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Abstract. We pose a new problem of collinear central configuration in Newto-
nian n-body problem. For a given three-body of collinear central configuration,
we ask whether we can add another body in a way such that (a) the total
four-body is also in a state of collinear central configuration and (b) the initial
three-body keeps its motion without any change during the process. We find
four solutions to the above problem having zero mass. We also discuss a similar
but ‘positive’ problem by modifying the conditions such that (a’) the four-body
is in a state of collinear central configuration and the initial three bodies keep
their position without any change, and (b’) the masses of the two out of the
three of initial bodies are invariant with the rest having a slight change and the
mass of the added body is positive.
We also find explicit solutions to the second problem.
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§1. Introduction

Euler found solutions of three-body problem on a line, collinear three-body
problem [2] for the first time in history. In general, a solution of Newto-
nian n-body problem on a line, called a collinear n-body, forms central con-
figuration, that is, the ratios of the distances of the bodies from the center
of mass are constants [4]. F. R. Moulton [4] proved that for a fixed mass
vector m = (m1 , . . . ,mn) and a fixed ordering of the bodies along the line,
there exists a unique collinear central configuration q = (q1, . . . , qn) with mass
m = (m1 , . . . ,mn) (up to translation and scaling), where qi denotes the posi-
tion of the i th-body on a line i = 1, . . . , n. The configuration is also called a
Moulton configuration, which will be sometimes abbreviated as M.c..
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In this paper, we consider the following problem. We assume we are given a
M.c. qA = (qA1

, qA2
, qA3

) of three bodies A1, A2, A3 such that qA1
< qA2

< qA3

with mass mA = (mA1
,mA2

,mA3
) where each component of mA is positive.

We consider to add a body B of position qB with mass mB , to A1, A2, A3 on
the same line containing A1, A2 and A3 so that

(a) the configuration of A1, A2, A3 and B is M.c. with A1, A2, A3 keeping
the original positions, and

(b) the motion of A1, A2, A3 are kept invariant during the process.

More precisely, let qi denote one of the positions of A1, A2, A3, B such that
q1 < q2 < q3 < q4 and mi denote its mass, respectively.

Definition 1 (3+1-Moulton configuration). We call q = (q1, q2, q3, q4) with
m = (m1,m2,m3,m4) a“ 3+1-Moulton configuration” for the three bodies
A1, A2, A3 when it satisfies the following conditions.

(i) A1, A2, A3 and B are in Moulton configuration and the configuration of
A1, A2, A3 is equal to the original one qA with mA.

(ii) The center of mass of A1, A2, A3, B is equal to that of A1, A2, A3, and
the motion of A1, A2, A3 is the same as the original one.

A1 A2 B A3

center of A1,A2 and A3

center of A1,A2,A3 and B

Figure 1: 3+1-Moulton configuration

Then we show in this paper

Theorem 1 (3+1-Moulton configuration). For a given Moulton configuration
qA = (qA1

, qA2
, qA3

) with mA = (mA1
,mA2

,mA3
),

(i) there exist four kinds of 3+1-Moulton configurations for qA with mA,

(ii) the mass of the added body is zero.

We remark here that the above result (ii) means that the added body has
an“ infinitesimal zero”mass. We also consider a configuration in which the
added body has a positive mass, namely the configuration satisfies only a part
of the condition (i) of Definition 1. That is A1, A2, A3 and B are in a Moulton
configuration and the positions of A1, A2, A3 are the same as the original one,
and further the mass of the added body is positive with a slight change of one
of the masses of A1, A2, A3. We make the following definition.
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Definition 2 (Positive-3+1-Moulton configuration). We call q with m a“
positive-3+1-Moulton configuration”for qA with mA when it satisfies the con-
ditions:

(i) A1, A2, A3 and B are in Moulton configuration and the positions of
A1, A2, A3 are equal to the original one.

(ii) The mass of the added body B is positive with a change of mass in one
of A1, A2, A3.

A1 A2 B A3

center of A1,A2 and A3

center of A1,A2,A3 and B

Figure 2: Positive-3+1-Moulton configuration

We also show

Theorem 2. For a given Moulton configuration qA = (qA1
, qA2

, qA3
) with

mA = (mA1
,mA2

,mA3
), there are intervals of qB of position of added body

such that every point of the interval yields a positive-3+1-Moulton configura-
tion.

