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Abstract 

The use of educational games as a tool for providing learners with a playful and educational aspect is widespread. In 
this paper, we present an educational game that we developed to teach a chemistry lesson, namely drawing a Lewis 
diagram. Our game is a 3D environment known as LewiSpace and aims at balancing between playful and educational 
contents in order to increase engagement and motivation while learning. The game contains mainly five different 
missions aim at constructing Lewis diagram molecules which are organized in an ascending order of difficulty. We also 
conducted an experiment to gather data about learners’ cognitive and emotional states as well as their behaviours 
through our game by using three types of sensors (electroencephalography, eye tracking, and facial expression 
recognition with an optical camera) and a self report personality questionnaire (the Big Five). Primary results show that 
a machine learning model namely logistic regression, can predict with some success whether the learner will success or 
fail in each mission of our game, and paves the way for an adaptive version of the game. This latter will challenge or 
assist learners based on some features extracted from our data. Feature extraction integrated into a machine learning 
model aims mainly at providing learners’ with a real-time adaptation according to their performance and skills while 
progressing in our game. 

Keywords: educational game, electroencephalogram, eye tracking, facial expression recognition, logistic regression 
model, big five questionnaire 

1. Introduction 

In Human Computer Interaction (HCI), the Intelligent Tutoring Systems (ITS) were among the first sophisticated 
learning systems. These systems are characterized by their capacity to provide a continuous feedback, hints, helps, etc. 
to learners. The adaptation was done mainly by using intelligence artificial techniques and more specifically machine 
learning algorithms. The use of the latter provides these systems with the ‘intelligence’ criterion. Nowadays, the ITS 
have progressed and moved to another type of environment since 2002: educational games or serious games (SGs). SGs 
are video games that aim to inform, test and train people while playing. They can be applied in several fields: military, 
government, education, business, health care, etc. Recently, they are more used for educational reasons (Conati 2002, 
Ghali et al. 2014, Jackson et al. 2012, Rowe et al. 2009) through their playful aspect, known as ‘Game based Features’ 
(McNamara et al. 2010). 

Although this environment presented a very appropriate and quite moderate way of learning, the problem of user 
adaptation according to educational aspect remains of great importance. We think that researchers should focus more on 
this problem in this type of environment due to its difference with ITS. However, to our knowledge, only few works are 
interested to develop some adaptive user models in SGs and very few works are interested to provide learners’ with real 
time adaptation which reacts while interacting with the game. However, we believe that this issue presents a very 
important factor to consider in SGs since that their main goal in educational applications is to improve and focus more 
on the educational and pedagogical content and not the playful aspect which does not contribute to learning 
improvement process. Therefore, on one hand we think that the adaptation must more focus on the type and nature of 
help to supplement and complement the educational content of the game. On the other hand, we think that this latter 
should be instantly and in real time. So, the resulting environments (SGs) should react immediately and/or according to 
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user’s needs and learning capacity. Moreover, many works focus more on the playful aspect which increases motivation 
and pleasure but not necessary contributes to improving the learning process which depends mainly on the pedagogical 
contents. In addition, almost games present a serious problem when translating from game situations to non-game 
contexts. Furthermore, the students generally spend too much time in using entertainment and playful aspects rather 
than practicing educational contents. 

In order to solve this problem and to develop more effective real time adaptive tools which consist of taking learners’ 
differences (a Big Five personality was administrated in our work) and focus more of detecting when users need really 
more pedagogical help in SGs, we proposed in this paper a first version of a 3D puzzle game called LewiSpace. We 
hypothesize that this game will focus more on learning how to draw Lewis diagrams rather than playful features (which 
are available when navigating in a 3D environment, changing backgrounds’ colors with the different places and 
gathering the requested atoms to construct complex molecules). Our goal with the study described in the current paper 
is to investigate whether it is possible to predict a learner’s success and his desired level of help based on information 
gathered through different types of data: electroencephalography (The Affectiv Suite from EPOC Emotiv), eye tracking 
(the indice of workload extracted from pupil diameter), facial expression recognition (through FaceReader software) 
and self-report big five personality questionnaire. Since this is part of a larger project that aims to develop a game that 
will be able to adapt in real-time to learners, we first studied in this paper the descriptive results obtained, the 
importance of each sensor used and how it improves prediction of learner’s success or fail in each mission of our game. 
We also studied the utility of combining different types of data and the necessity of using them to build the most 
appropriate real-time users’ adaptation.  

This paper is structured as follows: in the next section, we describe some related works and mention the disadvantages 
of the existing works. Next, we describe LewiSpace game that is designed to teach how to construct Lewid diagrams for 
some complex molecules. Next, we describe the experiment that we conducted in order to gather data and their 
pre-processing stage. Finally, the last section presents some descriptive results about learners’ performance distribution 
in the different missions of our game. We also provide a comparison and a discussion about the different real time 
statistical machine learning techniques used in this study, how we extract the features from our multimodal kinds of data 
and how we select the best approach, more specifically concerning the real time machine learning algorithm, the 
features and the hyper parameters to take into consideration for this type of applications. 

