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Abstract. We introduce the concept of the asymmetry number for finite
digraphs, as a natural generalization of that for undirected graphs by Erdős
and Rényi in 1963. We prove an upper bound for the asymmetry number of
finite digraphs and give a condition for equality. We show that our bound is
asymptotically best for digraphs with sufficiently large order. We also consider
the random oriented graph RO, and make some remarks on Aut(RO).
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§1. Introduction

It is often the case in graph theory and other related areas that one wishes
to know how “symmetric” a given undirected graph G is. A classical way for
this is to look at the order of the automorphism group Aut(G), and it will
be natural to say that G is symmetric if Aut(G) is non-trivial. With this
measure, G is more symmetric than others if the order of Aut(G) is larger.
Then, how can we compare two asymmetric graphs G,G′, graphs with only
trivial automorphism?

It was Erdős and Rényi [8] who first focused on this subject and defined the
asymmetry number A(G) of a given graph G by the minimum of the number of
edges involved through all symmetrizations of G. Here a symmetrization of G
is a sequence of edge-deletion and edge-addition, after which G can be trans-
formed to some symmetric graph. Erdős and Rényi [8] laid the foundation for
a theory of asymmetric undirected graphs, proving some attractive theorems
on random graphs. After the work of Erdős and Rényi, many publications on
asymmetric graphs continued to appear where various analogues of the work
of Erdős and Rényi were discussed for undirected graphs; for example, see Kim
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et al. [12],  Luczak [14], Spencer [19], Wright [21]. The study of asymmetric
graphs is also related to a graph partitioning problem; see, e.g. Weichsel [20].

Let us briefly review the original work due to Erdős and Rényi [8]. First,
they proved that for every finite graph G with n vertices

A(G) ≤
⌊n− 1

2

⌋
,

where ⌊x⌋ is the maximum integer no more than x. The equality can hold
only if G is a strongly regular graph srg(n, (n−1)/2, (n−5)/4, (n−1)/4). We
call this Erdős-Rényi inequality. They also proved that the above inequality is
asymptotically best. To prove this, they used the Erdős-Rényi random graph
model G(n, 1/2), that is, choosing undirected graphs with n vertices at ran-
dom with edge probability 1/2. Moreover, Erdős and Rényi [8] considered the
countable random graph model G(ℵ0, 1/2) and showed that G ∈ G(ℵ0, 1/2)
is almost surely symmetric. This is a remarkable gap between finite random
graphs and countable random graphs. In model theory, it is well known (cf. [3],
[6]) that countable random graphs are almost surely isomorphic to the ran-
dom graph (or Rado graph) R, the Fräıssé limit of the class consisting of all
finite graphs. From this fact, R is homogeneous (or ultrahomogeneous), that
is, every isomorphism between two induced subgraphs can be extended to an
automorphism of R, and so R has infinitely many automorphisms (see also
Remark 2.8 in Section 2). Indeed it is also known that Aut(R) has cardinality
2ℵ0 and in particular countable random graphs are almost surely symmetric
(e.g. [3]). We note that there are some works of finite homogeneous graphs,
which seem to be originally inspired by graph-theoretic motivation (see [17],
[18]). These graphs are classified in [10], [18] and some generalizations are also
given (e.g. [10] and [7]). Conversely, there are some approaches to the random
graph R from finite combinatorics. For example, Cameron (see [3]) showed
that R has cyclic automorphisms acting point-regularly by proving that R can
be constructed as Cayley graphs over infinite cyclic group Z. Cayley graphs
are widely studied in finite combinatorics ([13]).
Now, a natural question asks what an Erdős-Rényi theory should be for di-
graphs. In this paper, we consider a labeled digraph, where digraph means
oriented graph. For a digraph D, we define the asymmetry number A(D) by
the minimum number of edges involved through all symmetrizations of D.
Here a symmetrization means a sequence of edge-deletion, edge-addition, and
edge-inversion, after which D can be transformed to some symmetric digraph.

The aim of this paper is to develop a digraph-version of Erdős-Rényi theory.
The followings are the main results:

(i) An Erdős-Rényi inequality for finite digraphs:

A(D) ≤
⌊

2

3
n

⌋
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for every finite digraph D with n vertices. We also show that equality
holds only if D is a ∆-digraph; see Section 4.

(ii) An existence theorem for digraphs that asymptotically attain the above
inequality:

max
|V (D)|=n

A(D) ≥ 2

3
n−O(

√
n log n),

as n tends to infinity; for the notation O, see Section 2. We also discuss the
asymmetry of countable digraphs. For example, we show that the random ori-
ented graph (RO) (cf. [5]), the Fräıssé limit of the class consisting of all finite
digraphs, has 2ℵ0 non-conjugate cyclic automorphisms acting point-regularly,
by showing that RO can be constructed as Cayley digraphs over Z. We gen-
eralize the concept of universal sets [3] which realize the Cayley graphs over Z
isomorphic to R. From the view of model theory and related areas, our result
may be a natural analogous result. However, this would help making stronger
connections between finite combinatorics and model theory since such com-
binatorial approaches to countable graphs or digraphs don’t seem to be fully
recognized by researchers in combinatorics and related areas.

The paper is organized as follows. In Section 2 we give the precise defini-
tion of the asymmetry number for finite digraphs and summarize our results
(including those for countable digraphs). Sections 3 and 5 are the body of this
paper where proofs of the main theorems are provided. Section 4 is devoted
to discussion of the (almost) tightness of our Erdős-Rényi inequality by ex-
plicit constructions. In Section 6 a digraph-extension of the work by Cameron
on the random graph is discussed. Section 7 is the Conclusion where further
remarks and problems are also made.

