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a b s t r a c t

A highly uncertain future due to changes in climate, technology and socio-economics has led to the
realisation that identification of “best-guess” future conditions might no longer be appropriate. Instead,
multiple plausible futures need to be considered, which requires (i) uncertainties to be described with
the aid of scenarios that represent coherent future pathways based on different sets of assumptions, (ii)
system performance to be represented by metrics that measure insensitivity (i.e. robustness) to changes
in future conditions, and (iii) adaptive strategies to be considered alongside their more commonly used
static counterparts. However, while these factors have been considered in isolation previously, there has
been a lack of discussion of the way they are connected. In order to address this shortcoming, this paper
presents a multidisciplinary perspective on how the above factors fit together to facilitate the devel-
opment of strategies that are best suited to dealing with a deeply uncertain future.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Uncertainty has been considered extensively in the context of
environmental and hydrological models for many years (Ascough
et al., 2008; Durbach and Stewart, 2012; Refsgaard et al., 2007;
Stewart, 2005). Approaches to dealing with uncertainty generally
consider uncertainties in model inputs, model parameters, and
model structure by way of probability distributions, resulting in a
distribution of outputs around some “best-guess”. However, when
faced with an uncertain future as a result of drivers such as climate,
technological, socio-economic and political change, and corre-
sponding policy and societal responses, the assumption that we can
identify a “best-guess” output in the first place might no longer be
appropriate (Haasnoot andMiddelkoop, 2012;Walker et al., 2013a).
This is because in such situations, there are multiple plausible
future trajectories that generally correspond to distinct future
states of the world that do not have an associated probability of
. Maier).
occurrence or cannot even be ranked (Kwakkel et al., 2010).
Consequently, when dealing with an uncertain future, a different
conceptual approach to thinking about uncertainty is needed,
which has resulted in the development of different terms that can
be used to encapsulate the concept of multiple plausible futures, of
which deep uncertainty (Lempert et al., 2003; Walker et al., 2013b)
is arguably the most well-known.

Thinking about future uncertainty in terms of multiple plausible
futures, rather than probability distributions, has implications in
terms of the way uncertainty is quantified or described, the way
system performance is measured and the way future strategies,
designs or plans are developed. In terms of uncertainty quantifi-
cation, consideration of multiple plausible futures generally neces-
sitates the development of scenarios (e.g. B�arcena et al., 2015; Beh
et al., 2015b; Gal et al., 2014; Greiner et al., 2014; Lan et al., 2015;
Paton et al., 2013), rather than just sampling from probability dis-
tributions. In relation to system performance measurement, the
presence of multiple plausible futures that cannot be characterised
by probability distributions requires consideration of performance
measures such as robustness (e.g. Kasprzyk et al., 2013; Matrosov
et al., 2013; Mortazavi-Naeini et al., 2015; Paton et al., 2013;
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Fig. 1. Estimates of future system states according to different complementary para-
digms for modelling the future: a) anticipating the future based on best available
knowledge, b) quantifying future uncertainty, c) exploring multiple plausible futures,
d) combining the three paradigms to address different sources of uncertainty within a
problem. (Adapted from Mejia-Giraldo and McCalley (2014)).
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Whateley et al., 2014), which reward strategies, designs or plans
that perform well under a range of future conditions, rather than
performance measures that consider the probability of acceptable
system performance for a “best-guess” future, such as reliability.
When it comes to the development of future strategies, designs or
plans, these generally need to be robust over long periods of time,
making adaptive strategies (Beh et al., 2015a; Groves et al., 2014;
Haasnoot et al., 2013, 2014; Hamarat et al., 2014; Lempert and
Groves, 2010; Ray et al., 2011) a viable alternative to their more
commonly used static, fixed counterparts.

While each of these elements (i.e. thinking of future uncertainty
as being represented bymultiple plausible futures, using scenarios to
quantify uncertainty, using robustness to measure system perfor-
mance, and considering adaptive strategies as viable alternatives to
fixed strategies) is not new in itself, they have generally been
considered in isolation. This is exemplified by a number of recent
synthesis papers, which have primarily focussed on one of these
elements, without considering their connections. For example,
Herman et al. (2015) mainly focus onmeasures of robustness, while
Kwakkel et al. (2016a) and Dittrich et al. (2016) highlight different
approaches to developing future strategies. While there are a
number of review papers on scenarios (Bradfield et al., 2005;
European Environmental Agency, 2009; Haasnoot and
Middelkoop, 2012; Van Notten, 2005; Van Notten et al., 2005),
and several examples of quantifying multiple plausible futures
using scenarios (Fortes et al., 2015; Vervoort et al., 2014; Kok and
Van Delden, 2009; Van Delden and Hagen-Zanker, 2009), recog-
nition of these types of scenarios and their relevance for the
quantification of multiple plausible futures have generally not
featured in papers on deep uncertainty. Consequently, there is a
need for a paper that offers a synthesis of how these elements fit
together in the context of dealing with multiple plausible futures.

