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Abstract 

Objective: To explore the anaerobic power and surface EMG (sEMG) of quardrocep muscle in lower extremities after 

single vibration training intervention. Methods: 8 excellent male long jumpers voluntarily participated in this study. 

Four intervention modes were devised, including high frequency high amplitude (HFHA,30Hz,6mm), low frequency 

low amplitude(LFLA,15Hz,3mm), high frequency low amplitude (HFLA,30Hz,3mm), and non-vibration (CON). All 

subjects received a knee extensor maximal voluntary contraction (MVC) test before the vibration. After the test, a 5×1 

min. vibration would be carried out and the subjects were asked to pedal. Results: Peak power and average power 

output of the four vibration treatment methods did not reach obvious level. There was no obvious difference in 

root-mean-square(RMS) EMG of the dominant leg among the four treatments. The RMS EMG of the non-dominant leg 

of HFLA method during peak power output was much higher than that of HFHA and CON . The quotient between 

root-mean-square and peak power of the four groups did not reach significant level. Conclusion: Single vibration could 

not improve the anaerobic performance of long jumpers and HFLA might decrease the work efficiency of the 

non-dominant leg muscle of excellent long jumpers participating anaerobic test.   
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1. Introduction  

Muscle force and explosive power matter in any sport event. How to improve muscle force and explosive power has 

become the concern of many trainers and players. Many researchers and trainers have been making great efforts to 

explore new training methods, expecting to enhance players’ competitiveness. Vibration training uses mechanical 

method to vibrate muscle so as to stimulate neuromuscular system. Its intensity depends on the frequency and amplitude 

of vibration instrument. The physiological mechanism of such method is that the stimulation caused by vibration can 

regulate neuromuscular system through monosynaptic and polysynaptic path and thus improve muscle activity. There 

are two applications of the whole-body vibration training in improving muscle force and explosive power. The first is to 

apply direct stimulation by placing vibrator on muscle belly or tendon; and the second is to apply indirect stimulation 

through the vibration of vibration platform.  

Single whole-body vibration can improve muscle performance. Cochrance（2005）studied the influence of single 

whole-body vibration on swing-arm jumping squat and flexibility. The result showed that the vibration could improve 

flexibility and increase the height of swing-arm jumping squat. The study of Cormie (2006) showed that single 

whole-body vibration (frequency 30 Hz, amplitude 2.50 mm) could significantly increase the height of jumping squat 

and prolong the duration of half-squat subjects on vibration platform. Bosco (1999a) pointed out that whole-body 

vibration could improve the muscle force of lower limbs and arm flexor rapidly and markedly. The study of Issurin 

(1999) showed that vibration can markedly increase the maximum power when elbow did centered motion. Such 

increase in professional players could be as much as 10.4%, better than that in amateurs (increase by about 7.9%). Thus 

it is obvious that single whole-body vibration can improve the anaerobic exercise performance of players. Lower limbs 

explosive force training is vital for long jumpers. However, there is no empirical study exploring the influence of single 

whole-body vibration on the anaerobic exercise performance of long jumpers. Thus this paper bears practical 

significance.  
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2. Subjects and Methods 

2.1 Subjects 

8 long jumpers (Athletic performance: nation level 2; body height: 179.4±4.36 cm; body weight:76.2±3.55 kg; athletic 

years: 8.3±1.5 yrs) from the track and field team of Southwest University voluntarily participated in this study. The 

study was scheduled in the special preparation period of annual training plan, namely 4 weeks before regulation game. 

Before the test, we let every subjects understand the purpose of this experiment and get their and their trainer’s approval. 

All subjects were required to avoid doing strenuous exercise and eating foods containing alcohol and caffeine 24 hours 

before the test.  

2.2 Methods 

2.2.1 MVC Test 

Before the whole-body vibration, all subjects should go through a MVC test on vastus lateralis muscle, vastus medialis 

muscle and rectus femoris of both feet. The test starts after 10min warm-up running. Each foot goes through 3 tests. 