2. Previous Works 

Recently, the use of educational games or serious games became widespread. These games are beneficial for learning 
because they incorporate two fundamental aspects: (1) educational aspect interested to learning content and strategies to 
present to learners, and (2) playful aspect that allows learners to play, explore, take rewards, control the environment, 
etc. In fact, researchers believe that this last aspect can increase learners’ motivation and engagement (McNamara et al. 
2010, Lester et al. 2014, Ghali et al. 2014). This aspect is also known as 'Game-Based Features' (McNamara et al. 2010). 
Moreover, Prensky, Johnson and Wu (Prensky 2001, Johnson et al. 2008) agree that educational games have not only 
playful aspects but several criteria and characteristics to increase exploration, immersion and motivation aspects. 

According to McNamara and Jackson (McNamara et al. 2010), games based features could be grouped into five main 
categories: (1) Feedback which consists at providing learners with a specific, intelligent and motivational feedback; (2) 
Incentives which aims at promoting the aspects of bonuses and rewards. The latter are related to extrinsic motivation 
and have a direct effect on learners’ self-efficacy, engagement and interest; (3) Task difficulty which consist at varying 
the difficulty of a task and adjust it according to learners’ skills; (4) Control which allows the learner to monitor and 
manage the environment such as changing the color of background or avatar and finally (5) Environment which 
focuses at the design and the type of the environment. 

Despite the last criteria proposed by (McNamara et al. 2010) to develop more effective educational games, the latter 
present several problems. Among them, we cite briefly the problem of spending too much time for playing instead of 
entertainment and learning, the problem of the construction and the order of pedagogical content, the problem of 
translating between playful and educational aspects, etc. To solve these problems, we suggest that more research will be 
done in the field of SGs and that this latter should be more intelligent. The intelligence criterion consists of offering to 
user a real time, continuous, and individualized adaptation according to learning content. We define this type of game as 
Intelligent Educational Games (IEG). Whereas, to date, only some works are interested to automatic (but not real time) 
user modeling and/or adaptation either in tutoring systems or educational games (Lester et al. 2014, D’Mello et al. 2012, 
Gobert et al. 2015, McQuiggan et al. 2006). The adaptation or modeling is usually done using some learners’ criteria 
(such as emotions, engagement, motivation, workload, self-efficacy, performance, etc.). They could also be classified 
into two kinds of groups: (1) works based on the learner's interactions with the system and (2) works based on the 
electro-physiological sensors. Among these works, we cite as an example those of Gobert, Baker and his team which are 
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interested to automatically detect learner’s disengagement (Gobert et al. 2015). They build an automatic machine 
learning detector of disengagement behavior. Their model is based on human labels of behaviors from log files and data 
mining techniques. Lester and colleagues (Lester et al. 2014) used Elliot and Pekrun model (Elliott et al. 2007) to 
automatically predict and adapt learners’ emotions. This model has been empirically used with learners’ interaction data 
with the system which are derived from a subjective method of self-assessment of emotions. Emotions are recorded 
from learners using a portable device (smartphone game device) every seven seconds. D'Mello and colleagues (D’Mello 
et al. 2012) have used eye tracking data to automatically detect emotions of boredom and disengagement among 
learners in interactions with a tutoring system. Automatic tracking of eye movements was integrated into a tutor that 
identify when a learner is bored, looking or zooming on the screen. 

Recently, Jaques and colleagues (Jaques et al. 2014) used also gaze data features in order to predict two main emotions: 
boredom and curiosity. These emotions are predicted from several machine learning and feature selection algorithms 
collected from students’ self-reported emotions in Meta tutor system (Azevedo et al. 2010). They obtained an accuracy 
of 69% for boredom and 73% for curiosity. Finally, (MCQuiggan et al. 2006) used decision trees and Bayesian 
networks to generate predictive models of self-efficacy. They obtained two families of models: (1) static models that 
are based on the demographics of the student from pre-test self-efficacy, and (2) dynamic models that combine static 
data model and physiological data (heart rate and skin conductance). The authors have shown that static models predict 
self-efficacy of students with an acceptable accuracy rate (73%). However, the dynamic models allow a prediction of 
self-efficacy with better accuracy rate (83%). 