§2. Asymmetry number of digraphs and main results

In this section we give the precise definition of the asymmetry number for
digraphs and describe our results. In this paper, we use the Landau sym-
bol. That is, for two non-negative functions f(n) and g(n), f(n) = O(g(n))
means that there exists limn→∞ f(n)/g(n) and f(n) = o(g(n)) means that
limn→∞ f(n)/g(n) = 0. Throughout this section we only deal with labeled
oriented graphs, that is, digraphs on [n] = {1, 2, . . . , n} without loops, multi-
ple edges, and parallel edges. Let

[n]2∗ := {(i, j) ∈ [n] × [n] | i ̸= j}

and ē be the reversed edge of e ∈ [n]2∗. Let D be a digraph. We denote the
vertex set and edge set by V (D) and E(D), respectively. We also denote the
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in- and out-neighbourhood of a vertex v by N+
D (v) and N−

D (v) respectively,
that is,

N+
D (v) := {u ∈ V (D) | (u, v) ∈ E(D)},

N−
D (v) := {u ∈ V (D) | (v, u) ∈ E(D)}.

The cardinality of N+
D (v) and N−

D (v) is called in- and out-degree of v respec-
tively. And we write the common in- and out-neighbourhood of vertices v and
w by N+

D (v, w) and N−
D (v, w) respectively, namely,

N+
D (v, w) := {u ∈ V (D) | (u, v) ∈ E(D), (u,w) ∈ E(D)},

N−
D (v, w) := {u ∈ V (D) | (v, u) ∈ E(D), (w, u) ∈ E(D)}.

Let D[U ] be the subgraph induced by a subset U of V (D). An automorphism of
D is a bijection σ on V (D) which preserves the adjacency relation, i.e. (u, v) ∈
E(D) if and only if (uσ, vσ) ∈ E(D). The set Aut(D) of all automorphisms
of D forms a group, called the automorphism group of D. Two elements
g, h ∈ Aut(D) are conjugate if g = σhσ−1 for some σ ∈ Aut(D). For a subset
A of V (D), let

G(A) := {σ ∈ Aut(D) | aσ = a for every a ∈ A}.

Let D be a finite digraph with non-empty vertex set and edge set. A
symmetrizing set of D is a subset S ⊂ [n]2∗ which satisfies the following three
conditions,

(1) If e, ē /∈ E(D), then S contains at most one of e and ē.

(2) If e ∈ E(D) and ē ∈ S, then e ∈ S.

(3) There exists σ ̸= 1 such that σ ∈ Aut(D∆S) where D∆S is the digraph
with V (D∆S) = V (D) and E(D∆S) = E(D)∆S.

(1) and (2) imply that D∆S has no parallel edges. With symmetrizing set,
we define the asymmetry number of D as follows.

Definition 2.1 (Asymmetry number). The asymmetry number A(D) of a
finite digraph D with n vertices is defined as follows:

A(D) :=

{
minσ∈Sn\{1}{|S| | S ∈ SD s.t. σ ∈ Aut(D∆S) } if n ≥ 2;

∞ if n = 1.

Here SD is the set of all symmetrizing sets of D and Sn is the symmetric group
of degree n. Especially, A(D) = 0 if D is symmetric.
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Remark 2.2. As in [8], we can intuitively explain the asymmetry number
of digraphs in terms of symmetrization. A symmetrization of D is a trans-
formation of D by edge-additions, edge-deletions, and edge-reversion to some
symmetric digraph. There is an one-to-one correspondence between SD and
the set of all symmetrizations of D. Thus we obtain

A(D) = min{ds + as + rs | s is a symmetrization of D}

if n ≥ 2. Here ds, as, rs are the numbers of edges that are deleted, added, and
reversed through s, respectively.

Example 2.3. There are 2 and 7 digraphs with 2 and 3 vertices up to iso-
morphism respectively (for example, see [11]). Then, max|V (D)|=2A(D) =
max|V (D)|=3A(D) = 1. This may show a gap between the directed and undi-
rected graph cases, since all undirected graphs with at most 5 vertices are known
to be symmetric (see [8, p.296]).

The following is a direct consequence of the definition of A(D).

Proposition 2.4. If D is the digraph consisting of reversed edges of D, then
A(D) = A(D).

The following is a digraph-analogue of the Erdős-Rényi inequality:

Theorem 2.5. Let n ≥ 3 and D be a finite digraph with n vertices. Then it
holds that

(2.1) A(D) ≤
⌊

2n

3

⌋
,

with equality only if D is a ∆-digraph; see Section 3 for the detail.

The next theorem states that (2.1) is nearly best for sufficiently large n.

Theorem 2.6. For C > 1 and sufficiently large n, there exist D with n
vertices such that

A(D) >
2

3
n− C

√
n log n.

Corollary 2.7.

max
|V (D)|=n

A(D) ≥ 2

3
n−O(

√
n log n),

as n tends to infinity.

We also consider the asymmetry of countable random digraphs. This may
naturally lead to a discussion of which orientations of the Rado graph R we
should focus on. A good candidate for this will be the random oriented graph
(RO), the unique countable digraph such that
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(∗) for every triple of finite disjoint subsets V1, V2, V3 of V (RO), there is a
vertex z such that

(2.2) N−
RO(z) = V1, N

+
RO(z) = V2, (N−

RO(z) ∪N+
RO(z) ∪ {z}) ∩ V3 = ∅.

Remark 2.8. RO is the Fräıssé limit of the class C0 of all finite digraphs.
That is, RO is the unique countable digraph D which satisfies the following
conditions:

(i) Any isomorphism between two induced subdigraphs of D can be ex-
tended to an automorphism of D.