In the previous paper [5], the first author considered 2+2-Moulton configu-
ration for two bodies and obtained three solutions.

This paper is organized as follows. In Section 2, we define a Moulton man-
ifold, which is regarded as a manifold of all Moulton configurations of n-body,
and construct it for n = 3 and n = 4, and also give equations for its mass prob-
lem, (2.6) and (2.8) below. In Section 3 we prove Theorem 1 and Theorem 2
in Section 4, respectively.

§2. Manifold of Moulton configurations

2.1. Collinear central configuration

We consider the d-dimensional (1 ≤ d ≤ 3) Newtonian n-body problem:

miq̈i(t) =
n∑

j=1 i ̸=j

mimj(qj(t)− qi(t))

∥qi(t)− qj(t)∥3
=

∂

∂qi
U(q(t)), (1 ≤ i ≤ n),(2.1)

where U(q) is the Newtonian potential function

U(q) =
∑

(i,j) i<j

mimj

∥qi − qj∥
, (i, j = 1, · · · , n),
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mi ∈ R+(i = 1, 2, . . . , n) are masses of the bodies and
q(t) = (q1(t), . . . ,qn(t)) ∈ (Rd)n is their configuration. Here we except
qi(t) = qj(t) for some i ̸= j.

It is well-known that the equation (2.1) is scale and translation invariant.
That is, for a solution q(t) = (q1(t),q2(t), . . . ,qn(t)) of (2.1), then

κq(κ−3/2t)+ ũ t+ ṽ = (κq1(κ
−3/2t)+u t+v, . . . , κqn(κ

−3/2t)+u t+v)

is also a solution, where κ is a positive constant and u = (u1, . . . , ud), v =
(v1, . . . , vd) are constant d-vectors.

Let q = (q1, . . . ,qn) ∈ (Rd)n be a constant vector and c be the center of
mass of the system c =

∑n
i=1miqi/

∑n
i=1mi. For a scalar-valued function

ϕ(t), let us consider a vector-valued function

q(t) = c̃+ ϕ(t)(q− c̃),

where c̃ = (c, . . . , c). It is easy to see if q(t) is a solution of (2.1) then q
satisfies the equation (2.2) and ϕ(t) satisfies (2.3) below. Thus we naturally
obtain the following concept (c.f. [3] Section 2.1.3, also [1]).

Definition 3 (Central Configuration). We call a configuration
q = (q1,q2, . . . ,qn) ∈ (Rd)n with mass m = (m1,m2, . . . ,mn) ∈ (R+)n a
central configuration if q satisfies

(2.2)
n∑

j=1

mj(qj − qi)

r3ij
+ λ(qi − c) = 0, i = 1, 2, . . . , n

for some λ ∈ R+, where rij = ∥qi − qj∥ is a distance of two bodies.

We easily see that the equations (2.2) yields λ = U(q)/(2I), where I =∑n
i=1mi∥qi − c∥2/2, then λ is positive.
Conversely, for a central configuration q = (q1, . . . ,qn) with mass m =

(m1 , . . . ,mn) and a real valued function ϕ(t) satisfying

(2.3) ϕ̈ = −λϕ/|ϕ|3,

then q(t) = c̃+ ϕ(t)(q− c̃) is a solution of the equation (2.1).
The invariance of the equation (2.1) naturally induces an equivariance of

the equation (2.2) under the scaling and parallel transform. Let κ be a positive
number and u be a vector in Rd. For a solution q = (q1, . . . ,qn) of the equation
(2.2), we set

q̂ = (q̂1, q̂2, . . . , q̂n) = κq+ ũ = (κq1 + u, . . . , κqn + u) ∈ (Rd)n.
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Then q̂ satisfies

n∑
j=1 i ̸=j

mj(q̂j − q̂i)

∥q̂i − q̂j∥3
+ λ̂(q̂i − ĉ) = 0 (i = 1, 2, . . . , n),

where λ̂ = κ−3λ and ĉ = (κc+ u, . . . , κc+ u).

Now we consider d = 1, which means that all bodies lie on a straight line.
We call a solution q of (2.2) a collinear central configuration, or a Moulton
configuration. Then the equation (2.2) is written in the form

(2.4) A tm+ λt(q− c̃) = 0 for some λ ∈ R+,

where q = (q1, . . . , qn) ∈ Rn and A is a skew-symmetric matrix defined by
A = (aij), aij = (qi − qj)

−2 for i < j, and aii = 0, aji = −aij (c.f. [1]).
Following Moulton [4], we also consider the case where mi (i = 1, . . . , n)

are infinitesimal zero. Then in this paper we assume mi ≥ 0 (i = 1, . . . , n).

