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Abstract. Memoryless quasi-Newton methods are studied for solving large-
scale unconstrained optimization problems. Nakayama et al. (2017) proposed a
memoryless quasi-Newton method based on the spectral-scaling Broyden family
and showed that the method satisfies the sufficient descent condition and con-
verges globally. To relax the conditions on parameters in the method, we apply
the modification technique by Kou and Dai (2015) to the method of Nakayama
et al., and we give a hybrid method of the three-term conjugate gradient method
and the memoryless quasi-Newton method based on the spectral-scaling Broy-
den family. We show that our method satisfies the sufficient descent condition,
and we prove that the method converges globally. Furthermore, we give a con-
crete choice of parameters for our method. Finally, some numerical results are
given.
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§1. Introduction

Quasi-Newton methods are known as effective numerical methods for solving
the following unconstrained optimization problem

min
x∈Rn

f(x),

where f is a smooth function. We denote its gradient ∇f by g. The quasi-
Newton method is an iterative method of the form:

(1.1) xk+1 = xk + αkdk,
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where xk ∈ Rn is the k-th approximation to a solution, the step size αk > 0 is
obtained by some line search, and the search direction dk is given by

(1.2) dk = −Hkgk.

Here, we denote ∇f(xk) by gk, and Hk is an approximation to the inverse
Hessian ∇2f(xk)

−1. In this paper, we fix the initial direction by d0 = −g0.
The matrix Hk is updated at each iteration such that the secant condition

Hkyk−1 = sk−1

is satisfied, where sk−1 and yk−1 are defined by

sk−1 = xk − xk−1 = αk−1dk−1 and yk−1 = gk − gk−1,

respectively. The well-known updating formulas are the BFGS, DFP and
symmetric rank-one (SR1) formulas. This paper focuses on the Broyden family

(1.3) Hk = Hk−1 −
Hk−1yk−1y

T
k−1Hk−1

yTk−1Hk−1yk−1
+

sk−1s
T
k−1

sTk−1yk−1
+ θk−1wk−1w

T
k−1,

(1.4) wk−1 =
√
yTk−1Hk−1yk−1

(
sk−1

sTk−1yk−1
− Hk−1yk−1

yTk−1Hk−1yk−1

)
,

where θk−1 is a parameter. In particular, the formula (1.3) becomes the DFP
formula when θk−1 = 0, and the BFGS formula when θk−1 = 1. Moreover,
the Broyden family (1.3) is a convex combination of the DFP formula and
the BFGS formula if θk−1 ∈ [0, 1], and we say this interval convex class. The
BFGS formula (θk−1 = 1) is known as one of the best choices in practice.
On the other hand, Zhang and Tewarson [27] dealt with the preconvex class
to find a better choice than the BFGS formula. The preconvex class means
the interval θk−1 > 1. If sTk−1yk−1 > 0, θk−1 ≥ 0 and Hk−1 is symmetric
positive definite, then the matrix Hk updated by the Broyden family (1.3)
is also symmetric positive definite. This guarantees that the search direction
satisfies the descent condition, namely, gTk dk = −gTk Hkgk < 0.

Since quasi-Newton methods need the storage of memories for matrices,
it is difficult to apply quasi-Newton methods directly to large-scale uncon-
strained optimization problems. In order to remedy this difficulty, Shanno [22]
proposed the memoryless quasi-Newton method for solving large-scale un-
constrained optimization problems, and the method avoids the storage of
memories for matrices. Specifically, Shanno substituted (1.3) and (1.4) with
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Hk−1 = I into (1.2) and derived the following search direction:

dk =− gk +

(
θk−1

yTk−1gk

dTk−1yk−1
−

(
1 + θk−1

yTk−1yk−1

sTk−1yk−1

)
sTk−1gk

dTk−1yk−1

)
dk−1

+

(
θk−1

dTk−1gk

dTk−1yk−1
+ (1− θk−1)

yTk−1gk

yTk−1yk−1

)
yk−1.

(1.5)

The memoryless quasi-Newton method is closely related to the nonlinear con-
jugate gradient (CG) method. Under the exact line search, namely gTk dk−1 =
0, then the search direction (1.5) with θk−1 = 1 becomes

(1.6) dk = −gk +
yTk−1gk

dTk−1yk−1
dk−1,

which is identical to the nonlinear CG method with the Hestenes-Stiefel (HS)
formula (see [17, 19], for example). Recently, three-term CG methods have
been paid attention to (see [1, 18, 26], for example). By using the memoryless
quasi-Newton method based on the BFGS formula, several three-term CG
methods have been proposed (see [2, 24, 25], for example).