Each test lasted for 5s with an interval of 60s between tests. The subjects sat on test platform with their legs falling 

naturally along the edge and the knee-joint range being 90-125 degree. The subjects raised their legs as possible as they 

could while the researcher pressed hard their tibialis anterior muscle and ankle with both hands so as to maintain the 

maximum isometric contraction of quadriceps femoris. At the same time, myoelectricity test system gathered the vastus 

lateralis muscle, vastus medialis muscle and rectus femoris EMG.  

2.2.2 Vibration Training Design 

1-2 min after the MVC test, subjects were asked to half squat on the vibration platform (knee angle is 100°and hip angle 

is 90°) to undergo five times whole-body vibration. Each vibration lasted for 1min with an interval of 1min between 

vibrations. Four vibration treatments (HFHA, LFLA, HFLA, CON) would be carried out in this study with an interval 

of 4 days between treatments to allay fatigue and eliminate the effect of relevant stimulation.   

2.2.3 Anaerobic Power and Myoelectricity Test on Lower Limbs  

After the 5×1 min vibration, subjects were asked to go through a 30s Wingate anaerobic power test on a Monark-834 

cycle ergometer (made in Sweden) immediately. Before test, seat height and pedal of the ergometer are adjusted and the 

subjects were allowed to adapt to the load they are about to bear (resistance load=0.08×body weight). As soon as the 

test starts, the subjects should pedal as fast as they can for 30s. During the process, verbal encouragement was given till 

the end of the test. Calculation method of power: power (w)=resistance load (kg)×circles×11.765. Each six 5 s was 

deemed as a group. The maximum anaerobic capacity was the 5s with the most circles. Generally, it was the first 5s 

which could reflect ATP and CP decomposition energy supply. Average anaerobic capacity is the mean wattage value of 

the six 5s, reflecting non-lactic acid and lactic acid decomposition energy supply. Anaerobic capacity descent rate, also 

called fatigue index, was (the maximum anaerobic capacity value－the minimum anaerobic capacity value) ÷(the 

maximum anaerobic capacity value) ×100. TB-0810 (8-channel wireless surface EMG, China) was used to monitor the 

myoelectricity of the vastus lateralis muscle, vastus medialis muscle and rectus femoris of both legs.  

Synchronizing gear was made up of wireless synchronizer of the surface electromyograph and luminous diode. The 

experimenter triggers synchronizing remote control while the surface electromyograph starts collecting data and the 

diode synchronizes video camera and the surface electromyograph. The principal optic axis of a JVC9800 high-speed 

camera whose photo frequency was 250 frame/s and time of exposure was 1/250s directly faces the hip joint of the 

subjects, with the shooting distance of 6m. Purpose of the synchronization is to find out the corresponding EMG value 

of quadriceps femoris at the moment of lower limbs peak power output.  

2.2.4 Statistical Method 

1)  Calculation of EMG Value 

Sampling frequency of surface electromyograph was set at 1000Hz. Test analysis software was used to conduct 20hz 

filtering operation on the original EMG, then conduct full-wave rectification on the EMG and calculate EMGrms 

amplitude. Took the EMGrms of MVC as reference and gave standard treatment to the peak-power-corresponding 

EMGrms during the 30s Wingate anaerobic capacity test to get the standard EMGrms percentage of dominant leg and 

non-dominant leg. The calculation method of the total EMG value of quadriceps femoris was to add the EMGrms of 

vastus lateralis muscle, vastus medialis muscle and rectus femoris and then divide the MVC EMGrms of the three 

muscle groups.  

2)  Calculation of Neural Efficiency 

After the 30sWingate anaerobic capacity test, used camera to review and analyze the average power of the long jumpers, 
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find out the EMGrms of astus lateralis muscle, vastus medialis muscle and rectus femoris corresponding with peak 

power output, calculated the mean EMG value of EMGrms, and then converted the EMGrms into power/body weight 

(kg).  

3) Statistic Analysis 

SPSS 13.0 was used in this study.repeated measure one-way ANOVA and LSD multiple comparison among the four 

intervention modes. Significant level of all parameters was set at a=0.05. 