2.2. Moulton manifold

In this subsection, we consider the equation (2.4) in a geometric way.
Let us consider 2n+2-dimensional Euclidean space R2n+2 with coordinates

(q,m, c, λ) = (q1, . . . , qn,m1, . . . ,mn, c, λ) and consider an open domain

On = {(q1, . . . , qn,m1, . . . ,mn, c, λ) ∈ R2n+2|
q1 < q2 < · · · < qn,m1, . . . ,mn ≥ 0, q1 < c < qn, λ > 0}.

Then the equation (2.4) gives a manifold

Mn = {(q,m, c, λ) ∈ On|A tm+ λt(q− c̃) = t0},

called an n-Moulton manifold, which can be regarded as the set of all Moulton
configurations of n bodies. The manifold Mn has a parametrization whose
expression depends on the case where n is even or n is odd (cf.[1], [4]). In this
paper we discuss the case n = 3 and n = 4, and the general cases for n are
given in a similar way.

3-Moulton manifold. The equation (2.4) for n = 3 shows that 3-Moulton
manifold is given by

M3 = {(q1, q2, q3,m1,m2,m3, c, λ) ∈ O3 |
A tm+ λt(q− c̃) = 0 for some λ ∈ R+}.
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The parametrization of 3-Moulton manifold M3 is given in the following way.
For n = 3 the matrix A in the equation (2.4) is not invertible. Regarding (2.4)
as an equation with respect to m = (m1,m2,m3) we consider an augmented
matrix of the equation 0 a12 a13 −λ(q1 − c)

−a12 0 a23 −λ(q2 − c)
−a13 −a23 0 −λ(q3 − c)

 ,

where aij = (qi − qj)
−2 (i < j) and we obtain by the sweep-out method,a12 0 −a23 λ(q2 − c)

0 a12 a13 −λ(q1 − c)
0 0 0 ∗

 ,

where ∗ = λ(−a12(q3− c)+a13(q2− c)−a23(q1− c)). Then the equation ∗ = 0
is the necessary and sufficient condition for (2.4) to have a solution, which is
equivalent to

(2.5) c = (a12q3 − a13q2 + a23q1) /P,

where P = a12 − a13 + a23. Thus the equation (2.4) is reduced to{
a12m2 + a13m3 + λ(q1 − c) = 0,

−a12m1 + a23m3 + λ(q2 − c) = 0.

In order to parametrize the solutions (m1,m2,m3), we introduce a parameter
M = m1+m2+m3 which represents the total mass. We consider an equation

a12m2 + a13m3 + λ(q1 − c) = 0,

−a12m1 + a23m3 + λ(q2 − c) = 0,

m1 +m2 +m3 = M.

Then the augmented matrix is the followinga12 0 −a23 λ(q2 − c)
0 a12 a13 −λ(q1 − c)
1 1 1 M


and by the sweep-out method we obtain1 0 0 α1

0 1 0 α2

0 0 1 α3

 ,
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where

α1 =
(a12M + λ(q1 − q2))a23
(a12 − a13 + a23)a12

− λ

a12
(c− q2),

α2 =
−(a12M + λ(q1 − q2))a13

(a12 − a13 + a23)a12
− λ

a12
(q1 − c),

α3 =
a12M + λ(q1 − q2)

a12 − a13 + a23
.

Then using (2.5) we obtain

m1 = (a23M + λ(q2 − q3))/P,
m2 = −(a13M + λ(q1 − q3))/P,
m3 = (a12M + λ(q1 − q2))/P

(2.6)

which are regarded as a parametrization of solutions of the equation (2.4).
Using these functions we obtain a parametrization of the 3-Moulton manifold
M3 in the following way. Remark P = a12 − a13 + a23 > 0 for q1 < q2 < q3.
Since mi (i = 1, 2, 3) are non-negative in M3, (2.6) yields (q2−q1)

3, (q3−q2)
3 ≤

M/λ ≤ (q3 − q1)
3, namely,

(Q3) q2 − q1 ≤ (M/λ)(1/3), q3 − q2 ≤ (M/λ)(1/3), (M/λ)(1/3) ≤ q3 − q1.