In this decade, several memoryless quasi-Newton methods have been stud-
ied. Kou and Dai [14] proposed the modified self-scaling memoryless BFGS
method. Furthermore, several researchers have paid attention to the mem-
oryless quasi-Newton methods based on other updating formulas instead of
the BFGS formula. Nakayama et al. [15] proposed the memoryless quasi-
Newton method based on the SR1 formula with the spectral-scaling secant
condition [5]. The above methods always satisfy the sufficient descent condi-
tion which means that there exists a positive constant c such that

(1.7) gTk dk ≤ −c∥gk∥2 for all k,

where ∥·∥ is the ℓ2 norm. Moreover, they showed the global convergence of the
method for general objective functions. Nakayama et al. [16] also proposed the
memoryless quasi-Newton method based on the spectral-scaling Broyden fam-
ily [4] and gave a sufficient condition for the global convergence of the method.
In their numerical experiments, they showed that the proposed method with
the preconvex class performed better than the method with the convex class
did.

This paper focuses on the modification of the method by Kou and Dai
[14]. Considering their modification technique, we modify the memoryless
quasi-Newton method based on the Broyden family [16] and propose a new
method, which always satisfies the sufficient descent condition. We show that
the method converges globally for general objective functions. Furthermore,



82 S. NAKAYAMA

we give parameters for which our method can be regarded as a three-term CG
method.

This paper is organized as follows. We recall some preliminaries and previ-
ous researches in Section 2. In Section 3, we propose a new method and show
its global convergence. Finally, some numerical results are given.

§2. Preliminaries and previous researches

2.1. Preliminaries

In this subsection, we recall some preliminaries. We first make the following
standard assumptions for the objective function.

Assumption 1.

(i) The level set L = {x | f(x) ≤ f(x0)} at the initial point x0 is bounded,
namely, there exists a positive constant â such that

(2.1) ∥x∥ ≤ â for all x ∈ L.

(ii) The objective function f is continuously differentiable on an open convex
neighborhood N of L, and its gradient g is Lipschitz continuous on N ,
namely, there exists a positive constant L such that

(2.2) ∥g(u)− g(v)∥ ≤ L∥u− v∥ for all u, v ∈ N .

Note that, under Assumption 1, there exists a positive constant Γ such that

(2.3) ∥g(x)∥ ≤ Γ for all x ∈ L.

Throughout this paper, we assume that

gk ̸= 0 for all k ≥ 0,

otherwise a stationary point has been found.
In the line search procedure, we require the step size αk in (1.1) to satisfy

the Wolfe conditions:

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk,(2.4)

g(xk + αkdk)
Tdk ≥ σgTk dk,(2.5)

where 0 < δ < σ < 1. If the search direction satisfies the descent condition,
then condition (2.5) yields

(2.6) dTk yk = gTk+1dk − gTk dk ≥ −(1− σ)gTk dk > 0.
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Since this paper deals with the Wolfe condition (2.4)–(2.5), we have

(2.7) dTk yk > 0 (sTk yk > 0) for all k ≥ 0,

which implies ∥sk∥ ̸= 0 and ∥yk∥ ̸= 0.

2.2. Modified self-scaling memoryless BFGS method

In this subsection, we review the memoryless quasi-Newton method by Kou
and Dai [14]. Modifying the memoryless quasi-Newton method based on the
self-scaling BFGS method, Kou and Dai [14] proposed the following search
direction:

dk =− gk +

(
yTk−1gk

dTk−1yk−1
−

(
τk−1 +

yTk−1yk−1

sTk−1yk−1

)
sTk−1gk

dTk−1yk−1

)
dk−1

+ νk−1

dTk−1gk

dTk−1yk−1
yk−1,

(2.8)

where νk−1 ∈ [0, 1] is a parameter and τk−1 is a scaling parameter satisfying

τk−1 ∈

[
sTk−1yk−1

sTk−1sk−1
,
yTk−1yk−1

sTk−1yk−1

]
,

which corresponds to the interval proposed by Oren and Luenberger [20, 21].
We note that since sTk−1yk−1 > 0,

(2.9)
sTk−1yk−1

sTk−1sk−1
≤

yTk−1yk−1

sTk−1yk−1

holds by the Cauchy-Schwarz inequality. The search direction (2.8) with
νk−1 = 0 can be regarded as a CG method of the form dk = −gk + βkdk−1,
where βk is defined by

βk =
yTk−1gk

dTk−1yk−1
−

(
τk−1 +

yTk−1yk−1

sTk−1yk−1

)
sTk−1gk

dTk−1yk−1
.