3. Results 

3.1 Analysis on Anaerobic Capacity Features of the Four Methods 

1) Whether for the dominant leg (the leg to jump) or non-dominant leg, there was no obvious difference in peak power 

(W) and relative peak power (W/kg) among the four methods. But the peak power and relative peak power of the 

dominant leg were superior to the non-dominant leg in all of the four treatments.  

2) There was no obvious difference in the power descent rate of dominant leg and non-dominant leg among the four 

methods. But the descent rate of the non-dominant leg was much higher than that of the dominant leg in all of the four 

treatments.  

3) There was obvious difference in the time to reach maximum power (s) among the four methods. HFHA (a) needed 

the least time to reach peak power; then was the HFLA (c); LFLA (b) was the third; and CON (d) was the last. When it 

came to the comparison between the dominant leg and the non-dominant leg, the time needed to reach maximum power 

for the dominant leg is much shorter than the non-dominant leg under HFHA (a) and HFLA (c) while the other two 

methods had no difference for the two legs.  

Table 1. Anaerobic metabolism capacity comparison between different vibration training modes in lower extremities  

  Peak power (W) Relative peak 
work(W/kg) 

Power decline% Time to maximal 
power（s） 

HFHA(a) Dominant 951.46±121.65* 17.02±2.45* 14.74±4.52 5.54±1.69 

Non-dominant 921.31±103.33 15.56±3.45 16.29±3.69* 6.21±2.77* 

LFLA(b) Dominant 943.17±104.82* 16.41±2.44* 15.05±3.27 7.39±3.12 

Non-dominant 923.45±125.64 15.11±1.56 16.11±4.11* 7.14±2.29 

HFLA(c) Dominant 948.65±141.14* 16.51±2.01* 14.89±3.24 6.35±3.28 

Non-dominant 921.35±123.15 15.31±1.29 16.02±3.42* 7.15±1.98* 

CON (d) Dominant 948.23±131.43* 16.55±2.17* 15.11±4.58 7.15±2.56 

Non-dominant 915.56±138.69 15.25±1.78 15.58±3.37* 8.03±2.26 

LSD  

between dominants  Pab, Pac, Pad, Pbc, 
Pbd, Pcd 

Pab, Pac, Pad, 
Pbc, Pbd, Pcd 

Pab, Pac, Pad, Pbc, 
Pbd, Pcd 

Pab*,Pac*, Pad*, 
Pbc*,Pbd*, Pcd* 

between 
Non-Dominants  

Pab, Pac, Pad, Pbc, 
Pbd, Pcd 

Pab,Pac,Pad Pbc, 
Pbd, Pcd 

Pab*, Pac*, Pad*, 
Pbc*, Pbd*, Pcd* 

Pab*, Pac*, Pad* 
Pbc*,Pbd*, Pcd* 

Note: * stands for the significant difference between dominant and Non -dominant of the participants, Pab* stands for 

the significant difference between HFHA and LFLA in different vibration modes in LSD multiple comparison. The 

mark in the below has the same meaning.  

3.2 Analysis on the Surface Myoelectric Activity of Quadriceps Femoris 

1) There was no difference in the EMGrms% of rectus femoris  of the dominant leg among the four methods. While 

for the non-dominant leg, electro-discharge was the highest (83.10±25.14) under LFLA (b); then was HFHA (a) and 

HFLA (c); and CON (d) was the last. Except the CON (d), the rectus femoris activation level of the non-dominant leg 

was higher than the dominant leg in other three methods.  

2) Vastus medialis EMGrms% of the dominant leg had the strongest activity under HFHA (a) and LFLA (b), much 

higher than that of HFLA (c) and CON (d). On the contrary, HFLA (c) and CON (d) the strongest activity level for 

non-dominant leg, much higher than the other two. The vastus medialis activation level of the dominant leg was much 

higher than that of the non-dominant leg under LFLA (b) while the opposite was true under HFLA (c) and CON (d). 

