then to generate a triangular triple, we find some x so that $x \equiv 0$ or $-1(\bmod 9)$ and $x \equiv 0$ or $-1(\bmod 5)$. Suppose we pick $x \equiv-1(\bmod 9)$ and $x \equiv 0(\bmod 5)$. Using the Chinese Remainder Theorem or just by guessing, we see that $x \equiv 35(\bmod 45)$ is the general solution to this system of two congruences. Since we need $x>k$, one valid choice is $x=80$. Calculating n as in Theorem 1, we obtain $n=49$. Therefore $(49,80,94)$ is a triangular triple.

Example for Even

For an example using an even k, let $k=600=2^{3} \cdot 3 \cdot 5^{2}$. Then by Theorem 2 , we must find some x satisfying $x \equiv 0$ or $-1(\bmod 3), x \equiv 0$ or $-1(\bmod 25)$, and $x \equiv 8$ or $7(\bmod 16)$. Suppose we choose $x \equiv 0(\bmod 3), x \equiv-1(\bmod 25)$, and $x \equiv 7(\bmod 16)$. Again, the Chinese Remainder Theorem can be used to determin that the solution to this system of congruences is $x \equiv 999(\bmod 1200)$. Since $999>600$ we can use this as our x. Then we can calculate n as in the statement of Theorem 2 , giving $n=532$. Therefore $(532,999,1132$) is a triangular triple

Polygonal Numbers

Polygonal numbers are numbers that can be represented as a regular polygon. The $n^{\text {th }}$ polygonal number of s sides is $P_{n}^{s}=\frac{n((s-2) n-(s-4))}{2}$, or equivalently the sum of an arithmetic series of n terms with first term 1 and common difference $s-2$. Examples of polygonal numbers are shown below. Notice that for any $s>2$, the shape P_{n}^{s} contains P_{n-1}^{s} inside of it.

Polygonal Triples
A positive integer triple (a, b, c) is a polygonal triple if for some integer $s>2$ $P_{a}^{s}+P_{b}^{s}=P_{c}^{s}$. The methods used to find triangular triples were generalized and used to find polygonal triples, so polygonal triples were found in the form $(n, x, n+k)$. The full solution depends on the common factors of $s-2$ and k, as well as of $s-4$ and k. The solution in the simplest case is stated below. Notice that when $s=3$, this result simplifies to Theorem 1 .

Theorem 3

Let k be odd with prime factorization $k=\prod p_{i}^{{ }_{i}}$. Let $s>2$ be an integer and assume $\operatorname{gcd}(s-2, k)=\operatorname{gcd}(s-4, k)=1$. Let $n=\frac{x(x+1)-k(k+1)}{2 k}=\frac{T_{x}-T_{k}}{k}$ Then ($n, x, n+k$) is a polygonal triple for polygons with s sides if and only if ${ }^{2 k}$ $x>k, x \equiv k(\bmod s-2)$, and $x \equiv 0$ or $1-2(s-2)^{-1}\left(\bmod p_{i}^{r_{i}}\right)$ for $1 \leq i \leq t$
 for providing me the opportunity to perform this research.

References

Sastry, K.R.S., "Pyythagorean Triangles of the Polygonal Numbers," Math. Comput. Ed. 27 1993), no. 2, 135-142.
cheffold, E "Pythagorean Triples of Polygonal Numbers," The American Mathematical Monthly 108 (2001), no. 3, 257-258.