In order to address this shortcoming, the primary objective of
this paper is to provide a multidisciplinary perspective on how the
concepts of an uncertain future, deep uncertainty, scenarios, robust-
ness and adaptation fit together to facilitate the development of
strategies, designs and plans that are best suited to dealing with an
uncertain future. The remainder of this paper is organised as fol-
lows. An outline of different paradigms for modelling the future is
given in Section 2, followed by the articulation of some of the terms
that encapsulate the concept of multiple plausible futures in Sec-
tion 3. A classification of scenario types is given in Section 4, along
with a discussion of their suitability for quantifying multiple
plausible futures. A categorisation of the two main approaches to
developing strategies for dealing with future uncertainties, as well
as a discussion of the conditions that favour each of these ap-
proaches, is given in Section 5, followed by a discussion of the
implications of considering multiple plausible futures onmodelling
in Section 6. Finally, a summary and concluding remarks are pre-
sented in Section 7.

2. Three complementary paradigms for modelling the future

A fundamental purpose of modelling is to help understand the
future, to support planning or adaptation. We focus here on
quantitative models defined by a model structure and a set of
parameter values. The model is applied to input data in order to
obtain estimates of future system states. The models therefore have
some temporal element (even if they do not generate time series),
and are usually spatially situated (even if they are not spatially
distributed). The quantitative model is usually linked with an un-
derlying qualitative conceptual model (Argent et al., 2016), which
provides a more complete, but less precise picture of the system. A
particular future can be described by its state, but also by themodel
structure, parameters and inputs in which that state occurs.
The need to address uncertainty in modelling and the exis-
tence of different types of uncertainties is widely recognised.
Uncertainties are generally differentiated according to their
different levels, nature, and source (Ascough et al., 2008;
Courtney, 2001; Guillaume et al., 2012, 2015; Kwakkel et al.,
2010; Refsgaard et al., 2007; Walker et al., 2003; Van Asselt,
2000). A continuum of levels of uncertainty, ranging from deter-
minism to total ignorance (Kwakkel et al., 2010; Walker et al.,
2003, 2010), includes the idea that information about outcomes
and probabilities is often not known (see also Brown, 2004), such
that there is a need to deal with “Knightian” uncertainty, rather
than probabilistic risk (Knight, 1921). In terms of the nature of
uncertainty, a classic distinction is between aleatory or ontic un-
certainty, and epistemic uncertainty (Hacking, 2006; Hoffman and
Hammonds, 1994). Aleatory uncertainty is the intrinsic uncer-
tainty of natural variability. Epistemic uncertainty can arise due to
a lack of knowledge, or due to ambiguity. Ambiguity in this
context means that there exist multiple frames of reference about
given phenomena (Brugnach et al., 2008; Dewulf et al., 2005).
Sources of uncertainty have commonly referred to model struc-
ture, data, and parameters. These typologies emphasise properties
of the problem, which these previous studies have linked to a
variety of suitable actions.

In the end, it is the action that matters, rather than the moti-
vation. In terms of modelling the future, we consider that the ac-
tions addressing all these differences in types of uncertainty boil
down to three complementary paradigms of how modellers
conceptualise the future. These paradigms are defined based on
sharp changes in mindset that occur when transitioning between
them. The same problem can often be approached with any of the
three paradigms, regardless of the inherent type of uncertainty. At
the same time, the three paradigms are also usually used in com-
bination, addressing different parts of a problem. As described
below and summarised in Fig. 1, the three paradigms are: use of
best available knowledge, quantification of future uncertainty, and
exploring multiple plausible futures.

In the first paradigm, models are used to consolidate best
available knowledge (Bankes, 1993), capturing the processes and
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conditions that allow us to anticipate a system's future behaviour.
The idea is that knowledge can be gradually improved by further
research and data collection. If surprises are encountered, like the
discovery of black swans (Taleb, 2010), the model is altered to
include new processes, notably capturing understanding of how
transitions might occur within a system (Halbe et al., 2015). The
idea of building up knowledge over time is powerful, but also has
limitations. Philosophically speaking, models are unavoidably al-
ways incomplete (Oreskes et al., 1994). Some processes will always
be missing, and in complex, adaptive systems small changes can
have quite large, system wide effects. Practically speaking,
improving models takes time and requires information that may
not yet be available (see Bowden et al., 2012). Nevertheless, a model
based on the best available knowledge might be used to produce a
single estimate of the future, as in Fig. 1a. This corresponds to the
idea of a clear enough or deterministic future (Walker and
Haasnoot, 2011; Walker et al., 2003, 2010).

In the second paradigm, the future is treated as quantifiably
uncertain in order to deal with system processes and conditions
that are considered insufficiently well-known to be captured
within models. Natural variability in inputs can be expressed as
distributions (Beyer and Sendhoff, 2007; Birge and Louveaux, 2011)
and the effect of measurement error in observations when esti-
mating parameters is taken into account by specifying properties of
the errors, notably in terms of a likelihood function (Schoups and
Vrugt, 2010). This paradigm also extends to model structure
(Gupta et al., 2012), for example by combining posterior distribu-
tions using Bayesian model averaging (Hoeting et al., 1999). When
making predictions, modellers can therefore propagate uncertainty
in inputs, parameters and model structures in order to obtain an
estimate of uncertainty in outputs. The modelled process is
assumed to be stationary, meaning that its statistical properties do
not change over time (Koutsoyiannis andMontanari, 2015), and the
conditions to which a system is subjected appear to “fluctuate
within an unchanging envelope of variability” (Milly et al., 2008).
The propagated uncertainty in system state may, however, be quite
large and vary over time, often with larger uncertainty further in
the future (Mahmoud et al., 2009), as shown in Fig. 1b. By using
multimodal probability distributions, quantifying uncertainty even
allows very different outcomes to be unified within a single plau-
sible, though uncertain, future. This corresponds to a level of un-
certainty characterised as “statistical” or probabilistic (Walker and
Haasnoot, 2011; Walker et al., 2003, 2010).