3) Vastus lateralis EMGrms% of the dominant leg had the strongest activity under LFLA (b) and HFLA (c), much 

higher than that of HFHA (a) and CON (d). For the non-dominant leg, the activity was the strongest under HFLA (c), 

much higher than the other three. The vastus lateralis activation level of the dominant leg was much higher than that of 

the non-dominant leg under LFLA (b) and CON (d) while there was no difference between the dominant and 
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non-dominant legs under the other two. 

4) Quadriceps femoris EMGrms% of the dominant leg had the strongest activity (81.47±16.01) under HFLA (c), much 

higher than the other three methods. For the non-dominant leg, the activity was the strongest under LFLA (b) and HFLA 

(c), much higher than the other two methods. The quadriceps femoris activation level of the dominant leg was much 

higher than that of the non-dominant leg under LFLA (b) and HFLA (c) while there was no difference between the 

dominant and non-dominant legs under the other two. 

Table 2. sEMG characteristics comparison between different vibration training mode of quadriceps muscle 

（EMGrms%） 

  Rectus femoris Vastus intermedius Vastus lateralis Quadriceps 

HFHA(a) Dominant 64.98±17.13 97.12±34.11* 83.14±15.56 75.89±15.57 

Non-dominant 76.69±17.25* 82.17±22.54 81.25±15.66 74.58±17.55 

LFLA(b) Dominant 63.36±19.15 95.45±33.65* 94.57±27.12* 76.58±15.26 

Non-dominant 83.10±25.14* 88.17±26.38 82.25±22.36 85.69±16.35* 

HFLA(c) Dominant 66.25±14.55 82.58±28.74 95.78±26.39 81.47±16.01 

Non-dominant 75.15±20.12* 94.58±30.14* 95.68±24.76 87.77±19.51* 

CON (d) Dominant 67.12±18.19 81.45±17.58 84.57±28.45* 74.26±13.67 

Non-dominant 69.17±21.36 95.12±36.58* 78.59±15.34 78.32±15.47 

LSD  

Between 
dominants 

Pab, Pac, Pad, Pbc, 
Pbd ,Pcd 

Pab Pac* Pad* 
Pbc* Pbd* Pcd 

Pab*, Pac*, Pad, 
Pbc, Pbd*, Pcd* 

Pab*, Pac*, Pad*, 
Pbc*, Pbd*, Pcd* 

Between 
non-dominants 

Pab*, Pac, Pad*, 
Pbc*, Pbd*, Pcd*, 

Pab, Pac, Pad, Pbc, 
Pbd, Pcd 

Pab, Pac*, Pad, 
Pbc* , Pbd ,Pcd* 

Pab*, Pac*, Pad*, 
Pbc*, Pbd*, Pcd* 

3.3 Analysis on the Neuron Efficiency of Quadriceps Femoris of the Four Methods 

1) Whether for the dominant leg or non-dominant leg, there was no obvious difference in the neuron efficiency of rectus 

femoris, vastus medialis muscle, vastus lateralis muscle or quadriceps femoris among the four treatments.  

2) In the four methods, there was no obvious difference in the neuron efficiency of rectus femoris, vastus medialis 

muscle, vastus lateralis muscle or quadriceps femoris among the four treatments between the dominant leg and 

non-dominant leg. 

3) The neuron efficiency of rectus femoris, vastus medialis muscle, vastus lateralis muscle or quadriceps femoris 

showed the same varying pattern, namely gradually decreasing from (a) to (d).  

