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Abstract
In	an	effort	to	vet	gravitational-wave	data	faster,	the	LIGO	collaboration	is	beginning	
to	incorporate	machine	learning	algorithms	into	the	vetting	process.	Vetting	data	
faster	will	allow	LIGO	to	veto	unclean	data	in	real	time,	which	could	improve	the	
chance	to	confidently	detect	gravitational	waves	that	have	associated	
electromagnetic	counterparts.	In	this	work,	we	studied	the	effectiveness	of	
Google’s	artificial	neural	network	software	package,	Tensor	Flow,	for	identifying	
unclean	data	segments. Tensor	Flow,	as	implemented,	had	comparable	
effectiveness	to	other	machine	learning	algorithms	but	showed	more	robustness	to	
increased	feature	sets.
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Preliminary Findings

The	Laser	Interferometer	Gravitational-Wave	Observatory	(LIGO)	detected	its	first	
gravitational	wave	in	2015.	Since	then	there	have	been	three	other	gravitational	
wave	detections	from	merging	black	holes.	LIGO	is	essentially	a	larger	Michelson	
Interferometer	capable	of	measuring	the	small	ripples	in	spacetime radiated	from	
coalescing	black	holes	and	potentially	other	gravitating	systems.	A	Michelson	
interferometer	splits	coherent	light	down	two	perpendicular	arms	where	it	is	then	
reflected	off	mirrors.	The	light	is	then	recombined	to	create	destructive	
interference	at	a	photodetector.	These	ripples	cause	a	change	in	the	detector’s	arm	
length	resulting	in	a	change	in	the	interference	pattern	at	a	photodetector.	Along	
with	this	measurement,	auxiliary	channels	record	changes	in	all	of	the	instrument’s	
components.

Artificial	neural	networks	(ANN)	are	a	concept	that	has	been	around	since	the	
1950’s.	Recently,	thanks	to	an	increase	in	computational	power,	ANNs	have	made	
great	strides	in	computer	science.	The	concept	of	an	artificial	neural	network	
comes	from	how	neurons	in	a	brain	work.	When	a	neuron	receives	electric	signals	
from	other	neurons,	charge	builds	up	until	it	surpasses	a	threshold,	then	the	
neuron	will	fire.	The	more	a	neuron	is	used,	the	stronger	the	action	potential	
becomes.

In	an	artificial	neural	network,	neurons	are	mathematically	modeled	by	three	parts:	
weights,	a	summation,	and	an	activation	function.	The	weights	represent	action	
potentials	connecting	neurons,	the	summation	represents	incoming	electrical	
signals,	and	the	activation	function	represents	the	threshold	of	the	neuron.	
Mathematically,	this	can	be	expressed	as	a	matrix	multiplication.	
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Figure	2:	A	typical	shallow	neural	network.	This	model	is	
called	a	perceptron,	and	is	one	of	the	simplest	neural	
networks.	

Figure	3:	The	flow	of	information	through	a	single	neuron	
(node).	The	activation	function	‘f’	is	represented	here	by	
a	sigmoid	function,	but	there	are	several	other	commonly	
used	activation	functions.

Training	artificial	neural	networks	requires	training	data	and	evaluation	
data.	By	looking	at	the	expected	output	for	a	set	of	inputs	the	ANN	
adjusts	weights	so	that	in	the	future	it	can	make	accurate	predictions	on	
new	data.	Once	trained,	we	use	an	evaluation	set	of	data	to	cross	validate	
our	predictions	and	build	a	receiver	operator	characteristic	(ROC)	curve.

-3 -2 -1 0 1 2 3

Figure	6	(above):	A	half-sine	Gaussian	
used	to	identify	non-causal	glitches

The	next	step	in	this	project	is	to	begin	experimenting	with	
different	artificial	neural	networks.	One	network	structure	
particularly	interesting	is	known	as	a	Recurrent	Neural	
Network	(RNN).	A	recurrent	neural	network		cell,	in	a	
sense,	gives	a	short	term	memory	to	the	network.	By	
incorporating	RNN	nodes,	our	ANN	will	have	access	to	a	
history	of	events	leading	up	to	any	given	trigger	and	might	
therefore	be	more	effective	at	predicting	whether	or	not	
the	trigger	is	correlated	with	a	glitch	in	the	gravitational	
wave	channel.	This	method	is	as	if	the	neural	network	is	
able	to	make	predictions	based	on	a	short	video	rather	
than	a	single	picture.

Through	this	project	we	were	able	to	create	an	artificial	
neural	network	that	is	able	to	train	on	auxiliary	channel	
data	and	perform	comparably	to	already	existing	
machine	learning	algorithms.	Due	to	the	inherent	
randomness	of	glitches,	the	current	methods	of	defining	
a	glitch	may	not	be	capturing	the	whole	picture	and	our	
methods	can	be	refined.	Tensor	Flow	showed	more	
improvement	than	a	comparable	machine	learning	
algorithm	when	the	feature	set	of	a	glitch	was	expanded,	
which	suggests	it	may	be	more	robust	to	additional	
expansions	of	the	feature	set.”
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Figures	4 &	5:	The	above	pictures	are	overlapped	histograms	that	show	
how	weights	change	with	training.	This	is	evidence	that	our	neural	
network	was	in	fact,	“learning.”

Figure	10:	A	single	neuron	from	a	recurrent	neural	network.	Information	at	each	time	
step	is	passed	on	to	itself	in	a	future	time	step	allowing	each	neuron	to	have	a	short	
term	memory.

Figure	7:	Comparison	of	shallow	neural	networks	and	
deeper	neural	networks.	Each	layer	contained	1000	nodes

Figure	8:	Comparison	of	how	nodes	effect	identification	
of	glitches

Figure	9:	Tensor	Flow	ROC	Curve	compared	to	OVL	and	MVSC
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Figure	1:	A	Michelson	
interferometer.	Light	travels	
from	the	laser	and	is	split	at	
the	50/50	beam	splitter.	The	
split	beam	then	travels	
down	each	beam	arm,	
reflects	off	the	mirrors	and	is	
recombined	at	the	50/50	
beam	splitter.	The	
interference	pattern	from	
the	recombined	light	shows	
up	at	the	photo	detector.
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By	looking	at	triggers	in	
auxiliary	channels	that	are	
safe	from	gravitational	
waves	we	are	able	to	build	
both	training	and	
evaluation	data	sets.	These	
data	sets	are	built	by	
taking	data	that	is	free	of	
gravitational	waves	and
sampling	random	times	in	the	segment	of	data.	These	times	will	either	
have	a	glitch	(unclean)	or	not	have	a	glitch	(clean).	Glitches	are	identified	
and	decomposed	by	match-filtering	with	a	half-sine	Gaussian	template.

Time

Trigger:	Any	time	we	filter	with	a	half-
sine	Gaussian	that	has	a	signal	to	noise	
ratio	(SNR)	that	is	above	some	threshold.
Glitch:	A	time	with	a	trigger	in	the	main	
gravitational	wave.

Figures	10	&	11:	Using	Kyle	Rose’s	6th feature,	time	since	lock,	Tensor	Flow	was	able	to	
more	accurately	identify	glitches	from	auxiliary	channels.	In	comparison,	MVSC’s	
efficiency	did	not	change	in	the	10-'	range	of	false	alarm	probability.	This	shows	that	a	
more	accurate	definition	of	a	glitch	could	lead	to	a	better	classifier	
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