The third paradigm explores multiple plausible futures, allowing
the modeller to avoid the idea of a single (uncertain) future. This
can be useful when the different processes and conditions seem-
ingly do not easily fit within a single model, and their resulting
futures cannot be harmonised within a probabilistic framework.
Dynamics of change are not sufficiently known to be represented
within a model, perhaps because future system behaviour is
affected by processes for which data have not been or cannot be
observed. However, the resulting systems and futures might still be
described, including their dynamics. Knowledge is no longer
consolidated within the model itself, but rather in the broader
analytical context within which the model is used. This has been
referred to as ‘exploratory modelling’ (Bankes, 1993; Bankes et al.,
2001; Bankes et al., 2013), wherein each model realisation simply
describes a “what-if” scenario, such that the result is conditional on
its assumptions. As shown in Fig. 1c, the corresponding futures are
treated as distinct, each with their own envelope of variability. This
includes two commonly recognised levels of uncertainty, the first
being “scenario uncertainty” or “a multiplicity of plausible futures”,
and the second being “recognised ignorance” or an “unknown
future” (Walker and Haasnoot, 2011; Walker et al., 2003, 2010).
Both cases are underpinned by the idea that no probabilities can be
placed on the future, but that the uncertainty the latter deals with is
in addition unboundedewe know that not all outcomes are known
(Refsgaard et al., 2007). It is this kind of uncertainty that needs to be
considered when dealing with a highly uncertain future as a result
of climate, technological, socio-economic and political change and
it is therefore the primary focus of this paper.

3. Terms used to encapsulate the concept of multiple
plausible futures

There are different terms that can be used to encapsulate the
concept of multiple plausible futures. In this paper, three of these
will be discussed, including “deep” uncertainty, “global/local” un-
certainty and “VUCA” (Volatility, Uncertainty, Complexity and Ambi-
guity). These three terms appear to have evolved more or less
independently and are therefore of interest for illustration pur-
poses and are used to highlight that the issue of dealing with
multiple plausible futures is gaining prominence in different
disciplinary areas. This list is, however, by no means exhaustive.

The first term encapsulating the concept of multiple plausible
futures is deep uncertainty, which has arguably received most
attention in the environmental and water resources literature in
recent years. Deep uncertainty arose in the context of model-based
decision aiding and is by definition “the condition inwhich analysts
do not know or the parties to a decision cannot agree upon (1) the
appropriate models to describe interactions among a system's
variables, (2) the probability distributions to represent uncertainty
about key parameters in the models, and/or (3) how to value the
desirability of alternative outcomes” (Lempert et al., 2003; Walker
et al., 2013b). Hallegatte et al. (2012) further state that deep un-
certainty may occur due to the presence of “(1) Knightian uncer-
tainty: multiple possible future worlds without known relative
probabilities; (2) multiple divergent but equally-valid world-views,
including values used to define criteria of success; and (3) decisions
which adapt over time and cannot be considered independently.” A
consistent, but slightly different definition of deep uncertainty is
offered by Kwakkel et al. (2010), who define deep uncertainty in
model-based decision support as the situation where the analyst is
able to enumerate a variety of possibilities (e.g. futures, model
formulations) without being able or willing to (rank) order these
possibilities in terms of their perceived likelihood, as illustrated in
Fig. 1c.

The second term encapsulating the concept of multiple plau-
sible futures is “global/local” uncertainty (Mejia-Giraldo and
McCalley, 2014), which was developed for the purpose of flexible
infrastructure planning in the electricity sector. Global un-
certainties result in significantly different trends in solutions, and
therefore represent multiple plausible futures, as shown in Fig. 1c.
Local uncertainties result in the envelope of uncertainty that sur-
round a particular future, as shown in Fig. 1b. It should be noted
that global and local uncertainty are classified in accordance with
the effect they have on the solutions or strategies being developed,
rather than the uncertain drivers or inputs, and therefore only
make sense in a specific decision-making context.

The third term considered is VUCA (Volatility, Uncertainty,
Complexity and Ambiguity), which is growing in prevalence in the
business literature and originates from US Military College teach-
ings (Bennett and Lemoine, 2014; Whiteman, 1998). Volatility can
be considered as either the deviation from the expected or pre-
dicted mean, and a representation of heteroscedasticity (linked to
local uncertainty e Fig. 1b), or the occurrence of extreme events/
discontinuities in a future projection (Modarres and Ouarda, 2013;
Syud et al., 2009; Van Notten et al., 2005). Uncertainty, which is
closely related to the first condition of the definition of deep un-
certainty, considers the unknown range of parametric inputs and
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also the impact of future or ‘global’ trends, as shown in Fig. 1c
(Refsgaard et al., 2007; UKCIP, 2003; Walker et al., 2003).
Complexity arises when links between an intervention and an
impact are difficult to identify and quantify. High degrees of
complexity are common in environmental management and
decision-making and this can be closely related to the second
condition of deep uncertainty and in reference tomultiple plausible
futures, where the casual relationships between factors may
change in both structure and magnitude (Fig. 1c). Lastly, ambiguity
in environmental management can be significant when different
stakeholders hold differing beliefs on the level of uncertainty pre-
sent, the causal relationships and also the preference of manage-
ment solutions (Dewulf et al., 2005). Ambiguity challenges both the
ability to predict the impact of interventions and, ultimately, what
the preferred option is. This links well with the third condition of
deep uncertainty and poses similar challenges for management in
light of an uncertain future. A potential advantage of VUCA is that it
can help in fostering a shared understanding between modellers
and policy makers.