Table 3. Four muscles nerve efficiency characteristics Comparison between different vibration modes（μv/kg） 

  Rectus femoris Vastus intermedius Vastus lateralis Quadriceps 

HFHA(a) Dominant 62.58±8.14 71.45±6.15 78.77±8.69 212.29±15.14 

Non-Dominant 63.17±7.58 72.02±8.77 77.25±6.25 210.12±16.25 

LFLA(b) Dominant 61.15±8.84 70.26±6.15 76.21±9.02 208.17±11.77 

Non-Dominant 61.89±5.47 71.21±9.14 76.59±4.36 207.23±12.36 

HFLA(c) Dominant 60.35±6.14 69.58±8.16 75.66±6.27 203.15±31.22 

Non-Dominant 60.14±8.01 69.86±5.69 75.15±8.02 200.65±12.98 

CON (d) Dominant 59.25±6.57 68.53±5.47 74.18±7.07 197.11±12.36 

Non-dominant 58.88±5.69 68.15±6.23 75.01±6.12 199.03±11.25 

LSD 
comparison 

Between dominants Pab,Pac,Pad 
Pbc, Pbd, Pcd 

Pab, Pac, Pad, Pbc, 
Pbd ,Pcd 

Pab,Pac,Pad ,Pb
c, Pbd, Pcd 

Pab, Pac, Pad, Pbc, 
Pbd, Pcd 

Between 
Non-dominants 

Pab,Pac,Pad ,Pb
c, Pbd, Pcd 

Pab, Pac, Pad, Pbc, 
Pbd, Pcd 

Pab, Pac, Pad, 
Pbc, Pbd, Pcd 

Pab, Pac, Pad, Pbc, 
Pbd, Pcd 

4. Discussion 

The 30sWingate test showed that there was no obvious difference in peak power and relative peak power occurring in 

the 8 subjects. The reasons for this might be as follows: 

Firstly, vibration intensity might be insufficient. Mechanical vibration could cause reflexible contraction and further 

cause Tonic vibration reflex (TVR). Such reflex could gather more motor units through monosynapse or polysynapse. 

Insufficient vibration intensity might fail to cause the excitement of a motor neuron, which would impact the reflex 

mechanism of TVR. Vibration frequency of this study was 30HZ, the same with that adopted in Cardinale study. But the 

result was different. Was this possibly related to low amplitude? We found in our trial test that human body might feel 

uncomfortable when the vibration frequency was between 25-30HZ while vibration acceleration exceeded 2.5g and 

duration of vibration exceeded 12 min. Thus we set the acceleration of this study at 2g which might be slightly lower 
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than that of other studies. Bosco found that 5.4g vibration intensity could markedly improve single-leg drive. The study 

of Cormic（2003）showed that 7g and 9g vibration intensity could improve jumping squat performance. Thus further 

proof was needed to confirm whether vibration intensity increase could improve sport performance.  

Secondly, the anaerobic test duration might be too long. Previous studies showed that single vibration could markedly 

improve the MVC of wrist extensor within 5s (Curry, E. L., & C1elland, J. A.1981), MVC of knee extensor within 5s

（Humphries, B. et al., 2004）, the height of jumping squat (Cochrane, D.J.,& Stannard, S.R., 2005), and the explosive 

force of upper limbs (Issurin, V. B. & Tenenbaum, G.,1999), but could not improve 1 min. MVC of instep flexor. 

Therefore, 30s anaerobic test after vibration might not be able to improve sport performance.   

The study found that the EMGrms of vastus lateral muscle and quadriceps femoris of the dominant leg under HFLA 

treatment was much higher than the other three. Besides, the EMGrms of rectus femoris of the non-dominant leg under 

HFLA treatment was much higher than that of HFHA, indicating that the quadriceps femoris of the non–dominant leg 

might gather more motor units. Interestingly, however, there was no markedly difference in peak power and average 

power among different methods. In other words, the increase of motor units might result from muscle fatigue. Some 

researchers believe that this might be because that the consumption of chemical transmitter between cynapse exceeded 

the supply. 

What was strange was the inconsistent myoelectricity activity result between the dominant leg and non-dominant leg. 