Then we set an open set in R5 such that

D3 = {(q1, q2, q3, λ,M) ∈ R5 | q1 < q2 < q3, λ > 0, M ≥ 0 and (Q3)}

and we define a map m̂ : D3 → (R+)3 such that

(2.7) m̂(q, λ,M) = (m1(q, λ,M),m2(q, λ,M),m3(q, λ,M))

where q = (q1, q2, q3) and mi(q, λ,M), i = 1, 2, 3 are given by (2.6). The equa-
tion (2.5) gives a function c(q). Then 3-Moulton manifold M3 is parametrized
by D3 and is given as the graph of the map m̂ and the function c(q), i.e.,

M3 = {(q, m̂(q, λ,M), c(q), λ,M)| (q, λ,M) ∈ D3 }.

4-Moulton manifold. The equation (2.4) for n = 4 gives the 4-Moulton
manifold is given by

M4 = {(q1, q2, q3, q4,m1,m2,m3,m4, c, λ) ∈ O4 |
A tm+ λt(q− c̃) = 0 for some λ ∈ R+},
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where c̃ = (c, c, c, c). For n = 4 the coefficient matrix A in the equation (2.4)
is invertible and then the equation is reduced to

(2.8)


m1

m2

m3

m4

 = − λ

P


0 −a34 a24 −a23
a34 0 −a14 a13
−a24 a14 0 −a12
a23 −a13 a12 0



q1 − c
q2 − c
q3 − c
q4 − c

 ,

where P = a12a34 − a13a24 + a14a23. We can write the equation in the form

mi = −λ(αi − cβi)/P, i = 1, 2, 3, 4,(2.9)

where

α1 = −a34q2 + a24q3 − a23q4, α2 = a34q1 − a14q3 + a13q4,

α3 = −a24q1 + a14q2 − a12q4, α4 = a23q1 − a13q2 + a12q3,

β1 = −a34 + a24 − a23, β2 = a34 − a14 + a13,

β3 = −a24 + a14 − a12, β4 = a23 − a13 + a12.

We remark P is positive since a12 > a13 and a34 > a24 and similarly β1, β3 < 0,
β2, β4 > 0. Thus the equation (2.9) defines functions mi(q, c, λ) = −λ(αi −
cβi)/P , i = 1, 2, 3, 4, where q = (q1, q2, q3, q4).

In order to consider 3 + 1-M.c., we slightly extend the condition for mass
in M4, namely, it is natural that the masses are non-negative mi ≥ 0, i =
1, 2, 3, 4. Hence from the equation (2.9) we see in M4, q and c satisfy

(Q4) αi − cβi ≤ 0, i = 1, 2, 3, 4

since P , λ are positive. Then we consider a set

D4 = {(q1, q2, q3, q4,λ, c) ∈ R6 |
q1 < q2 < q3 < q4, q1 < c < q4, λ > 0 and (Q4)}.

The equation (2.9) shows that the 4-Moulton manifold M4 is given as a graph
of a map m(q, c, λ) = (m1(q, c, λ), · · · ,m4(q, c, λ))

M4 = {(q,m(q, c, λ), c, λ)| (q, c, λ), ∈ D4 }.

§3. Proof of Theorem 1

Now suppose we are given a three-body A1, A2 and A3 which is a Moulton
configuration qA = (qA1

, qA2
, qA3

) and positive mass mA = (mA1
, mA2

, mA3
)

such that qA1
< qA2

< qA3
, mA1

, mA2
, mA3

> 0. Hence we have certain
λA > 0 and M > 0 such that mA and c = cA are given as an image of the map
m̂(qA , λA ,M) in (2.7) and cA = cA(qA) in (2.5), respectively. We consider to
add a body B with a mass mB in the same line so that A1, A2, A3 and B form
a 3+1-Moulton configuration for the three bodies A1, A2, A3.
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Problem. According to the condition (i) and (ii) of Definition 1, we consider
the following, respectively.

(P-i) Since the four bodies A1, A2, A3 and B are in a Moulton configura-
tion, these satisfy the equation (2.8). This is equivalent to find a point
(q, λ, c) ∈ D4 where three components of q = (q1, q2, q3, q4) are given as
qA1

, qA2
, qA3

,

(P-ii) and c = cA , λ = λA .