4. Methods for identifying multiple plausible futures

Arguably the most common approach to the identification of
multiple plausible futures, or “states of the world” as they are
referred to by Herman et al. (2015), is the use of scenarios.
Mahmoud et al. (2009) defined scenarios as “possible future states
of the world that represent alternative plausible conditions under
different assumptions” and Van Notten et al. (2005, 2003) defined
scenarios as “coherent descriptions of alternative hypothetical fu-
tures that reflect different perspectives in past, present and future
developments, which can serve as a basis for action.” Therefore,
based on the above definitions, scenarios that are used to represent
multiple plausible futures are generally not developed just by
sampling from different variables over defined ranges, as they
represent coherent storylines and have to be based on different
assumptions about the future. Consequently, it is important to be
aware of different types of scenarios, as, although all of them
consider the future, they do so in different ways and are therefore
not equally well suited to representing multiple plausible futures.
Scenarios can be categorised based on the types of questions they
are trying to answer (B€orjeson et al., 2006), as shown in Fig. 2.

Predictive scenarios can be used to answer the question “what
will happen?”, for example, “what will the environmental impacts of
a development in area X be?” This can be achieved using either
“Trend” or “What-if” scenarios. “Trend” scenarios are a common
approach to future planning, and can consist of a baseline or
Business as Usual (BAU) scenario with slight variations from this
baseline. BAU projecting assumes current conditions will continue,
building from a historical trend and allowing for the impact of
Fig. 2. Scenario classification (Adapt
known policies. BAU scenarios are often used or adapted into a
most likely scenario or a more neutral reference scenario against
which the implications of decisions can be assessed and can
therefore be considered to consolidate existing knowledge (Fig. 1a).
Adding variance to this baseline creates scenarios that can be
thought of as adding local uncertainty to BAU, most-likely or
reference scenarios (Fig. 1b). This is commonly achieved by the
addition of a low, medium, and high projection into the future
deviating from the historical values.

Alternatively, “what-if” scenarios, which consider the future
based on what will happen if a specific event occurs, altering the
likely path, are another form of predictive scenario. For example,
this type of scenario could be used to predict what will happen to
society if a rapid high density residential development, a slower
paced low-medium density housing precinct, or a technology hub
is implemented.

Explorative or exploratory scenarios can be used to answer the
question “what could happen?” For example, an exploratory sce-
nario process could be used to answer the question “what could
influence sustainable development goals over the century?”, with
potential scenarios considering either a world of growing distrust
in international organisations due to migration and military ten-
sion or one where societal will drives political action sparking a
global, accepted approach to dealing with challenges. Exploratory
scenarios have similarities with “what-if” scenarios, but consider
longer time-frames and multiple perspectives.

B€orjeson et al. (2006) categorise exploratory scenarios based on
the influence of interested parties: external exploratory scenarios
are characterised by the development of external factors beyond
the control of the interested parties, while strategic scenarios
consider what could happen if the interested parties act in a
particular way. Consequently, the former do not consider policy
options, while the latter do. However, in this paper, we propose a
categorisation of exploratory scenarios based on whether they are
framed or unframed during their development. Framing scenarios
provides a scaffold for their development, in contrast to more
organic scenario construction, which makes no prior assumptions
about form. The development of framed scenarios is constrained by
the consideration of particular driving forces or outcomes. While
this provides guidance for their development, it also limits the
breadth of the plausible futures that can be explored. Framed sce-
narios fall into two categories, those that are framed on system
uncertainties and those that are framed on outcomes. Consequently,
the latter can be considered as ‘solution-focused’ approaches, while
the former can be considered as ‘problem-focused’ approaches, as
they are not constrained by a particular decision context.

A well-known ‘problem-focused’ framework for the develop-
ment of framed scenarios is the scenario logic approach (Schwartz,
1996), where typically a 2 � 2 matrix is produced by placing two
ed from B€orjeson et al. (2006)).



Fig. 3. Forward-focused scenario types encapsulating increasing variation in system
state, allowing for more uncertain and divergent futures to be considered. Scenarios
are considered as pathways from today to the future, or points in the future.
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key (uncertain) driving forces on the vertical and horizontal axes
(Ramirez and Wilkinson, 2014; Van 't Klooster and Van Asselt,
2006; Van Asselt, 2012). This allows each scenario to be clearly
differentiated from others and hence more easily communicated
and understood. A similar approach, but focused on the develop-
ment of ’solution-focused’ framed scenarios, places “outcomes of
interest” on the vertical and horizontal axes, rather than drivers, as
in the ‘problem-focused’ approach (O'Neill et al., 2014). There are
also several other ways of framing scenarios in higher dimensions,
such as the combination of framed scenarios considering different
factors of interest, including the combination of representative
concentrations pathways (RCPs), shared socio-economic pathways
(SSPs) and shared policy assumptions (SPAs) (Van Vuuren et al.,
2014).