Furthermore, if gTk dk−1 = 0, then the search direction (2.8) becomes (1.6).
The following lemma was given by [14, Lemma 3.1].

Lemma 2.1. If νk−1 ∈ [0, 1) is a constant and (2.7) holds, then the search
direction (2.8) satisfies the sufficient descent condition (1.7) for some positive
constant c.
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In order to guarantee the global convergence, Kou and Dai modified the
direction (2.8) as follows:

(2.10) dk = −gk + βKD
k dk−1 + ζKD

k yk−1,

βKD
k = max

{
yTk−1gk

dTk−1yk−1
−

(
τk−1 +

yTk−1yk−1

sTk−1yk−1

)
sTk−1gk

dTk−1yk−1
, ρ

gTk dk−1

∥dk−1∥2

}
and

ζKD
k =

0 if βKD
k = ρ

gTk dk−1

∥dk−1∥2

νk−1
dTk−1gk

dTk−1yk−1
otherwise,

where ρ ∈ (0, 1) is a parameter. Note that, the above modified search direc-
tion always satisfies the sufficient descent condition (1.7). In the line search
procedure, they used the improved Wolfe conditions [6]:

f(xk + αkdk)− f(xk) ≤ min
{
ϵ|f(xk)|, δαkg

T
k dk + ηk

}
,(2.11)

and (2.5), where 0 < δ < σ < 1, ϵ > 0 is a small number and ηk = 1/k2.
The following theorem was given by [14, Theorem 4.2].

Theorem 2.2. Suppose that Assumption 1 is satisfied. Consider the method
(1.1) and (2.10) with νk−1 ∈ [0, 1), where the step size αk satisfies the improved
Wolfe conditions (2.5) and (2.11). Then the method converges in the sense that

(2.12) lim inf
k→∞

∥gk∥ = 0

holds.

2.3. Memoryless quasi-Newton method based on the Broyden fam-
ily

In this subsection, we recall the memoryless quasi-Newton method based on
the Broyden family by Nakayama et al. [16]. They focused on the following
spectral-scaling Broyden family [4]:

(2.13) Hk = Hk−1 −
Hk−1yk−1y

T
k−1Hk−1

yTk−1Hk−1yk−1
+

1

γk−1

sk−1s
T
k−1

sTk−1yk−1
+ θk−1wk−1w

T
k−1,

where wk−1 appears in (1.4) and γk−1 > 0 is a scaling parameter. The formula
(2.13) is the Broyden family based on the spectral-scaling secant condition [5]:

Hkyk−1 =
1

γk−1
sk−1,
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where Hk is an approximation to
(
γk−1∇2f(xk)

)−1
. Nakayama et al. [16] gave

the search direction of a memoryless quasi-Newton method based on (2.13),
which is

dk =− gk+

(
θk−1

yTk−1gk

dTk−1yk−1
−

(̂
γk−1 + θk−1

yTk−1yk−1

sTk−1yk−1

)
sTk−1gk

dTk−1yk−1

)
dk−1

+

(
θk−1

dTk−1gk

dTk−1yk−1
+ (1− θk−1)

yTk−1gk

yTk−1yk−1

)
yk−1,

(2.14)

where γ̂k−1 = 1/γk−1. Note that the search direction (2.14) with θk−1 = 1
corresponds to (2.8) with νk−1 = 1 and τk−1 = γ̂k−1. They gave the following
proposition.

Proposition 2.3. If conditions (2.7),

(2.15) γ̂k−1 ≥ θk−1

yTk−1yk−1

sTk−1yk−1

and

(2.16) 0 < θmin ≤ θk−1 ≤ θmax < 2

hold, then the search direction (2.14) satisfies the sufficient descent condition

(1.7) with c := min

{
θmin

2
, 1− θmax

2

}
, where θmin and θmax are constants

satisfying 0 < θmin ≤ 1 ≤ θmax < 2.