(ii) D contains every member of C0 as an induced subdigraph.

A digraph with the first property is called homogeneous (or ultrahomogeneous),
which implies that it has infinitely many automorphisms. In general, if C ⊂
C0 satisfies prescribed properties (see e.g. [3, p.360]), there is the unique
countable homogeneous digraph of C which contains every member of C. This
fact is well known in model theory, but is not fully recognized in combinatorics
and related areas. For more detail, see [2], [3] and [4].

Similarly for R, there is a random construction for RO, implied by the follow-
ing proposition:

Proposition 2.9 (see [3]). Countable random digraphs are almost surely iso-
morphic to RO.

In Section 6, we show the following theorem which is a digraph-analogue
of Proposition 16 of [3].

Theorem 2.10. Aut(RO) has 2ℵ0 non-conjugate cyclic automorphisms.

To prove Theorem 2.10, we generalize the notion of universal set ([3, Section
1.2]) which is similar to the difference family/set in finite combinatorics. The
details will be clear in Section 6. Apart from RO, an interesting orientation
of R is the acyclic random oriented graph (ARO). Diestel et al. [5] introduced
this digraph to classify all orientations of R satisfying the Pigeonhole property.
In Section 6 we also give the cardinality of Aut(ARO).

§3. Proof of Theorem 2.5

We start with technical notations needed for further arguments. Let D be a
digraph with V (D) = [n] and GD be the underlying undirected graph. For
i ∈ V (D), let

vi := |N+
D (i) ∪N−

D (i)|, v+i := |N+
D (i)|, v−i := |N−

D (i)|.
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For j, k ∈ V (D), we define

vjk := |{i ∈ V (GD) | {j, i}, {k, i} ∈ E(GD)}|,

δjk :=

{
1 if {j, k} ∈ E(GD);
0 otherwise,

∆jk :=

{
vj + vk − 2vjk − 2δjk if j ̸= k;

0 otherwise.

By the definitions of ∆jk and vi, we get the following lemma:

Lemma 3.1 (cf. [8]).

n∑
j=1

n∑
k=1

∆jk = 2

n∑
l=1

vl(n− 1 − vl).

Proof of Theorem 2.5. Consider a symmetrization by which a given digraph
D can be transformed to some digraph D′ with an involution as an automor-
phism. Let Pjk be the number of directed paths of length 2 with end-vertices
j and k. Then we have

A(D) ≤ min
j ̸=k

{∆jk + Pjk + δjk} ≤
∑n

j=1

∑n
k=1(∆jk + Pjk + δjk)

n(n− 1)
.

We note that
n∑

i=1

n∑
j=1

Pjk = 2

n∑
l=1

v+l v
−
l ,

and by Lemma 3.1,

n∑
i=1

n∑
j=1

(∆jk + Pjk) = 2
n∑

l=1

{(
n− 1

2

)
(v+l + v−l ) − (v+l )2 − (v−l )2 − v+l v

−
l

}
.

Let

f(x, y) :=
(
n− 1

2

)
(x + y) − x2 − y2 − xy.

f is maximized if x = y = (n− 1
2)/3. But, since x and y must be integers and

by standard calculations, we see that f is maximized only if

(x, y) =


(n3 ,

n
3 ) n ≡ 0 (mod 3);

(n−1
3 , n−1

3 ) n ≡ 1 (mod 3);

(n+1
3 , n−2

3 ), (n−2
3 , n+1

3 ) n ≡ 2 (mod 3).

Thus we obtain the required inequality.
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§4. Discussion of explicit tight digraphs

In this section, we discuss a necessary condition for the equality of (2.1) and
explicit digraphs satisfying that condition. First, we review the discussion of
explicit tight graphs for the Erdős-Rényi inequality in [8]. ∆-graphs are defined
as graphs satisfying a necessary condition for the equality of the Erdős-Rényi
inequality. Erdős and Rényi showed that a ∆-graph is a strongly regular
graph srg(n, (n − 1)/2, (n − 5)/4, (n − 1)/4) and observed that Paley graphs
are ∆-graphs (although Paley graphs are symmetric). Here, for a prime power
q ≡ 1 (mod 4), Paley graph Pq is the graph whose vertices are the elements
of the finite field Fq in which two distinct vertices x and y are adjacent if and
only if x − y is a quadratic residue in Fq. They conjectured that there is no
asymmetric ∆-graphs (equivalently, the Erdős-Rényi inequality is not tight).
After their work, asymmetric ∆-graphs were found and Bollobás conjectured
that the Erdős-Rényi inequality is tight (see [1, p.373]).
Now, we consider a necessary condition for the equality of (2.1). By the proof
of (2.1) in Section 3, we obtain a necessary condition for equality, namely,
n ≡ 0 (mod 3) and

min
j ̸=k

{∆jk + Pjk + δjk} =
2

3
n.(4.1)

Thus,

∆jk + Pjk + δjk =
2

3
n(4.2)

for j ̸= k. By the definition of ∆jk and vjk = Qjk + Pjk where Qjk :=
|{v ∈ V (D) | v ∈ N+

D (j) ∩ N+
D (k), N−

D (j) ∩ N−
D (k)}|, we obtain the following

necessary condition for equality.

Qjk =


n
3 − Pjk+1

2 (j, k) or (k, j) ∈ E(D);

n
3 − Pjk

2 otherwise.

(4.3)

So, following [8], we define ∆-digraphs as follows.

Definition 4.1. Let n ≡ 0 (mod 3). A digraph with vertex set [n] is called a
∆-digraph if

min
j ̸=k

{∆jk + Pjk + δjk} =
2

3
n.