In contrast to framed scenarios, unframed scenarios are
completely open in the way they formulate the factors, actors, and
sectors included in their development, as well as their directions for
change, and therefore have a greater ability to identify a wider
range of multiple plausible futures. However, they are still con-
strained by the mental models and human cognitive limitations of
the individuals involved in their development (Lempert et al., 2003;
Sterman, 1994).

Unframed scenarios are commonly developed through intake of
significant information via a combination of participatory pro-
cesses, expert elicitation and extensive literature review, but do not
consider pre-determined drivers or outcomes of interest as the
starting point, as is the case with framed scenarios. This type of
exploration can be traced to the scenario analysis techniques
employed by Shell (Van der Heijden, 2011). They allow those con-
structing the scenarios to include any uncertainty, driver or thought
and consider its impact on the future. An example of this type of
scenario development can be seen in Kok et al. (2006b, 2006a) and
Rotmans et al. (2000). Another example of developing unframed
scenarios is the Perspectives model, which is based on cultural
theory (Thompson et al., 1990) and has been used to develop a set
of coherent, integrated scenarios describing climate and socio-
economic developments and values seen from different world-
views (Hoekstra, 1998; Middelkoop et al., 2004; Rotmans and De
Vries, 1997).

Normative scenarios can be used to answer the question “how
can a specific target be met?” They have explicit starting points in
the future regarding conditions or objectives to be met. Normative
scenarios contain actions or steps that are required to achieve the
desired objectives or future conditions to be realised. This can be
useful for comparing potential actions or steps for achieving the
future conditions (Parker et al., 2015). For example, a normative
scenario may begin with the question “how can electricity access
across India be achieved?” Scenarios may include pathways of
dependence on fossil fuels and capital investments in network
infrastructure, or improvements in battery technology, precipi-
tating the roll out of renewable energy and micro-grids. Normative
scenarios can be further categorised based on whether the desired
outcomes are able to be achieved within the existing system
structure, as is the case with “preserving” scenarios, or whether the
existing system structure needs to be changed (“transformed”).
Consequently, the focus of preservative scenarios is on how the
desired target can be achieved as efficiently as possible, while the
focus of transformative scenarios is on what changes have to be
made to the system to enable the target to be met.

There are also differences between the types of scenarios based
on the way they are generated. As can be seen in Fig. 2, predictive
and explorative scenarios can be thought of as “forward” or
“problem-focused’ approaches to identifying future conditions of
interest (Jones, 2012; Parker et al., 2015), as they consider the future
by looking forward and exploring a variety of factors that influence
the problem under consideration. In contrast, normative scenarios
can be considered as “inverse” or “solution-focused” approaches to
identifying future conditions of interest, as they usually work
backwards from a desired target and place an emphasis on actions
or solutions to either transform or preserve (Dessai and Hulme,
2007; Wilby and Dessai, 2010).

Although predictive, explorative, and normative scenarios all
consider the future, they are not equally suited to identifying
multiple plausible futures. In general, forward focused approaches
have a greater ability to consider alternate multiple plausible fu-
tures, as described in Fig. 1c and d. However, as shown conceptually
in Fig. 3, the degree to which forward approaches, including trend,
what-if, framed and unframed scenarios, can explore multiple
plausible futures can vary considerably.

As trend scenarios aim to forecast development, they offer
limited ability to explore multiple plausible futures. As such, they
are best suited to application to systems that are ‘relatively well-
known and well-defined’ (Van Vuuren et al., 2012). They gener-
ally capture a limited system state and capture minimal divergence,
similar to Fig. 1b. Similarly, What-if scenarios capture a limited
range of system states, but can be used to assess well-known sys-
tems and the impacts of known options or uncertainties. If the
divergence in plausible futures is minimal, what-if scenarios can
capture futures, as shown in Fig. 1c and d.

Explorative scenarios are well suited to identifying multiple
plausible futures, as they offer rich descriptions of future systems
and look to incorporate qualitative and quantitative assumptions
for alternate world views (Rounsevell and Metzger, 2010). These
assumptions can involve diverse ideas and opinions. A broad array
of techniques can be used for their development, although they
commonly revolve around aspects encapsulated by changes to so-
cietal, technological, environmental, economic and political
(STEEP) factors (Bradfield et al., 2005; Rounsevell and Metzger,
2010). This allows for various factors to be included in the
description of future worlds and subsequently better encapsulates
future uncertainty.

Framed exploratory scenarios capture divergent plausible fu-
tures, as shown in Fig. 1c and d, although unframed scenarios not
constrained by predefined factors or driving uncertainties are
capable of capturing a greater range of future system states.
Framing scenarios on solution-focused axes allows for the targeting
of uncertainties most relevant to the problem definition, while
framing on uncertainties of the problem allows for a broader
exploration of the selected factors or drivers.