Although these works present a very important way to automatically detect some learners’ negative behaviours or 
emotions which are not effective for learning, we were not interested in this paper to predict learners’ emotions because 
our designed game LewiSpace is not emotionally engaged but focus more on educational aspect. The game also detects 
automatically learners’ emotions through FaceReader software. We use this sensor to extract seven basic emotions 
(happy, sad, angry, surprised, scared, disgusted, and neutral) in addition to the valence and arousal of each emotion 
(Lewinski et al. 2014). In (Chaffar et al. 2006) we have also anticipated learners’emotional response using EEG 
techniques. We also complete the miss detection of some emotions due mainly to mouth occlusion by using the Affectiv 
Suite provided by Emotiv EEG sensor (Gheeguluscu et al. 2014). Whereas, the usage of gaze data (Tobii Tx300 sensor) 
more precisely pupil diameter is to measure learner’s state of workload (Bartels et al. 2012) while interacting with our 
educational game. The following section describes LewiSpace, a 3D educational puzzle game. 

3. LewiSpace: An Educational Puzzle Game 

3.1 A Description and Design of the Environment 

LewiSpace is an educational game which aims mainly to teach learners how to construct chemical structures of 
molecules using Lewis diagrams (Ghali et al. 2015). The game is mainly designed to be explored by college students 
who didn’t have any knowledge about how to build Lewis’ diagrams (a chemistry lesson). It has an exploratory 
environment (3D) developed using Unity 4.5 for the design of the game, integrating EEG and eye tracking sensors data 
using the Emotiv SDK v2.0 LITE and the Tobii SDK 3.0. 

In the first user’s interaction with the game, the player is simulated as an astronaut exploring a planet’s surface and 
communicating with a non-player character known as Commander Arnold (figure 1). The player is told that he fell 
down into a cavern and that he has to explore the underground where he has each time to overcome obstacles 
(obstructions, lack of a useful resource, etc.) in order to progress in the game and find his lander, allowing him to return 
home. The player starts by exploring the environment which is mainly composed of five types of scenes leading to five 
different missions to accomplish during the game. The missions are constructed in ascending order of difficulty 
according to the complexity of molecules’ structures and the player can’t progress to the next mission before completing 
the latest one. By exploring our educational game, the player accumulates a certain number of atoms (which are hidden 
somewhere on the environment) that he adds to his inventory and can use them further in order to construct chemical 
compounds. The latter are used to unlock paths and move to another stage in the game. In the following, we will 
describe and present some screenshots for the different missions of our game. 
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3.1.4 Mission 4: Craft a Refrigerant 

Here, the player has to craft a refrigerant (C2F3Cl) and use it for his spacesuit to regulate his body temperature. This 
compound could be seen as less complex than the previous one, but it is the first one to present an asymmetrical 
structure. 

3.1.5 Mission 5: Fill in the Fuel Cell with Ethanol 

In the last mission, the player is out of the cavern. He finds his lander module on the surface but its fuel cell is empty. 
As a final task, the player has to gather and construct ethanol (C2H6O). As soon as this is done, the rocket takes off. At 
this stage, the game is over (see figure 4).  

 

 

 

 

 

 

 

Figure 4. The end of the game 

3.2 A Description of the Given Instructions and Rules 

In this section, we will focus more on how we present the educational materials to learners while they progress on the 
game. Hence, to motivate the students with a playful aspect, we think that this latter is covered when they are navigating 
on a 3D environment. Every time, they have to look everywhere in the cavern structure to find the appropriate atoms to 
gather that allow them to construct the requested molecule. The design and the colors of the environments are also 
attractive and different from each other’s. However, the educational aspect is covered by announcing the rules to use on 
some missions and the directives mentioned in order (see table 1). The learner has also the option to see the periodic 
table at any time while building a molecule by pressing a shortcut button that enables him to open or close this 
informative tool. 

Table 1. Instructions and rules presented in LewiSpace mentionned according the missions 

Missions Instructions
Mission 1 - Hydrogen atoms can only bond once. This is because a single covalent bond involves one pair 

of electrons, and hydrogen needs 2 electrons to be full. This is an exception, as other atoms need 
8 electrons. This is known as the octet rule, atoms tend to combine to satisfy it. 

Mission 2 - Double covalent bonds involve 2 pairs of electrons. You can figu-re out if single or double 
bonds are needed with the octet rule and with the number of valence electrons the atoms have. 
- Open your Periodic Table by pressing I. Each column (except the pink-colored ones) group 
atoms by their number of valence elect-rons. For example, hydrogen has 1, calcium (Ca) has 2, 
aluminum (Al) has 3, fluorine (F) has 7. 
- When crafting a compound, each single bond you add represents 2 electrons, shared between 
two atoms. If an atom doesn't have 8 electrons after you sum up its lone electrons and those 
shared through bonds, you might have to add double bonds or to redraw the structure. 