At this point, no such examples are known and so we do not know whether
(2.1) is tight or not. By computer search, we have known that there is no
∆-digraphs when n = 3, 6, 9.
On the other hand, for n ̸≡ 0 (mod 3), we may get almost ∆-digraphs in the
following sense.
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Definition 4.2. A digraph with vertex set [n] is called an almost ∆-digraph
if

min
j ̸=k

{∆jk + Pjk + δjk} =
⌊2

3
n
⌋
− 1.

If there are asymmetric almost ∆-digraphs, those may be explicit digraphs
which imply that A(D) = ⌊2n/3⌋ − 1. First, we must show the existence of
almost ∆-digraphs. We have no asymmetric almost ∆-digraphs, but we get an
explicit example of almost ∆-digraphs. Here we consider the digraph Dq(Si,j)
with q vertices and same in- and out-degree (q−1)/3 where q is a prime power
such that q ≡ 7 (mod 12). The digraph Dq(Si,j) is defined as follows:

V (Dq(Si,j)) := Fq, E(Dq(Si,j)) := {(x, y) | x− y ∈ Si,j}

where Si,j := Si ∪ Sj (0 ≤ i, j ≤ 5, |i − j| ≠ 0, 3), Si := {gs ∈ F∗
q | s ≡

i (mod 6)} and g is a primitive element of Fq. From the definition of q,
N+

Dq(Si,j)
(x) = N−

Dq(Si,j)
(x) = (q − 1)/3 for any vertex x ∈ Fq.

In the case of q = 19 and g = 2 ∈ Fq, we see that D19(S1,5) is an almost
∆-digraph since

min
j ̸=k

{∆jk + Pjk + δjk} = 11.

In fact, we get the above equality by computing the size of common in- and
out neighborhood, N+

D19(S1,5)
(x, y) and N−

D19(S1,5)
(x, y), and the common non-

neighborhood of x and y, the set of vertices z with no edges between z and
both of x and y, for each distinct x, y ∈ F19. Remark that the set of non-
edges, unordered pairs of vertices with no directed edges between them, in
D19(S1,5) are coincides the edge set of the undirected graph D19(S0,3), and
so, the common non-neighborhood of x and y in D19(S1,5) is the common
neighborhood of x and y in D19(S0,3), that is, N+

D19(S0,3)
(x, y)∪N−

D19(S0,3)
(x, y).

For each x, y, the size of N+
D19(S1,5)

(x, y) and N−
D19(S1,5)

(x, y) can be obtained

by computing AAT and ATA respectively, where A is the adjacency matrix
of D19(S1,5). Similarly, the common non-neighborhood of x and y can be
obtained by calculating B2 where B is the adjacency matrix of D19(S0,3). For
the idea of calculation, see also [13, p.442].

§5. Proof of Theorem 2.6

In this section, we give a proof of Theorem 2.6 using some techniques given in
[9, Chapter 14]. We start by introducing additional technical notations.
Let us fix a constant C > 1. We use the Erdős-Rényi random digraph model
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D(n, 1/3, 1/3) which is the set of all random digraphs over [n] such that

Pr[e ∈ E(D) and ē /∈ E(D)] = Pr[ē ∈ E(D) and e /∈ E(D)] =
1

3
(∀e ∈ [n]2∗).

Let σ be a permutation on [n]. For D ∈ D(n, 1/3, 1/3), let

m(D,σ) := min{|S| | S ∈ SD, σ ∈ Aut(D∆S)}.(5.1)

To prove the theorem, it suffices to show

Pr
[
D | ∃σ ∈ Sn \ {1}, m(D,σ) ≤ 2

3
n− C

√
n log n

]
< 1.(5.2)

for sufficiently large n.

A permutation σ can be expressed by a product of disjoint cyclic permu-
tations. We use the term s-cycles to mean cyclic permutations with length
s. Assume that σ is decomposed into disjoint a1 1-cycles (fixed points), a2
2-cycles, . . . , and ar r-cycles, where

∑
1≤s≤r sas = n.

Let

l := lcm
{s

2
| s is even such that as ̸= 0

}
,

Mσ :=
{
D ∈ D

(
n,

1

3
,
1

3

)
| m(D,σ) ≤ 2

3
n− C

√
n log n

}
.

The following lemma due to Hikoe Enomoto is easy but plays a role in the
proof of of Theorem 2.6.

Lemma 5.1. The followings hold:

(1) Mσ ⊂ Mσl .

(2) All even-cycles in σl are 2-cycles.

Proof. We prove (1) firstly. Let Dσ be the set of all digraphs D′ with σ ∈
Aut(D′). Since Dσ ⊂ Dσl , m(D,σ) ≤ 2

3n − C
√
n log n if m(D,σl) ≤ 2

3n −
C
√
n log n. For (2), note that τ

s
2 = (i1, i s

2
+1) . . . (i s

2
, is) for each even-cycle

τ = (i1, . . . , is) in σ.

Example 5.2. Let n = 8 and σ = (1234)(56)(78). Then, l = 2 and σl = σ2 =
(13)(24)(5)(6)(7)(8). One can easily see that, if a digraph D with 8 vertices has
the automorphism σ, then σ2 is also an automorphism of D. Thus, Dσ ⊂ Dσ2

and so m(D,σ2) ≤ 2
3n− C

√
n log n implies m(D,σ) ≤ 2

3n− C
√
n log n.
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By Lemma 5.1, we obtain

Pr
[
D | ∃σ ∈ Sn \ {1}, m(D,σ) ≤ 2

3
n− C

√
n log n

]
= Pr[∪σ∈Sn\{1}Mσ]

≤
∑
σ′

Pr[Mσ′ ].