Choosing whether to frame a set of scenarios or not and then
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subsequently how to frame them, either on uncertain drivers or
outcomes of interest, should be based on problem context. For
more applied policy assessment, framing on outcomes may provide
a more effective scenario development process. However, if the
exploration and understanding of future uncertainty is of more
significance, framing based on drivers or the use of unframed
scenarios can provide a better platform for identifying multiple
plausible futures. There are also instances when increased explo-
ration is not necessarily of benefit to the scenario and overall de-
cision support process. These situations may relate to physical
constraints, and as such, applying constraints to the scenario
frames or developing predictive scenarios may be more
appropriate.

For normative preservative scenarios, quantitative methods for
assessment are well suited to identifying conditions under which a
target or system requirement can or cannot be met. Such ap-
proaches include scenario discovery (Bryant and Lempert, 2010;
Groves and Lempert, 2007; Guivarch et al., 2016; Kwakkel and
Jaxa-Rozen, 2016; Lempert, 2013; Lempert et al., 2008), decision
scaling (Brown et al., 2012; Poff et al., 2015) and adaptation tipping
point approaches (Kwadijk et al., 2010). For normative transforming
scenarios, techniques such as backcasting (Kok et al., 2011;
Vervoort et al., 2014) are most suitable, as they allow parties to
work back from the unachievable target, stepping through the
required actions that would enable its achievement.

In summary, the degree of exploration required is dependent on
the system state, and the degree it is impacted bymultiple plausible
futures. This affects the type of scenario deemed appropriate to
scope future changes, and there may be an emphasis on scoping or
decision making influencing the choice between forward and in-
verse looking approaches. These scenarios, once conceived, are
then used to assist in model-based decision support, allowing for a
conceptualisation of the variability in system state, and as such,
what future conditions developed strategies, designs or plans could
be exposed to.

5. Coping with multiple plausible futures in model-based
decision support

The aim of model-based decision support in the face of multiple
plausible futures is to assist with the development of strategies,
designs or plans (referred to as strategies hereafter) that perform
adequately, irrespective of which of these futures actually occurs.
This results in robust outcomes, where robustness can be thought of
as a measure of the insensitivity of the performance of a given
strategy to future conditions. This can be achieved by adopting two
conceptually different approaches.

The first is a static approach, as part of which a single, fixed
strategy is developed that performs adequately under as many
plausible futures as possible. It should be noted that such a strategy
can consist of one or a number of individual solutions or actions
(referred to as solutions hereafter), and that these can occur
simultaneously or be staged over the planning horizon of interest
(e.g. Beh et al., 2015b). Static approaches often use one or two
endpoint scenarios, describing a static point in the future.

The second is an adaptive approach, as part of which multiple,
flexible strategies are developed that are tailored to different future
conditions, with the option to switch between them over the length
of the planning period in response to increased knowledge about
the state of the world. Consequently, these multiple strategies can
be thought of as providing adaptive pathways for responding to
different plausible futures (e.g. Beh et al., 2015a, b; Haasnoot et al.,
2013; Haasnoot et al., 2012). Adaptive approaches can either be
static or dynamic. As part of static adaptive approaches, a basic
policy remains fixed and contingency actions are taken to stay on
course (e.g. Walker et al., 2001) or a set of adaptive pathways re-
mains fixed over the length of the planning horizon, although there
are opportunities to move between them (e.g. Kang and Lansey,
2014). As part of dynamic adaptive approaches, the actual path-
ways can also change over time as new knowledge about future
states of the world becomes available (e.g. Beh et al., 2015a; Wise
et al., 2014). Dynamic or adaptive approaches require the use of
time series or transient scenarios, describing changing conditions
over time (Beh et al., 2015a; Haasnoot et al., 2015).

It should be noted that as part of the static approach, the fixed,
individual strategies are designed to be robust, so that the adequacy
of their performance is insensitive towhich future conditions occur.
In contrast, as part of the adaptive approach, individual strategies
are not necessarily robust, as they are tailored to particular plau-
sible futures. However, the overall outcome is robust, as the stra-
tegies that are most appropriate for particular future conditions can
be selected adaptively over time. Consequently, the use of adaptive
approaches results in the collective robustness of the various stra-
tegies considered, rather than the individual robustness of a
particular strategy.

The robustness of individual strategies that form part of static or
adaptive approaches can be quantified based on expected values or
other moments characterizing the distribution of outcomes, sat-
isficing criteria, or measures based on regret (Giuliani and
Castelletti, 2016; Herman et al., 2015; Kwakkel et al., 2015, 2016b;
Lempert and Collins, 2007). In the context of the development of
strategies that perform adequately in the face of multiple plausible
futures, robustness measures based on the concept of satisficing
appear to be the most appropriate. These robustness measures
generally fall into two broad categories (Herman et al., 2015),
including those that attempt to quantify the plausible futures under
which a strategy performs adequately and those that attempt to
quantify how far future conditions need to deviate from an ex-
pected future state before a strategy fails to perform adequately.
Consequently, measures that belong to the latter category, such as
Info-Gap (Ben-Haim, 2006), are likely to be less well suited to
dealing with highly uncertain futures, as the expected, or “best-
guess”, future state fromwhich to deviate is unlikely to be known in
such cases. This is because different scenarios are all plausible and
to not have an associated probability or cannot be ranked, making it
impossible to determine what the expected “best-guess” future
conditions actually are, as discussed in the Introduction.

