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Background Information

Deep Reinforcement Learning in Trading Algorithms

Tucker Bennett, Delaney Ambrosen, Joe Woody, and Simon Fruth
Artificial Intelligence for the Humanities

Kenyon College

Reinforcement Algorithm Methodology

Conclusion

An algorithm that can learn an optimal policy to execute trade profitable is any market participant’s dream. In the project, we propose an algorithm that does just that: a Deep Reinforcement Learning trading algorithm. We 
design our algorithm by tuning the reward function to our specified constraints, taking into account unrealized Profits and Losses (PnL), Sharpe ratio, profits, and transaction costs. Additionally, we use a short 5-month 
moving average replay memory in order to ensure our algorithm is basing its decision on the most pertinent information. We combine the aforementioned concepts to make a theoretical Deep Reinforcement Learning 
trading algorithm. 

Abstract

Algorithm Comparison 

The use of Artificial Intelligence and Machine Learning on 
Wall Street is becoming increasingly predominant. In recent 
years, AI has become a cornerstone strategy for trading and 
research in large asset management companies such as Two 
Sigma and Goldman Sachs. Other quant firms like Acadian Asset 
Management have more than doubled their assets in the last five 
years due to strategies implemented by AIs. 

Artificial Intelligence is currently taking on several different 
roles in the financial sector. Companies like Goldman have 
already implemented it in a lending and banking platform for 
individuals called “Marcus.” Other firms such as JP Morgan Chase 
have been investing in applications and algorithms that will 
eventually optimize trade execution. These algorithms and AIs 
will be considered successes if they reduce market impact, and 
provide the best trading execution decisions. They will do this by 
“learning” the best actions based on the market and client 
preferences.  

Currently 45% of Goldman Sachs’s revenue is comprised of 
cash equities trading that executed by trading algorithms. They 
have found that four traders can be replaced by one computer 
engineer, with almost a third of the staff already consisting of 
engineers. This trend of traders and analysts being replaced by 
programmers and engineers will only grow as managing 
directors and executives find that AI is less costly than lower-level 
employees. It is projected that machine learning and Artificial 
Intelligence will replace over 90,000 jobs in asset management 
in the United States, and over 300,000 jobs worldwide. 

Along with Genetic Algorithms, Reinforcement Learning and 
Generative Adversarial Networks have been methods used to 
implement algorithmic trading in the past, but recently Deep 
Neural Network (DNN) approaches to Reinforcement Learning 
(RL) have garnered more attention recently. This approach most 
naturally replicates the actions of a human trader in that it also 
constantly deals with the trade off between exploiting known 
returns versus exploring risky but potentially higher returns by 
pursuing new actions with unknown rewards (see Figure 1). This 
also has the advantage of being an end to end unsupervised AI 
model that results in decisions rather than predictions. The 
algorithm dynamically solves a sequential decision problem by 
interacting with its environment to learn the most efficient policy 
based upon the rewards of individual actions. By continually 
interacting in a dynamic environment, the algorithm is able to 
adapt to changing market signals and structures. 

The DNN learns the most efficient trading policy based upon 
the rewards for every action our agent takes, balanced with the 
objective to both exploit known profitable actions with exploring 
unknown potentially more profitable actions. The resulting policy 
informs the RL algorithm on how to make the most efficient 
trading policy (see Figure 2). At any given point in time, there are 
three possible actions for the agent to make: Buy, Sell, and Hold. 
At every point decision point, the algorithm runs multiple 
simulations for each possible action to estimate the returns for 
each potential sequence of actions. This gives the agent a 
recommended sequence of actions to exploit for maximum 
returns based upon returns from past transactions. The trading 
policy evolves as the RL algorithm adapts to changing market 
conditions in real time. 

The policy is updated with each action taken by the algorithm 
through a reward function. The reward function is something that 
is unique to Reinforcement Learning algorithms and makes it 
extremely applicable to trading strategies. The feedback at each 
time step is essential in learning the error at each step and 
adjusting the policy accordingly. This policy can then be used by 
the RL algorithm to make real time trades in the market. As the 
algorithm interacts with the training data, it receives reward 
signals. 

The reward function can be customized to best fit the goals of 
the trader. For example, the algorithm can be trained to 
maximize profits and minimize losses, or to maximize the Sharpe 
ratio, which is a measure of risk-adjusted returns. The algorithm 
can also be trained to account for unrealized profits and losses 
(PnL), which is something other strategies do not account for. 
Unrealized profits and losses come from assets that appreciate, or 
depreciate in value, but are not yet sold. Therefore, their change 
in value has not been realized. Including unrealized PnL would 
allow the algorithm to learn from its inaction and improve its 
trading policy. Finally, the reward function incorporates 
transaction costs, which is a vital consideration to make. This 
ensures that the algorithm does not make frequent frivolous 
trades. 

The reward function we designed includes minimizing 
unrealized PnL, maximizing Sharpe ratio, maximizing profits, and 
especially minimizing transaction costs which is frequently 
overlooked. Our reward function helps increase the efficiency of 
the algorithm by decreasing random exploration. Since Deep 
Reinforcement Learning “learns” through trial and error, it takes 
many actions for it converge on an optimal policy which we must 
constrain by accounting for transaction costs. The algorithm finds 
an optimal policy to fit all the constraints on its own. 