(5.3)

where the summation in the last inequality runs over σ′ ∈ Sn \ {1} with no
even-cycles except for 2-cycles.
Let Hσ′ be the multi-digraph with V (Hσ′) := [n]2∗, and (e1, e2) ∈ E(Hσ′)
if eσ

′
1 = e2. Then, Hσ′ consists of vertex-disjoint a1(a1 − 1) isolated loops,

a2 + 2{a2(a2 − 1) + a1a2} cycles with length 2, and 2tσ′ cycles. Let A :=
{B1, . . . , Ba2}, where Bi := ei,1ei,1, be the set of a2 cycles with length 2 in
H ′

σ. And 2{a2(a2 − 1) + a1a2} cycles and 2tσ′ cycles can be categorized as
B := {C1+a2 , . . .} or B := {C1+a2 , . . .}, where Ci := ei,1ei,2 . . . ei,di , Ci :=
ei,1 ei,2 . . . ei,di , and di is the length of Ci. That is, we label each cycle and
each edges.

Example 5.3. As an example, we see the structure of the multidigraph Hσ′

for the following case: n = 8 and σ′ = (12)(34)(567)(8). Then Hσ′ consists
12 vertex-disjoint directed cycles. In this case,

A =
{

(1, 2) → (2, 1), (3, 4) → (4, 3)
}
,

B =
{

(1, 3) → (2, 4), (1, 4) → (2, 3), (1, 8) → (2, 8), (3, 8) → (4, 8)
}

∪
{

(5, 6) → (6, 7) → (7, 5), (5, 8) → (6, 8) → (7, 8)
}

∪
{

(1, 5) → (2, 6) → (1, 7) → (2, 5) → (1, 6) → (2, 7),

(3, 5) → (4, 6) → (3, 7) → (4, 5) → (3, 6) → (4, 7)
}
,

and

B =
{

(3, 1) → (4, 2), (4, 1) → (3, 2), (8, 1) → (8, 2), (8, 3) → (8, 4)
}

∪
{

(6, 5) → (7, 6) → (5, 7), (8, 5) → (8, 6) → (8, 7)
}

∪
{

(5, 1) → (6, 2) → (7, 1) → (5, 2) → (6, 1) → (7, 2),

(5, 3) → (6, 4) → (7, 3) → (5, 4) → (6, 3) → (7, 4)
}
.

Under this set up, let Xij be the random variables defined by

Xij :=


(1, 0, 0)t ei,j ∈ E(D) and ei,j /∈ E(D);
(0, 1, 0)t ei,j ∈ E(D) and ei,j /∈ E(D);
(0, 0, 1)t ei,j , ei,j /∈ E(D),

(5.4)
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From Xij = (xij , yij , zij), we also set the random variable Yi as follows.

Yi :=



xi1 + yi1 Ci ∈ A;

min

{ 2∑
j=1

xij ,

2∑
j=1

yij ,

2∑
j=1

zij

}
Ci ∈ B, di = 2;

min

{ di∑
j=1

(xij + yij),

di∑
j=1

(yij + zij),

di∑
j=1

(zij + xij)

}
Ci ∈ B, di ≥ 3.

Thus, we obtain the following lemma:

Lemma 5.4.

m(D,σ′) =

tσ′∑
i=1

Yi.(5.5)

By (5.3) and (5.4), to prove Theorem 2.6, we shall prove

∑
σ′

Pr

[ tσ′∑
i=1

Yi ≤
2

3
n− C

√
n log n

]
< 1.

Note that Yi’s are independent random variable.
In the estimation of probability, we use the Hoeffding inequality (see e.g. [15]).

Theorem 5.5 (cf. [15]). Let m be a positive integer and Z1, . . . , Zm be in-
dependent random variables such that Zi is bounded by [ai, bi]. Let Z :=
Z1 + · · · + Zm. Then, for any t > 0,

Pr[Z − E(Z) ≤ −t] ≤ exp
( 2t2∑m

i=1(bi − ai)2

)
.

Now we are ready to prove the theorem.

Proof of Theorem 2.6. Let q(σ′) := |{v ∈ [n] | vσ ̸= v}|.

Case 1. q(σ′) = 2. In this case, σ′ is a 2-cycle, say σ′ = (ij). Then, tσ′ = n−1
and A = {(i, j) → (j, i)}, B = {(i, x) → (j, x) | x ̸= i, j}. Each Yi is a 0-1
variable with Pr[Yi = 1] = 2/3 and so E[

∑
1≤i≤n−1 Yi] = (2/3) · (n − 1). By

Theorem 5.5 and the definition of C,

Pr

[
n−1∑
i=1

Yi ≤
2

3
n− C

√
n log n

]
≤ exp

(
−2C2 log n +

8

3
C

√
log n

n

)
= o(n−2).
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Case 2. q(σ′) = q ≥ 3 where q is odd and σ′ is a single q-cycle. In this
case, tσ′ = (n − q) + q−1

2 = n − ( q+1
2 ). Moreover Yi ∈ {0, 1, . . . , ⌊2q/3⌋} with

Pr[Yi = j] =
(
q
j

)
2j(1/3)q−1. Thus, by Theorem 5.5,

Pr

[n−( q+1
2

)∑
i=1

Yi ≤
2

3
n− C

√
n log n

]
≤ o(n−q)

Case 3. q(σ′) = q ≥ 4 and σ′ is not a single cycle. From the argument similar
to Case 1 and 2, we have

Pr

[ tσ′∑
i=1

Yi ≤
2

3
n− C

√
n log n

]
≤ o(n−q).