As a natural possibility we have the following four cases:
Case 1: qB < qA1

< qA2
< qA3

, Case 2: qA1
< qB < qA2

< qA3
,

Case 3: qA1
< qA2

< qB < qA3
, Case 4: qA1

< qA2
< qA3

< qB .
We will prove Theorem 1 for each case.

3.1. Case 1

We set q = (q1, q2, q3, q4) = (qB , qA1
, qA2

, qA3
), q1 < q2 < q3 < q4 with

m = (m1,m2,m3,m4) = (mB ,mA1
,mA2

,mA3
) (see Figure 3).

A1B A2 A3

Figure 3: Case 1

We can rewrite the condition (2.5) and the equation (2.6) in this case as

(3.1) c = cA = (a23q4 − a24q3 + a34q2)/PA

and

mA1
= (a34M + λA(q3 − q4))/PA ,

mA2
= (−a24M + λA(q4 − q2))/PA ,

mA3
= (a23M + λA(q2 − q3))/PA ,

where PA = a23 − a24 + a34, respectively.

The Problem (P-i) yields mA1
= m2, mA2

= m3, mA3
= m4, which is

equivalent to the equation by means of (2.9)

(3.2)

m2

m3

m4

 =
λ

P

c

β2
β3
β4

−

α2

α3

α4

 =

mA1

mA2

mA3

 =
1

PA

F2

F3

F4

 ,
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where Fi (i = 2, 3, 4) are the numerator of mAj
(j = 1, 2, 3) in the equation

(3.2), respectively. We remark here Fi > 0 since mAi
> 0 and PA > 0 in the

3-Moulton manifold M3. From the first and the second line of the equation
(3.2) we obtain the equivalent relation

(3.3) c =
F2α3 − F3α2

F2β3 − F3β2
and λ =

F2β3 − F3β2
α3β2 − α2β3

P

PA

,

where F2β3 − F3β2 < 0 because β3 < 0 and β2 > 0, then the positivity of λ,
PA and P yields α3β2 − α2β3 < 0.

Although we consider the third line of (3.2) later, here we consider Problem
(P-ii), i.e., the equations c = cA and λ = λA .

Proposition 1. The equations

(c-1) c = cA ,

(l-1) λ = λA ,

(f-1) f1 = λA(PAq1 − c̄A) + a12F2 + a13F3 + a14F4 = 0

are mutually equivalent, where c̄A is a numerator of cA in (3.1) such that
c̄A = a23q4 − a24q3 + a34q2.

Proof. Using (3.3), we calculate

cA − c = cA − (F2α3 − F3α2)/(F2β3 − F3β2)

= (a24δ34+a34δ42)(λA(PAq1−c̄A)+a12F2+a13F3+a14F4)/PA(F2β3−F3β2),

where δij = qi − qj . Since a24δ34 + a34δ42 > 0, the equation c − cA = 0 is
equivalent to f1 = 0.

We calculate also

λA − λ = λA − P (F2β3 − F3β2)/PA(α3β2 − α2β3)

= −(a24β2+a34β3)(λA(PAq1−c̄A)+a12F2+a13F3+a14F4)/PA(α3β2−α2β3).

Since a24β2+a34β3 = −a24(a14−a13)+a34(a14−a12) < 0, the equation λ = λA

and (f-1) are equivalent.

Here we consider the third line of (3.2). We can easily see that the equation
(f-1) of Proposition 1 also yields m4 = mA3

. In fact using the equation (3.2)
we calculate as

mA3
−m4 = (a12δ34 + a13δ42 + a14δ23)f1/PA(α3β2 − α2β3).
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Thus we see that a solution of the equation f1 = 0 gives an existence of a
3+1-Moulton configuration.

Now we show the unique existence of the solution of f1 = 0. We obtain easily
limq1→−∞ f1 = −∞, limq1→q2 f1 = +∞. Moreover f1 is monotone increasing
since

df1
dq1

= λAPA + a′12F2 + a′13F3 + a′14F4 > 0

because a′1i = −2/(q1 − qi)
−3 > 0 and Fi > 0 (i = 2, 3, 4), λA , PA > 0.

Then there exists uniquely qB = q0
B

< qA1
satisfying f1 = 0, which gives a

3+1-Moulton configuration.