The plausible states used in the calculation of the former mea-
sure can be identified using some of the techniques for scenario
development discussed in Section 4. When forward/top-down
scenarios are used to identify multiple plausible futures, a com-
mon measure of robustness is the fraction of the scenarios under
which a strategy performs adequately (Beh et al., 2015a; Herman
et al., 2015; Paton et al., 2014a, 2014b; Van Vliet and Kok, 2015).
When inverse/bottom-up scenarios are used as the basis for iden-
tifying multiple plausible futures, rather than starting with plau-
sible futures as represented by discrete scenarios, the focus is on
the identification of the model parameters and/or system states
under which a solution performs adequately or better than an
alternative solution. Consequently, in this case, robustness is a
measure of the extent of these parameter spaces or system states.

Whether a static or adaptive approach should be adopted is,
amongst others, a function of the level of uncertainty over the
planning horizon, the degree of flexibility of the solutions that form
part of particular strategies (i.e. how easily changes can be made to
solutions) and the time it takes to implement solutions that form
part of a certain long-term strategy relative to the rate of change of
the system (i.e. how quickly the system can adapt if it needs to; how
quickly actions can be implemented, and how quickly the system
responds) (Fig. 4).



Fig. 4. Conceptual representation of conditions favouring the two main approaches to developing solutions when faced with multiple plausible futures.
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Adoption of a static approach featuring a single, fixed strategy
that is robust under as many plausible future conditions as possible
is not preferable when the level of uncertainty over the planning
horizon is high. This is because static strategies that have to cater to
a wider range of conditions have to be more conservative, which is
likely to incur high economic, social and/or environmental costs. In
addition, as it is not possible to conceive of all plausible futures at
the beginning of the planning period for highly uncertainty sys-
tems, static strategies designed to be robust under a certain set of
future conditions might still fail if the future unfolds in a direction
that was not considered.

The flexibility (or adaptivity) of a strategy is expressed by the
ability to switch to, or add another solution, or adapt the current
solution (Haasnoot, 2013; Rosenhead et al., 1972; Wong and
Rosenhead, 2000). Flexible solutions can be adapted (e.g. intensi-
fication of an action), abandoned (switch to a different solution), or
extended (add a solution). They do not result in lock-ins and have
little influence on potential future options (i.e. they have fewer
path-dependencies). If solutions that form part of the proposed
strategy are inflexible (e.g. altering large infrastructure with a long
life time), adaptation is more difficult and consideration of a single,
static solution provides a potentially attractive option. In contrast, if
the component solutions of a strategy are relatively flexible (e.g.
operational decisions), an adaptive strategy is likely to be favoured.
However, even if adaptation is relatively easy from a physical or
technical perspective, such changes might have significant negative
implications from a financial or institutional perspective, or may
even have large negative consequences for society. Consequently,
these factors also need to be taken into account (Dewulf and
Termeer, 2015; Szemis et al., 2014; Van der Brugge and Roosjen,
2015).

If the time it takes to implement a solution is long relative to the
rate of change of the system, the implementation of a single, static
strategy that performs well under a range of plausible futures is
likely to be a better option, as adaptation might not be able to be
achieved sufficiently quickly to avoid system failure. In contrast, if
the time required for the system to adapt is short relative to the rate
of change the adaptation is designed to respond to, an adaptive
approach is likely to be an attractive option.

While Fig. 4 and the accompanying discussion highlight the
conditions under which static and adaptive approaches are
preferred, in practice, there are likely to be many situations where
an adaptive approach is preferred for one or two of the three
criteria considered, while a static approach is preferred for the
other(s). For example, if we consider the case of urbanwater supply
augmentation over a period of 50 years, where the degree of un-
certainty is high due to a range of plausible changes in demand and
supply as a result of changes in climate and population, an adaptive
approach would be preferable in accordance with the criterion
represented by the top arrow in Fig. 4. However, the degree of
flexibility of the infrastructure solutions that form part of urban
water supply expansions is generally low, favouring a static
approach. Similarly, the lead times associated with the imple-
mentation of large infrastructure projects are generally long,
possibly also favouring a static approach, depending on how
quickly demand and/or supply are changing due to climate and
population drivers relative to the lead time associated with
implementation. In such situations, hybrid approaches can be used.
For example, the approach of Beh et al. (2015a) is suitable for
conditions where the degree of uncertainty over the planning ho-
rizon is high, but the degree of flexibility of the solutions is low and
the implementation time relative to rate of change is long. This is
achieved by allowing adaptation at fixed time intervals over the
planning horizon to allow sufficient lead-time for the imple-
mentation of adaptation options, while ensuring that the individual
strategy that is implemented at each adaptation interval is as
flexible as possible, and robust over a wide range of plausible fu-
tures during this interval.

6. Implications for modelling

As with any other application of modelling, the treatment of
multiple plausible futures is influenced by purpose and context and
should be fit for purpose (Black et al., 2014; Jakeman et al., 2006), in
this case particularly the needs of policy or planning (Van Delden
et al., 2011; Walker, 2000; Walker and Haasnoot, 2011). There are
some common model requirements, but there is also significant
variation. A first common requirement is that most analyses make
use of all three paradigms: use of best available knowledge, quan-
tification of uncertainty, and multiple plausible futures. The
modeler needs to be clear about which parts of models are dealt
with using which paradigm.