Thus, from Case 1, 2 and 3, and since the number of σ′ such that q(σ′) = q
is at most nq, we have

∑
σ′

Pr

[ tσ′∑
i=1

Yi ≤
2

3
n− C

√
n log n

]
≤

∑
2≤q≤n

nq · o(n−q) < 1.

Moreover, we get the following corollary.

Corollary 5.6. If n ≥ max
{

exp
(√

32 log 2/9·C+log 5

2C2−2

)
, 31283280

}
, there exists

a digraph D with n vertices such that A(D) > 2
3n− C

√
n log n.

Proof. First, recall that the following estimation can be obtained from (5.3):

Pr
[
D | A(D) ≤ 2

3
n− C

√
n log n

]
≤

∑
2≤q≤n

nq · max
σ′

q(σ′)=q

Pr[Mσ′ ].(5.6)

Now, by using the same discussion in [8, p.304-307], we get the following two
inequalities:

∑
n1/4≤q≤n

nq · max
σ′

q(σ′)=q

Pr[Mσ′ ] ≤ exp(−0.54n
5
4 + (2.34n + 2) log n + 0.28

√
n),

(5.7)

∑
5≤q≤n1/4

nq · max
σ′

q(σ′)=q

Pr[Mσ′ ] ≤ exp(−0.27n + (n
1
4 + 1.875) log n).(5.8)
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For the details of proof of (5.7) and (5.8), see also [8, p.304-307]. By following
the discussion to obtain the formula (2.8) in [8, p.305], the number of digraphs

which admits σ′ as an automorphism is at most 3(n−q
2 )+n2−(n−q)2

4 . Thus, for
the case of n1/4 ≤ q ≤ n, we use the following inequality:

|Mσ′ | ≤
∑

m≤ 2
3
n−C

√
n logn

(
2 ·

(
n
2

)
m

)
· 3(n−q

2 )+n2−(n−q)2

4

≤ n

(
n2

⌊23n− C
√
n log n⌋

)
· 3(n−q

2 )+n2−(n−q)2

4 .

Since Pr[Mσ′ ] = |Mσ′ | ·3−(n2), by the inequalities
(

n2

⌊ 2
3
n−C

√
n logn⌋

)
≤ n4n/3 and

nq ≤ 3n log3 n, (5.7) is obtained. For the case of 5 ≤ q ≤ n1/4, we apply the
following estimation (This is sharper except in the case of that q is a linear
function of n).

|Mσ′ | ≤
∑

m≤ 2
3
n−C

√
n logn

(
2 ·

(
q
2

)
+ 2q(n− q)

m

)
· 3(n−q

2 )+n2−(n−q)2

4

≤ n

(
2qn

⌊23n− C
√
n log n⌋

)
· 3(n−q

2 )+n2−(n−q)2

4 .

Remark that we do not have to change edges whose all endpoints are fixed by
σ′. Then, by the Stirling formula (see e.g. the formula (1.4) in [1, p.4]), we
get (5.8); for the calculation, see also [8, p.307].
And, by using the discussion in Case 2, for q = 3,

Pr[Mσ′ ] ≤ exp(−1.77n),(5.9)

and for q = 4,

Pr[Mσ′ ] ≤ exp(−0.22n).(5.10)

Now, we divide the interval [2, n] into 5 parts, q = 2, q = 3, q = 4, 5 ≤ q ≤ n1/4

and n1/4 ≤ q ≤ n and it suffices to consider n such that the sum of probabilities
for each part is bounded by 1/5. From the estimation in Case 1, we see that

n2 · max
σ′

q(σ′)=2

Pr[Mσ′ ] <
1

5

if n ≥ exp
(√

32 log 2/9·C+log 5

2C2−2

)
. And for q ≥ 3, by (5.7), (5.8), (5.9) and (5.10),∑

3≤q≤n

nq · max
σ′

q(σ′)=q

Pr[Mσ′ ] <
4

5

if n ≥ 31283280. Thus, from (5.6), the corollary is proved.
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At the last of this section, we put the following remark.

Remark 5.7. In the first-author’s paper [16], to deal with the tournament
case, we defined the graph Hσ and its cycle-decomposition similarly. Here, we
defined the two random variables Xij and Xij as

Xij :=

{
1 ei,j ∈ E(T );
0 otherwise,

Xij :=

{
1 ei,j ∈ E(T );
0 otherwise,

where T ∈ T (n, 1/2) and T (n, 1/2) is the Erdős-Rényi random tournament
model. Here, for τ ∈ Sn \ {1}, we set m(T, τ) as (5.1) and then, m(T, τ) can
be written as the sum of random variables

Yi := min

{ di∑
j=1

Xij ,

di∑
j=1

Xij

}
,

as a natural generalization of the idea by Erdős-Spencer [9]. Note that, in the
tournament case, just one of the events ei,j ∈ E(T ) and ei,j ∈ E(T ) occurs
for each i, j. But, in our digraph case, if we would try to use the same idea,
the definition of Yi would become so complicated. Because, in this case, just
one of three events {eij ∈ E(D), eij /∈ E(D)}, {eij ∈ E(D), eij /∈ E(D)},
{eij , eij /∈ E(D)} occurs for each i, j. Then we must express another events
{eij , eij /∈ E(D)} and so the definition of Yi would become complicated. This
is the reason why we take random variable Xij as (5.4); the same idea can be
applied to the colored graph or general digraph case.