We see mB = 0 for qB = q0
B
. In fact the equation (2.9) yields

mB = λ(cβ1 − α1)/P = λA(−cAPA + c̄A)/P = 0

because α1 = −c̄A , β1 = −PA . Thus we obtain Theorem 1 (ii) for case 1.

3.2. Case 2

We set (q1, q2, q3, q4) = (qA1
, qB , qA2

, qA3
), q1 < q2 < q3 < q4 with

(m1,m2,m3,m4) = (mA1
,mB ,mA2

,mA3
) (see Figure 4).

A1 B A2 A3

Figure 4: Case 2

We can rewrite the condition (2.5) and the equation (2.6) in this case as

cA = (a13q4 − a14q3 + a34q1)/PA

and

mA1
= (a34M + λA(q3 − q4))/PA ,

mA2
= (−a14M + λA(q4 − q1))/PA ,

mA3
= (a13M + λA(q1 − q3))/PA ,

(3.4)

where PA = a13 − a14 + a34, respectively.
The condition mA1

= m1, mA2
= m3, mA3

= m4 yields, by (2.9) and (3.4),
the equationm1

m3

m4

 =
λ

P

c

β1
β3
β4

−

α1

α3

α4

 =

mA1

mA2

mA3

 =
1

PA

F1

F3

F4

 ,
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where F1, F3, F4 are the numerator of mA1
, mA2

, mA3
in (3.4), respectively.

From the second and the third line of the equation above, we obtain

c =
F3α4 − F4α3

F3β4 − F4β3
, λ =

F3β4 − F4β3
α4β3 − α3β4

P

PA

,(3.5)

where F3β4 − F4β3 > 0, then α4β3 − α3β4 > 0.
Now let us consider the problem (P-ii). Using (3.5) we calculate

(3.6) cA − c = cA − (F3α4 − F4α3)/(F3β4 − F4β3)

= (a13δ41+a14δ13)(λA(PAq2− c̄A)−a12F1+a23F3+a24F4)/PA(F3β4−F4β3)

and

(3.7) λA − λ = λA − P (F3β4 − F4β3)/PA(α4β3 − α3β4)

= −(a13β3+a14β4)(λA(PAq2−c̄A)−a12F1+a23F3+a24F4)/PA(α4β3−α3β4).

Proposition 2. The equation c = cA is equivalent to

(f-2) f2 = λA(PAq2 − c̄A)− a12F1 + a23F3 + a24F4 = 0,

and the equation (f-2) induces the condition λ = λA.

Proof. Since a13δ41 + a14δ13 > 0, the identity (3.6) gives the first statement,
and the equation (3.7) shows the second one.

Furthermore the equation (f-2) in Proposition 2 induces m1 = mA1
. In fact

we calculate as

mA1
−m1 = −(a12δ34 + a23δ41 + a24δ31)f2/PA(α4β3 − α3β4).

Thus a solution of f2 = 0 gives a 3+1-Moulton configuration.
Now we show the unique existence of the solution qB = q0

B
of (f-2) in Propo-

sition 2. It is easy to see limq2→q1 f2 = −∞, limq2→q3 f2 = +∞. Moreover f2
is monotone increasing because

df2
dq2

= λAPA − a′12F1 + a′23F3 + a′24F4 > 0

since a′12 = 2(q1 − q2)
−3 < 0, a′2i = −2(q2 − qi)

−3 > 0, (i = 3, 4). Then there
exists a unique qB = q0

B
such that q1 < q0

B
< q3 satisfying f2 = 0.

The equation (2.9) gives the mass of B satisfies

mB = λ(cβ2 − α2)/P = λA(cAPA − c̄A1
)/P = 0

since at qB = q0
B

it holds α2 = c̄A1
, β2 = PA in this case. Then we obtain

Theorem 1 (ii), and this completes the proof for case 2.
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3.3. Case 3

We set (q1, q2, q3, q4) = (qA1
, qA2

, qB , qA3
), q1 < q2 < q3 < q4 with

(m1,m2,m3,m4) = (mA1
,mA2

,mB ,mA3
) (see Figure 5).