Our program would utilize a 5-month moving average replay 
memory window to influence the algorithm’s decision. This 
shorter time length ensures that the program is not overfitting 
the data, and is considering only the most relevant information.  
As the replay memory window increases in time, the incidence of 
overfitting increases. This way, the most recent data points have 
the biggest impact on the algorithm’s decisions, allowing the 
algorithm to “forget” old data and not influence its future trading 
decisions. This time window is supported by research by Tucker 
Balch at the Georgia Tech College of Computing. An example of 
how we would code the replay memory window is shown in 
Figure 3.

After millions of iterations of training on historical data, the 
policy ultimately converges on an optimal policy. Our algorithm 
would optimize the portfolio’s Sharpe ratio, consider trading costs 
and unrealized profits and losses, and would utilize a 5-month 
memory window. We believe that this methodology would 
produce the most efficient trading strategy, and could be 
employed trading small-cap stocks. We decided to choose small 
cap stocks because they are the most overlooked securities and 
they present the best hidden buying opportunities. The small 
caps have a higher volatility that benefit models like these that 
can better detect and profitably act upon changes in real time. 
Additionally, small caps tend to outperform large cap stocks in 
the long run due to their increased risk and we feel this algorithm 
could identify successful buying opportunities given its 
parameters.

Artificial Intelligence will inevitably revolutionize the trading 
models used on Wall Street. As computing power and Machine 
Learning techniques improve, these strategies are becoming 
more profitable and accessible not only for large Wall Street 
firms, but for individual investors. Mahi de Silva, the founder and 
CEO of Botworx.ai even said, “AI systems that were once only 
accessible to large hedge funds and megabanks [will serve] a 
much broader set of customers including day traders that make 
a living from understanding and reacting to patterns of the 
financial markets.” As these high-power strategies become more 
accessible to everyday people, financial markets will become 
more fair and available to the general public. While trading 
algorithms have shown success on Wall Street, they are still not 
perfect. 

Algorithms can react to changes in price much more rapidly 
than humans can, exploiting small changes in price for quick 
profits. However, this can have a negative effect on the market. 
Some of the recent stock market volatility can be attributed to 
the sell signals encoded into these algorithms in order to 
minimize loses. This has caused some algorithms to have to be 
shut off during volatile trading sessions. Due to issues such as 
the aforementioned encoded sell signal, the majority of current 
trading algorithms still require human supervision. This is due 
impart to humans’ lack of trust in machines to make financial 
decisions. Artificial Intelligence currently operates in somewhat 
of a black box but tremendous efforts are being made to bring 
fairness, accuracy, and transparency(FAT) to complex models like 
Deep Reinforcement Learning. As trading algorithms proliferate 
in the future, humans must come to terms of understanding 
sophisticated trading algorithms: the human traders will shift 
from designing trading algorithms to understanding automated 
training algorithms.
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Neural Network of Trading Algorithm

Three main techniques rising in prominence in algorithmic trading: 
Genetic Algorithms/Programming (GA), Generative Adversarial 
Networks(GAN), and Deep Reinforcement Learning(RL). 

Genetic Algorithms (GA)
Genetic Algorithms are a set of algorithms that mirror the algorithm of 
evolution. Across multiple generations, a population of competing 
algorithms continually mutate over time and hopefully converge on an 
efficient solution. This approach works well for large problem spaces 
that are underspecified, like those typically found in finance. 

Pros: It can be used on a broader set of problems that would be ill 
defined for traditional algorithms. Genetic Algorithms generally 
converge on efficient solutions given enough time and resources.
Cons: The algorithm is not fully transparent, it may take a lot of 
resources to eventually arrive at an acceptable solution, ultimately it 
may not converge on an acceptable solution at all.

Generative Adversarial Networks(GAN)
Generative Adversarial Networks use two competing networks to learn a 
model. A GAN consists of a generative network that creates synthetic 
data intended to deceive a discriminator network. For example, GAN’s 
can be used to generate realistic photos from random data. In this 
situation, a discriminator network trained on real photos is fed images 
created by the generative network. After many iterations, the generative 
network creates increasingly realistic photos until the discriminator can 
no longer distinguish between real and synthetic photos. GAN’s can 
learn the latent structure in any data from photos to probability 
distribution of stock returns.

Pros: Effective method for learning latent structure in complex data.
Cons: It can be difficult to effectively train GAN’s.

Deep Reinforcement Learning(RL)
Deep Reinforcement Learning is a technique to learn an optimal policy 
or sequence of actions to take in an uncertain environment. An RL agent 
interacts with an environment and receives reward or penalties based 
on their interactions with the environment. As RL agents become more 
familiar with their environment, they have a decision between exploiting 
actions with known rewards versus exploring the environment to learn 
new actions with potentially higher rewards. As the agent learns an 
increasingly optimal policy, they are able to maximize its rewards. 
Reinforcement Learning is behind technology lie alpha go achieving 
breakthroughs that humans, until recently, thought were impossible.

Pros: Can do effective learning without large labeled data sets. 
Cons: It can be difficult to design realistic reward functions and 
capture all the possible outcomes for a given scenario. 

Figure 1

Figure 2

Figure 3

Figure 3 is an example of how to encode replay memory into 
our algorithm. 

Figure 1 represents how an agent interact with its 
environment in Reinforcement Learning 

Figure 2 represents how the Deep Neural Network 
informs the RL algorithm what action to take
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