Mission 3 - It's often important to consider formal charges when drawing structures. You can calculate each 
atom's formal charge by sub-stracting each bond (1 for a single, 2 for a double one) and each lone 
electron from its initial number of valence electrons. 
- If the formal charge is not zero, you might be able to reconfigure the diagram (change the shape 
or the type of bonds). The octet rule can be violated in some cases. 
- Also, keep in mind that elements in the third row of the Periodic Table can sometimes hold 
more than 8 electrons

Mission 4 - No new rules 
Mission 5 - No new rules 

As we mentioned before, the learner is provided at any time he wants by an informative tool, the standard periodic table. 
This tool describes for each atom the symbol, the atomic number, the mass number or the number of nucleons and the 
group indicated on the top of each column. 

4. Experiment and Data Preprocessing 

4.1 Experiment 

In order to gather data from eye tracking, electroencephalogram (EEG) sensors and learners’ emotions, we conducted an 
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structures after learning the lesson. 

5.2 Selection of the Best Machine Learning Model 

Support vector machine (SVM) with a Radial Basis Function (RBF) kernel and logistic regression models were tested 
with a grid search on values of gamma (for SVMs) and C to produce the highest balanced accuracy with a 
leave-one-participant-out scheme. This scheme was used in order to promote the selection of a model that can 
generalize well for a new participant from previous participants. Both algorithms performed similarly. For instance with 
a RBF SVM, the accuracy is about 54.9% with the hyper-parameters (C=1.0 and gamma=0.05) using all the features 
issued from 3 sensors. This value is very near to that of logistic regression (56.4%). In the following, we interest only 
on communicating results for the best logistic regression models, as the focus of this paper is not the comparison of 
machine learning algorithms. Logistic regression model in our case provides the highest accuracy in all cases as we will 
see in the next section (by taken into consideration all or some features). 

5.3 Comparaison of the Importance of Each Sensor and the Big Five 

After selecting the best ML model that allows us to detect if the user needs help or not, we focus on this section to study 
the features importance that contributes mainly to prediction. In what follows, we present the difference in accuracies in 
term of substracting each time one feature (sensor feature or Big Five questionnaire). Balanced accuracy is determined 
by the mean of correct classifications for each class while according both classes the same weight. Overall accuracy is 
the mean number of correct classifications with weighting for the number of samples (therefore giving more weight for 
the “failure” class), and the mean participant accuracy is the mean number of correct classifications per participant, 
ignoring whether or not a participant produced more or less samples in the dataset, similarly to the balanced accuracy. 

Table 3. Feature selection through classification accuracies 

 All features (3 
sensors ) 

Ignores pupil 
diameter 

Ignores 
Emotiv 

Ignores facial 
expression 
recognition

Ignores Big Five 
Questionnaire 

Balanced 
accuracy 

0.564 0.564 0.501 0.564 0.584 

Overall accuracy 0.603 0.603 0.256 0.603 0.564 
Mean participant 
accuracy 

0.593 0.593 0.312 0.593 0.549 

Table 3 shows that ignoring the Emotiv has the highest impact on performance, whereas the other features do not seem 
to change the accuracies when ignored. Adding five features from the self-reported Big Five Questionnaire (the values 
along the five dimensions measured by the questionnaire before starting the game), we note that the balanced accuracy 
is highest, but at the cost of the overall accuracy, which means that the classifier predicts more often that a task will be 
successful but mispredicts more sequences in total. Ideally, the model should be balanced between those two measures 
of accuracy. A model that measures only the features from the Emotiv headset was therefore tested and produces the 
best results so far but still very similar to one which uses all features (using 3 sensors and ignoring the big five 
questionnaire), with a balanced accuracy of 0.570 , an overall accuracy of 0.635 and a mean participant accuracy of 
0.609. However, this indicates that other features are not necessary and might even add noise to the dataset. Table 4 
shows its confusion matrix for the logistic regression using only Emotiv Affectiv Suite (The most important feature), 
predicted values are shown vertically, and true values horizontally. 

Table 4. Confusion matrix for a logistic regression model with Emotiv headset features 

 Failure Success Total number 

Failure 0.665 0.335 532 

Success 0.525 0.475 101 

Total number 407 226 633 

From table 4, we can see clearly that failure is easiest to predict (with an accuracy of 66.5% which is higher that the 
random baseline of 50%), whereas, success is more difficult to predict (value of 47.5% which is less than 50%). 

As to the relevance of the other features, we can speculate that brightness changes throughout the game (e.g. some 
scenes or actions producing various lighting effects) have a larger impact on the pupil diameter, a factor unaccounted 
during the experiment. We could improve this by controlling the brightness in real time. Facial expressions might also 
be more useful in a game which is more emotionally engaging which is not the goal of our game. LewiSpace focuses 
more on educational aspect and how to provide the adequate help to learners according the different situations 
encountered when playing it. 

Finally, we present the Receiver Operating Characteristic curves known as ROC curves (figure 7) for each participant 
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