A1 BA2 A3

Figure 5: Case 3

We can rewrite the condition (2.5) and the equation (2.6) in this case as

cA = (a12q4 − a14q2 + a24q1)/PA

mA1
= (a24M + λA(q2 − q4))/PA ,

mA2
= (−a14M + λA(q4 − q1))/PA ,

mA3
= (a12M + λA(q1 − q2))/PA ,

(3.8)

where PA = a12 − a14 + a24, respectively.
The condition mA1

= m1, mA2
= m2, mA3

= m4 together with (2.9) and
(3.8) givesm1

m2

m4

 =
λ

P

c

β1
β2
β4

−

α1

α2

α4

 =

mA1

mA2

mA3

 =
1

PA

F1

F2

F4

 ,

where Fi (i = 1, 2, 4) are the numerator of mAj
(j = 1, 2, 3) in (3.8), respec-

tively. The first and the second line of (3.3) are equivalent to

c =
F1α2 − F2α1

F1β2 − F2β1
and λ =

F1β2 − F2β1
α2β1 − α1β2

P

PA

,(3.9)

where F1β2 − F2β1 > 0, then α2β1 − α1β2 > 0.
As to problem (P-ii) the equation (3.9) gives

Proposition 3. The equation c = cA is equivalent to

(f-3) f3 = λA(PAq3 − c̄A)− a13F1 − a23F2 + a34F3 = 0

and the equation (f-3) induces the condition λ = λA.

Proof. We calculate

cA − c = cA − (F1α2 − F2α1)/(F1β2 − F2β1)

= (a14δ42+a24δ14)(λA(PAq3−c̄A)−a13F1−a23F2+a34F3)/PA(F1β2−F2β1),
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and

λA − λ = λA − P (F1β2 − F2β1)/PA(α2β1 − α1β2)

= −(a14β1+a24β2)(λA(PAq3−c̄A)−a13F1−a23F2+a34F3)/PA(α2β1−α1β2).

Since the factor a14δ42 + a24δ14 < 0 in the first identity above, then we obtain
the desired result.

Now we see the condition (f-3) yields m4 = mA3
. We calculate

mA3
−m4 = (a13δ42 + a23δ14 + a34δ12)f3/PA(α2β1 − α1β2).

Thus a solution of f3 = 0 gives a 3+1-Moulton configuration.
We now show there exists uniquely a solution qB = q0

B
of f3 = 0. We have

limq3→q2 f3 = −∞, limq3→q4 f3 = +∞. Moreover f3 is monotone increasing
because

df3
dq3

= λAPA − a′13F1 − a′23F2 + a′34F4 > 0

since a′i3 = 2(qi − q3)
−3 < 0, (i = 1, 2), a′34 = −2(q3 − q4)

−3 > 0. Then there
exists a unique solution qB = q0

B
of the equation f3 = 0.

By means of the equation (2.9), we have

mB = λ(cβ3 − α3)/P = λA(−cAPA + c̄A1
)/P = 0

at qB = q0
B

because α3 = −c̄A1
, β3 = −PA hold. Thus we have proved Theorem

1 (ii) in this case.

3.4. Case 4

We set (q1, q2, q3, q4) = (qA1
, qA2

, qA3
, qB ), q1 < q2 < q3 < q4 with

(m1,m2,m3,m4) = (mA1
,mA2

,mA3
,mB ) (see Figure 6).

A1 BA2 A3

Figure 6: Case 4

We can rewrite the condition (2.5) and the equation (2.6) in this case as

cA = (a12q3 − a13q2 + a23q1)/PA
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and

mA1
= (a23M + λA(q2 − q3))/PA ,

mA2
= (−a13M + λA(q3 − q1))/PA ,

mA3
= (a12M + λA(q1 − q2))/PA ,

(3.10)

where PA = a12 − a13 + a23, respectively.
The condition mA1

= m1, mA2
= m2, mA3

= m3 and (2.9), (3.10) give an
equation m1

m2

m3

 =
λ

P

c

β1
β2
β3

−

α1

α2

α3

 =

mA1

mA2

mA3

 =
1

PA

F1

F2

F3

 ,

where Fi (i = 1, 2, 3) are the numerator of mAi
, respectively.

From the first and the second line of this equation we obtain

(3.11) c =
F1α2 − F2α1

F1β2 − F2β1
and λ =

F1β2 − F2β1
α2β1 − α1β2

P

PA

,

where F1β2 − F2β1 > 0, then α2β1 − α1β2 > 0.
Using (3.11) we calculate

(3.12) cA − c = cA − (F1α2 − F2α1)/(F1β2 − F2β1)

= (a13δ23+a23δ31)(λA(c̄A−PAq4)+a14F1+a24F2+a34F3)/PA(F1β2−F2β1)

and

(3.13) λA − λ = λA − P (F1β2 − F2β1)/PA(α2β1 − α1β2)

= −(a13β1+a23β2)(λA(c̄A−PAq4)+a14F1+a24F2+a34F3)/PA(α2β1−α1β2).