§6. Some remarks on countable digraphs

As mentioned in Section 1, our combinatorial approach used below may be not
surprising in model theory, but, this would give an opportunity which finite
combinatorics connects to model theory. The content below is thus mainly
intended to invite the people in combinatorics and related areas. Some of the
standard facts and terminology in model theory used below with no detailed
explanation can also be found in [3].
We start by giving a constructive proof of Theorem 2.10 that requires the
following key concept:

Definition 6.1. Let S+, S− be disjoint subsets of N. We say that S =
(S+, S−) is an universal pair if for all k ∈ N and disjoint subsets T,U ⊂
{1, . . . , k}, there exists some integer N such that

(6.1) N + j ∈ S+ iff j ∈ T , and N + j ∈ S− iff j ∈ U.
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Remark 6.2. The concept of universal pair is not only a ternary-extension
of that of universal set for undirected graphs (cf. [2, p.15] and [3]), but can
also be viewed as a countable analogue of the so-called “difference method”
(cf. [13, Chapter 27]) as well as Cayley digraphs in finite combinatorics.

Let S be the set of all universal pairs. For disjoint subsets S+, S− of N,
let f be a function from N to {0,±1} given by

f(i) :=


1 if i ∈ S+;
−1 if i ∈ S−;
0 otherwise.

By the definition, S = (S+, S−) is an universal pair if and only if the se-
quence (f(1), f(2), . . .) contains all finite {0,±1}-sequences as its consecutive
subsequences; we say that (f(1), f(2), . . .) is an universal sequence.

Let Ω be the set of all infinite sequences of {0,±1}. For x, y ∈ Ω, we
consider a metric d defined by

d(x, y) :=

{
1
n if x and y first differ in the nth term;
0 if x = y.

Then (Ω, d) is a complete metric space. A subset A of Ω is open if and only
if every point (sequence) of A has a finite initial subsequence (a1, . . . , an) for
which every infinite sequence of the form (a1, . . . , an, . . .) lies in A. Moreover,
A is dense if and only if, for any finite sequence, there is a sequence of A
including it as an initial subsequence. A is called a residual set if it contains
a countable intersection of open dense sets. We remark that all residual sets
in a complete metric space are non-void by the Baire category theorem. Now,
as in [2, Section 1.4], all residual sets in Ω have 2ℵ0 members and S (regarded
as the set of all universal sequences) is residual. Thus, |S| = 2ℵ0 .
Let G be a group, and let S ⊂ G \ {id} be such that s ∈ S then s−1 /∈ S. The
Cayley digraph Γ = Γ(G,S) is the digraph such that

V (Γ) := G and E(Γ) := {(g, h) | g, h ∈ G, gh−1 ∈ S}.

We note that RO can be viewed as a countable Cayley digraph Γ(Z, S+ ∪
(−S−)) as the following lemma implies:

Lemma 6.3 (see also [2]). For S = (S+, S−) ∈ S, let ΓS := Γ(Z, S+∪(−S−)).
Then the following hold:

(i) ΓS admits the cyclic automorphism x 7→ x + 1 (x ∈ Z).

(ii) ΓS is isomorphic to RO.
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Proof of Lemma 6.3. (i) is obvious. Next, let u1, . . . , ua, v1, . . . , vb, w1, . . . , wc

∈ Z, and let

L := max{u1, . . . , wc}, l := min{u1, . . . , wc}, k := L− l + 1.

Let

T := {ui − l + 1 | i = 1, 2, . . . a}, U := {vj − l + 1 | j = 1, 2, . . . b}.

By the definition of universal pairs, there exists some N ∈ Z for which (6.1)
holds. Take z = l− 1−N . Clearly we have z < ui, vj . It follows by the choice
of N that

N−
ΓS

(z) = {u1, . . . , ua}, N+
ΓS

(z) = {v1, . . . , vb},
(N−

ΓS
(z) ∪N+

ΓS
(z) ∪ {z}) ∩ {w1, . . . , wc} = ∅.

Thus, by the definition of RO (the property (∗) defined in Section 2), (ii) is
proved.

Remark 6.4. By Lemma 6.3 (ii), there is a map from S to the set C of cyclic
automorphisms of RO. Let ∼ be the conjugacy relation in Aut(RO). In the
following to prove Theorem 2.10, we aim to find that a bijection between S
and C/ ∼.

Let σ be a cyclic automorphism of RO with vertex labelling aσi = ai+1

(i ∈ Z). Let S(σ) := (S+(σ), S−(σ)) where

S+(σ) := {i ∈ N | (a0, ai) ∈ E(RO)}, S−(σ) := {i ∈ N | (ai, a0) ∈ E(RO)}.

Lemma 6.5 (see also [2]). Let g, h be cyclic automorphisms of RO with ver-
tex labellings xgi = xi+1 and yhi = yi+1 respectively. Then the following are
equivalent:

(i) h is conjugate to g in Aut(RO).

(ii) S(g) = S(h).

Proof of Lemma 6.5. Let g = σhσ−1 for some σ ∈ Aut(RO). Let yj such that
xσ0 = yj . Then we have xσi = yi+j for every i ∈ N because gi = σhiσ−1. So we
have S+(g) = S+(h), and S−(g) = S−(h). Conversely, suppose (ii). Let σ be
a bijection with xσi = yi for every i. Then, σ ∈ Aut(RO) and g = σhσ−1.

Lemma 6.6 (see also [2]). Let U , V , W be finite disjoint subsets of V (RO).
Let ZU,V,W be the set of vertices z ∈ V (RO) satisfying the following conditions

N−
RO(z) = U, N+

RO(z) = V, (N−
RO(z) ∪N+

RO(z) ∪ {z}) ∩W = ∅.

Then the induced subgraph RO[ZU,V,W ] is isomorphic to RO.
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Proof of Lemma 6.6. It suffices to prove that RO[ZU,V,W ] satisfies (∗). Let U ′,
V ′, W ′ be finite disjoint subsets of ZU,V,W . Then, by (∗), there exists a vertex
z /∈ U ∪V ∪W satisfying (∗) for finite disjoint subsets U ∪U ′, V ∪V ′, W ∪W ′

of V (RO).