A second common requirement is the need to be open to
qualitative input into an otherwise model-driven analysis
(Carpenter et al., 2009). As a result of its formalized nature, a model
is constrained in the aspects of the future it can explore. This
supports systematic approaches, but should not result in an anal-
ysis being limited bywhat an existingmodel can do.When focusing
on best available knowledge, the qualitative input is incorporated
by improving the model, but when considering multiple plausible
futures, it may make more sense to include the information within
the broader analysis context (e.g. Greiner et al., 2014; Rozenberg
et al., 2014; Walker, 2000). For example, understanding of real-
world decision making can be included within a model in its best
available or uncertain form, or can be discussed in a workshop
setting at the time the model is used. Furthermore, simulations of
multiple plausible futures can be complemented with narratives to
provide a richer and more complete picture of the way these fu-
tures might unfold (Van Delden and Hagen-Zanker, 2009; Van
Delden et al., 2011).

The breadth and depth of a model's scope can vary significantly.
For more exploratory methods (Fig. 3) with broad policy scopes
(Walker and Haasnoot, 2011), the flexibility required of the models
to deal with a range of disciplines and related drivers and driver
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extents increases (Van Delden and Hagen-Zanker, 2009; Van Del-
den et al., 2011). Conversely, for less exploratory methods with
narrow policy scopes, there tends to be a greater emphasis on
historic calibration and validation. Consistency with history is
important in BAU and trend scenarios, notably when the aim is to
assess implications of one policy alternative against another, or a
‘do nothing’ alternative (Van Delden and Engelen, 2006). For
modelling to be able to support exploratory scenarios, the in-
teractions between processes, and especially their ability to change
over time due to various developments, increases in importance,
together with the ability to deal with a wide range of drivers, di-
rections and magnitudes. In this context, broader directions
become more important than details.

Model requirements can vary even for a given model scope,
depending on the approach used. Exploratory contexts often
benefit from more qualitative information and a greater level of
participation from awide range of relevant stakeholders or domain
experts. Where quantitative techniques are used to computation-
ally explore a broad range of futures, the emphasis is on fast models
that satisfy specific policy-relevant accuracy requirements
(Haasnoot et al., 2014), and within which uncertain elements
within models can be manipulated programmatically. These re-
quirements are not necessarily incompatible, but there may be a
broad range of means by which they can be combined. Even in
seemingly obvious cases, such as capturing adaptive actions with a
model, there is some freedom as to whether the actions are
modeled endogenously, manipulated as an input to a model run, or
treated qualitatively using multiple scenarios. The difference is not
necessarily one of depth, but rather of preferred paradigm. Further
guidelines do exist on model characteristics to tackle uncertain
futures (e.g. Walker and Haasnoot, 2011), but in the context of
understanding the future, a common element is nearly always a
sensitivity to the particularities of a context e to understand the
‘customer’, rather than let the analysis be driven by the available
‘technology’ (Walker, 2000).

7. Summary and concluding remarks

The need to deal with an uncertain future as a result of changes
in climate, technology, socio-economic conditions and politics has
led to the realisation that traditional methods of dealing with un-
certainty that are based on probability distributions surrounding a
“best-guess” of the future are unlikely to be appropriate. This has
precipitated the development of a number of concepts that
consider multiple plausible futures, such as deep uncertainty,
global uncertainty and VUCA, highlighting the independent evo-
lution of thinking about this emerging and important topic in
different disciplinary areas.

The characterisation of uncertainty in terms of multiple plau-
sible futures has flow-on effects in terms of:

� The way uncertainty is quantified: Rather than just sampling
from probability distributions, different plausible future path-
ways are represented as scenarios that generally represent
coherent storylines that are based on particular assumptions.

� The way system performance is measured: Rather than repre-
senting performance in terms of the probability of violating
specific values related to a “best-guess” future, it is represented
in terms of the robustness (insensitivity) of performance to a
range of plausible futures.

� The way strategies or designs are developed: Rather than only
considering single, static strategies or designs, the use of mul-
tiple, adaptive strategies might provide an attractive alternative,
depending on the attributes of the problem under
consideration.
While a good understanding of the linkages between the above
factors is vitally important when dealing with a highly uncertain
future, so is a good understanding of the categorisation of the in-
dividual methods that can be used within each category. To this
extent, this paper provides perspectives on how:

� Consideration of multiple plausible futures is one of a number of
complementary paradigms for considering an uncertain future.

� Deep uncertainty is one of a number of terms used to encap-
sulate the concept of multiple plausible futures.

� Different types of scenarios have different degrees of suitability
for exploring multiple plausible futures.

� Different criteria that determine whether static or adaptive
strategies are preferred and how they can be in conflict with one
another.

In conclusion, we hope that the articulation of (i) different
paradigms for representing an uncertain future, (ii) different terms
that can be used to encapsulate multiple plausible futures, (iii)
different types of scenarios and the role they play in quantifying an
uncertain future, (iv) different approaches to developing robust
strategies and the criteria that favour one over the other and (v)
different issues to consider when developing models when dealing
with multiple plausible futures presented in this paper will be
useful for researchers and practitioners as they endeavour to
develop robust strategies in the face of a highly uncertain future.
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