Then we have

Proposition 4. The conditions

(c-4) c = cA ,

(l-4) λ = λA ,

(f-4) f4 = λA(c̄A − PAq4) + a14F1 + a24F2 + a34F3 = 0

are mutually equivalent.

Proof. Since the factors a13δ23+a23δ31 > 0 in (3.12), a13β1+a23β2 = a23(a34−
a14)− a13(a34 − a24) > 0 in (3.13), we obtain the proposition.
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Furthermore the condition (f-4) yields m3 = mA3
. In fact we calculate

mA3
−m3 = −(a14δ23 + a24δ31 + a34δ12)f4/PA(α2β1 − α1β2).

Now we show the existence of a unique solution qB = q0
B

of f4 = 0. We
remark a solution qB = q0

B
of f4 = 0 satisfies (c-4) and (l-4) and hence sat-

isfies the condition (ii) of Definition 1. We see easily limq4→q3 f4 = +∞,
limq4→+∞ f4 = −∞. Moreover f4 is monotone decreasing because

df4
dq4

= −λAPA + a′14F1 + a′24F2 + a′34F3 < 0

since a′i4 = 2/(qi − q4)
−3 < 0, i = 1, 2, 3. Then there exists a unique solution

qB = q0
B

such that qA3
< q0

B
.

By means of the equation (2.9) similarly as the previous cases we see

mB = λ(cβ4 − α4)/P = λA(cAPA − c̄A )/P = 0

at qB = q0
B
, since α4 = c̄A , β4 = PA in this case. Thus we obtain Theorem 1

in case 4.

§4. Proof of Theorem 2

We show there exists an interval of qB for each case, where mB is positive and
each point qB belonging to the interval gives a positive-3+1-Moulton configu-
ration for the three bodies A1, A2, A3.

We consider case 1. We note that the equation (3.3) determines c = c(qB )
and λ = λ(qB ) as a function of qB , and each (qB , c(qB ), λ(qB )) gives a solution
of (3.2). Further substituting (qB , c(qB ), λ(qB )) into mB = λ(cβ1−α1)/P gives
a function mB (qB ) which represents the mass of B for the configuration given
by (qB , c(qB ), λ(qB )).

Now we consider the positivity of mB (qB ). The inequality

mB (qB ) = λ(cβ1 − α1)/P > 0

is equivalent cβ1 − α1 > 0. We remark α1 = −c̄A and β1 = −PA , then

cβ1 − α1 = −cPA + c̄A .

Thus −cPA+ c̄A > 0 is equivalent c < cA because PA > 0. Then for the interval
of qB where c(qB ) < cA we have mB (qB ) > 0 (see figure 7).

For the other cases we can consider in the similar way and we have
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Proposition 5. An inequality mB (qB ) > 0 holds if and only if c(qB ) < cA for
the cases 1 and 3, and c(qB ) > cA for the other cases, respectively.

We remark the function m4 of the third line of (3.2) gives the mass of A3

in case 1. When c(qB ) = cA , that is, qB = q0
B
, the function m4 is equal to

the initial mass of A3, i.e., m4 = mA3
> 0, thus for qB being sufficiently close

to q0
B

in the interval of Propostion 5, the mass mB (qB ) and m4 of A3 are
positive. We can show similarly for the other cases. Thus, for each case we
obtain an interval of qB such that each point belonging to this interval gives
a positive-3+1-Moulton configuration. This completes the proof of Theorem 2
(see Figure 8, 9, 10.)

c(qB)-cA

mB

Figure 7: The curves of mB (qB )
and c(qB )− cA in case 1.

c(qB)-cA

mB

qB

Figure 8: The curves of mB (qB )
and c(qB )− cA in case 2.

c(qB)-cA

mB

qB

Figure 9: The curves of mB (qB )
and c(qB )− cA in case 3.

c(qB)-cA

mB

qB

Figure 10: The curves of mB (qB )
and c(qB )− cA in case 4.
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