Zoladz et al. (2007) measured the energy substance density of the dominant leg and non-dominant leg of players 

engaging in different sport event. The result showed that the ADP density of the non-dominant leg (41.88μm) was lower 

than that of the dominant leg (65.61μm) when players stayed calm. A 30s anaerobic exercise could consume a great 

amount of ATP and CP. The dramatic decrease of ATP could result in the increase of ADP density, which could activate 

glycolysis system and compound more ATP. In case of low ADP density, ability of the non-dominant leg to compound 

ATP through glycolysis system might not be as good as the dominant leg. Thus the non-dominant leg got fatigue earlier 

and generated obvious myoelectricity active reaction. Besides, Jacobs found that the peak moment of force of hip 

abductors of the non-dominant leg was much lower than that of the dominant leg. Heuer (2007) pointed out that 

feedforward control and movement accuracy of the dominant leg was superior to that of the non-dominant leg. 

Therefore, the increased motor unit and the further increased EMG might be because of the difference of neural control 

system and the necessity for the low moment of force of the non-dominant leg to match with the power output of the 

dominant leg. Yet further study was needed to verify whether the myoelectricity activity of the dominant leg and 

non-dominant leg of players engaging in other sport events was similar to that of long jumpers.  

There was no obvious difference in rectus femoris, vastus lateral muscle, vastus medialis or quadriceps femoris among 

the four methods. The increase of advanced motor center activity could improve the neuromuscular adaptation. Such 

adaptation had the same effect with the marked increase of leg extensor through resistance training. Therefore, Bosco 

(1999) believed that whole-body vibration could improve neural efficiency. But the result of this study did not show 

obvious improvement in neural efficiency. This might be related to insufficient vibration intensity and prolonged test 

time. The vibration acceleration (vibration intensity) in Bosco’s study was much higher than this study. Therefore, 

vibration intensity might be the determinant. Some data of this study might support this assumption. The mean value of 

HFHA was lower than that of LFLA and HFLA (though not obvious), indicating that high frequency and high amplitude 

vibration could potentially impact neural efficiency.  

Besides insufficient vibration intensity, another reason for the unobviousness was that the vibration duration was too 

short and the motor nervous system could not adapt to the external stimulation within such short period of time. Rehn 

(2007) pointed out that there was no consistent positive result with short-period vibration stimulation. Long-term 

whole-body vibration had a better effect on muscle performance improvement. Therefore, long-term whole-body 

vibration training seemed to be the proper strategy to improve players’ muscle force and explosive power.  

5. Conclusion 

For long jumpers, the peak power and relative peak power of their dominant leg were superior to that of the 

non-dominant leg. The anaerobic power descent rate of the dominant leg was much lower than that of the non-dominant 

leg. But such anaerobic performance seemed to be immune to single vibration training. The time to reach the maximum 

anaerobic power was different in the four methods. HFHA needed the least time; then was the HFLA; and LFLA was 

the last. Under HFHA and HFLA, the dominant leg needed less time than the non-dominant leg.  

Rectus femoris EMGrms of the dominant leg was not impacted by vibration methods. For the non-dominant leg, LFLA 

had the strongest rectus femoris activity and then were HFHA and HFLA. Besides, the rectus femoris activation level of 

the non-dominant leg was higher than that of the dominant leg under the three methods. EMGrms% of vastus medialis 

of the dominant leg had the strongest activity under HFHA and LFLA. Under LFLA, the activation level of the 

dominant leg was higher than its counterpart. Vastus lateral muscle EMGrms% of the dominant leg had the strongest 
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activity under LFLA and HFLA while that of the non-dominant leg had the strongest activity under HFLA. Under LFLA 

and CON (d), the activation level of the dominant leg was significantly higher than that of the non-dominant leg.  

Under HFLA, the myoelectricity activity of the dominant leg was significantly higher than the other three methods. The 

non-dominant leg had the strongest activity under LFLA and HFLA. Besides, the quadriceps femoris activation level of 

the dominant leg was much higher than that of the non-dominant leg under these two methods.  

Whether for the dominant or non-dominant leg, the neural efficiency of rectus femoris, vastus medialis muscle, vastus 

lateral muscle or quadriceps femoris was not impacted by vibration methods. But the neural efficiency decreased 

gradually in order of HFHA, LFLA, HFLA, CON, seemingly indicating that high frequency high amplitude vibration 

could potentially impact neural efficiency.  
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