In order to establish the global convergence of the method, Nakayama
et al. [16] modified (2.14) as follows:

(2.17) dk = −gk + βNNY
k dk−1 + ζNNY

k yk−1,

(2.18) βNNY
k =max

{
θk−1

yTk−1gk

dTk−1yk−1
−

(̂
γk−1 + θk−1

yTk−1yk−1

sTk−1yk−1

)
sTk−1gk

dTk−1yk−1
, 0

}
,

and

(2.19) ζNNY
k = sgn(βNNY

k )

(
θk−1

dTk−1gk

dTk−1yk−1
+ (1− θk−1)

yTk−1gk

yTk−1yk−1

)
,

where sgn(·) is defined by

sgn(a) =

{
1 a > 0,

0 a = 0.

They proved the following convergence theorem [16, Theorem 3.6].
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Theorem 2.4. Suppose that Assumption 1 is satisfied. Consider the method
(1.1) and (2.17) with

(2.20) γ̂k−1 = θk−1

yTk−1yk−1

sTk−1yk−1

and (2.16), where the step size αk satisfies the Wolfe conditions (2.4)–(2.5).
Then the method converges in the sense that (2.12) holds.

§3. A hybrid method of three-term CG method
and memoryless quasi-Newton method

In their numerical experiments, Nakayama et al. [16] showed that the method
(1.1) and (2.17) with

(3.1) γ̂k−1 = θk−1

sTk−1yk−1

sTk−1sk−1
.

performed better than the method with (2.20) did. However, (3.1) may not
satisfy the condition (2.15), which dose not guarantee the global convergence
of the method with (3.1). In order to relax the condition (2.15), we apply
the modification technique by Kou and Dai [14] to the method of Nakayama
et al. [16], and we give a new method. We show that the proposed method
satisfies the sufficient descent condition without the condition (2.15), and the
method converges globally. We note that the proposed method can adopt the
parameter (3.1).

3.1. Proposed method

Based on the modification described in Section 2.2, we propose the following
search direction

dk =− gk+

(
θk−1

yTk−1gk

dTk−1yk−1
−

(̂
γk−1 + θk−1

yTk−1yk−1

sTk−1yk−1

)
sTk−1gk

dTk−1yk−1

)
dk−1

+ νk−1

(
θk−1

dTk−1gk

dTk−1yk−1
+ (1− θk−1)

yTk−1gk

yTk−1yk−1

)
yk−1,

(3.2)

where νk−1 is a parameter. Note that the search direction (3.2) with νk−1 = 1
is identical to (2.14), and that (3.2) with θk−1 = 1 corresponds to (2.8) with
τk−1 = γ̂k−1. In the same way as (2.17), we modify (3.2) as follows:

(3.3) dk = −gk + βNNY
k dk−1 + ζnewk yk−1
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and

(3.4) ζnewk = νk−1ζ
NNY
k ,

where βNNY
k and ζNNY

k are defined by (2.18) and (2.19), respectively. Note
that, if βNNY

k > 0 is satisfied, then the search direction (3.3) is identical
to (3.2). Otherwise, the search direction (3.3) becomes the steepest descent
direction (dk = −gk).

To establish the sufficient descent property of the proposed method, we
impose the following condition on θk−1

(3.5) 0 ≤ θk−1 ≤ c̄21,

where 1 < c̄1 < 2 is a constant. As a choice of νk−1, we consider the following:

(3.6)

0 ≤ νk−1 ≤ ν̄, if 0 ≤ θk−1 ≤ 1,

0 ≤ νk−1 ≤
c̄1√
θk−1

− 1, if 1 < θk−1 ≤ c̄21,

where 0 ≤ ν̄ < 1. Then we give the sufficient condition for the search
direction (3.3) to satisfy (1.7) as follows.

Proposition 3.1. Assume that (2.7) holds. Then the search direction (3.3)
with (3.5)–(3.6) satisfies the sufficient descent condition (1.7) for some positive
constant c.

Proof. By (2.18), we first note that βNNY
k ≥ 0 holds for all k ≥ 1. For the case

βNNY
k = 0, the search direction (3.3) becomes the steepest descent direction

which implies that the sufficient descent condition (1.7) with c = 1 holds.
Otherwise, the search direction (3.3) is identical to (3.2). Thus, it is sufficient
to show that (3.2) satisfies (1.7).