Lemma 6.7. Let g be a cyclic automorphism of RO with vertex labelling
xgi = xi+1 (i ∈ Z). Then S(g) is an universal pair.

Proof of Lemma 6.7. By the Pigeonhole property (see [5, p.2396]), without
loss of generality, we may assume that the induced subgraph RO[{xi | i < 0}]
is isomorphic to RO. Let a be a positive integer. Let T := {t1, . . . , tl}, U :=
{u1, . . . , um} be disjoint subsets of {1, . . . , a} and let W := {1, . . . , a}\(T ∪U).
Take

L := max{t1, . . . , tl, u1, . . . , um} + 1.

Clearly, ti−L, uj−L < 0. By Lemma 6.6 and the assumption there exists some
xs such that s < ti−L, uj−L and the condition (∗) holds for {xti−L | ti ∈ T},
{xuj−L | uj ∈ U}, {xwk−L | wk ∈ W}. Since RO admits g as a cyclic
automorphism,

(x0, xti−L−s), (xuj−L−s, x0) ∈ E(RO),

that is,

z + N ∈ S+(g) iff z ∈ T , and z + N ∈ S−(g) iff z ∈ U.

for N = −L− s. We thus obtain the claim.

We are now ready to complete the proof of Theorem 2.10:

Proof of Theorem 2.10. By Remark 6.4, there is a map F from S to C. By
Lemma 6.5, the quotient map F̃ : S → C/ ∼, induced from F , is well-defined
and injective and moreover surjective by Lemma 6.7. Since |S| = 2ℵ0 , we get
2ℵ0 non-conjugate cyclic automorphisms of RO.

We close this section by showing the cardinality of Aut(ARO) another in-
teresting digraph. The acyclic random oriented graph (ARO) is an orientation
of the Rado graph R, which is the unique countable digraph D such that

(i) it is well-founded, that is, it contains no directed cycles and no ‘one-sided’
infinite directed paths;

(ii) for every finite subset F of V (D), there exist infinitely many vertices v
with F = N−

D (v).
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This countable digraph was first introduced by Diestel et al. [5] who proved
that RO,ARO, and the inverse of ARO are the only orientations of R with the
Pigeonhole property. As in RO, there is a random construction for ARO [5,
p.2397].

Theorem 6.8. |Aut(ARO)| = 2ℵ0. In particular ARO is symmetric.

To prove this theorem, we use the following fact.

Proposition 6.9 (see [3]). Let D be a countable digraph. Then |Aut(D)| =
2ℵ0 or there exists some finite subset A of V (D) such that G(A) = {id}.

Proof of Theorem 6.8. Suppose contrary. Let D′ := ARO. By Proposition 6.9
there is some finite subset A of V (D′) such that G(A) = {id}. Let X be the
in-section generated by A; see [5, p.2396] for the definition of in-sections. By
the well-foundedness of D′ and König’s infinity lemma, X is finite. By the
definition of D′, we can also take two distinct vertices z1, z2 of V (D′) \ X
such that D′[X ∪ {z1}] and D′[X ∪ {z2}] are isomorphic. D′[X ∪ {z1}] and
D′[X ∪ {z2}] are finite in-sections and hence by the back-and-forth technique,
this isomorphism can be extended to a nontrivial automorphism of D′ fixing
X pointwise. But this is impossible since A is a subset of X.

§7. Conclusion, further remarks, and problems

In this paper we discussed the asymmetry of digraphs together with two main
results. First, in Section 3, we proved that

A(D) ≤
⌊2n

3

⌋
for every finite digraph D of order n, with equality only if D is a ∆-digraph
which is discussed in Section 4. Secondly, in Section 5, we showed that

max
|V (D)|=n

A(D) ≥ 2

3
n−O(

√
n log n) (n → ∞)

by using the random digraph model D(n, 1/3, 1/3). In Section 6, we also
remarked that Aut(RO) has 2ℵ0 non-conjugate cyclic automorphisms, gener-
alizing the notion of universal sets for undirected graphs.
We close this paper by putting the following remarks and problems. First, let
p(n), q(n) be positive functions of n such that 0 < p(n) + q(n) < 1. Now we
consider the random digraph model D(n, p(n), q(n)). Let ε > 0 be an arbi-
trarily fixed constant. If p(n) + q(n) ≤ (1 − ε) log n/n, D ∈ D(n, p(n), q(n))
is symmetric with probability 1 from the following reason. Considering the
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underlying graph GD of D ∈ D(n, p(n), q(n)), clearly, GD ∈ G(n, p(n) + q(n)).
The claim follows from the well-known fact that, if p(n)+q(n) ≤ (1−ε) log n/n,
G ∈ G(n, p(n)+q(n)) has at least 2 isolated vertices with probability 1 (see e.g.
[6, p.328, 329], [12]). And, if p(n)+q(n) ≥ (1+ε) log n/n, D ∈ D(n, p(n), q(n))
is (weakly) connected and asymmetric with probability 1.
Second, it seems interesting to improve Theorem 2.6. For the undirected graph
case, Erdős-Spencer [9] conjectured that max|V (G)|=nA(G) > n/2−C for suffi-
ciently large n and some constant C > 0. A digraph-version of this conjecture
is that max|V (D)|=nA(D) > 2n/3 − C ′ for some constant C ′ > 0. Can we
prove this? It is also interesting to use some other probabilistic methods or
random digraph model (for example, random regular digraph model) to im-
prove Theorem 2.6. These are left for future works.
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