Using the relation 2uT v ≤ ∥u∥2 + ∥v∥2 for any vectors u and v, we have

(1 + νk−1)
(yTk−1gk)(d

T
k−1gk)

dTk−1yk−1
=

(√
2dTk−1gk

dTk−1yk−1
yk−1

)T (
(1 + νk−1)√

2
gk

)

≤ 1

2

∥∥∥∥∥
√
2dTk−1gk

dTk−1yk−1
yk−1

∥∥∥∥∥
2

+

∥∥∥∥(1 + νk−1)√
2

gk

∥∥∥∥2
 ,
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and hence it follows from (2.7), (3.2) and sk−1 = αk−1dk−1 that

gTk dk =− ∥gk∥2 + θk−1(1 + νk−1)
(yTk−1gk)(d

T
k−1gk)

dTk−1yk−1

−

(
γ̂k−1 + θk−1

yTk−1yk−1

sTk−1yk−1

)
αk−1(d

T
k−1gk)

2

dTk−1yk−1
+ νk−1(1− θk−1)

(yTk−1gk)
2

yTk−1yk−1

≤− ∥gk∥2 +
θk−1

2

∥∥∥∥∥
√
2dTk−1gk

dTk−1yk−1
yk−1

∥∥∥∥∥
2

+

∥∥∥∥(1 + νk−1)√
2

gk

∥∥∥∥2


−

(
γ̂k−1 + θk−1

yTk−1yk−1

sTk−1yk−1

)
αk−1(d

T
k−1gk)

2

dTk−1yk−1
+ νk−1(1− θk−1)

(yTk−1gk)
2

yTk−1yk−1

=−
(
1− θk−1(1 + νk−1)

2

4

)
∥gk∥2 − γ̂k−1

αk−1(d
T
k−1gk)

2

dTk−1yk−1

+ νk−1(1− θk−1)
(yTk−1gk)

2

yTk−1yk−1

≤−
(
1− θk−1(1 + νk−1)

2

4

)
∥gk∥2 + νk−1(1− θk−1)

(yTk−1gk)
2

yTk−1yk−1
.

We consider the case 0 ≤ θk−1 ≤ 1. Using νk−1(1−θk−1) ≥ 0 and the Cauchy-
Schwarz inequality,

gTk dk ≤ −
(
1− θk−1(1 + νk−1)

2

4

)
∥gk∥2 + νk−1(1− θk−1)

∥yk−1∥2∥gk∥2

∥yk−1∥2

= −
(
(1− νk−1)−

θk−1

4

(
1− 2νk−1 + ν2k−1

))
∥gk∥2

= −
(
(1− νk−1)

(
1− θk−1

4
(1− νk−1)

))
∥gk∥2

holds. Since it follows from 0 ≤ νk−1 that

−
(
1− θk−1

4
(1− νk−1)

)
≤ −

(
1− 1

4
+ 0

)
= −3

4
,

we obtain from 1− νk−1 > 0 and (3.6)

gTk dk ≤ −3(1− νk−1)

4
∥gk∥2

≤ −3(1− ν̄)

4
∥gk∥2.
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We next consider the case 1 < θk−1 ≤ c̄21. Since νk−1(1− θk−1) ≤ 0 holds, we
have from (3.6)

gTk dk ≤ −
(
1− θk−1(1 + νk−1)

2

4

)
∥gk∥2

≤ −
(
1− θk−1

4

c̄21
θk−1

)
∥gk∥2

= −
(
1− c̄21

4

)
∥gk∥2.

Therefore, the search direction (3.2) satisfies the sufficient descent condition

(1.7) with c = min
{

3(1−ν̄)
4 , 1− c̄21

4

}
.

3.2. Global convergence

In this subsection, we prove the global convergence of the proposed method
for general objective functions. We first introduce the following property.

Property 1. Consider the method (1.1) and (3.3). Suppose that there exists
a positive constant ε such that

(3.7) ε ≤ ∥gk∥ for all k

holds. Then we say that the method has Property 1 if there exists a positive
constant c̄2 such that

γ̂k−1 ≤ c̄2∥dk−1∥ for all k.

The next proposition guarantees that the proposed method with some con-
crete choices of γ̂k−1 has Property 1.

Proposition 3.2. Suppose that Assumption 1 is satisfied. Consider the method
(1.1) and (3.3), where the step size αk satisfies the Wolfe conditions (2.4)–
(2.5). Then the following hold:

1. If we set

(3.8) γ̂k−1 =
yTk−1yk−1

sTk−1yk−1
,

then the method has Property 1.
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2. If we set

(3.9) γ̂k−1 =
sTk−1yk−1

sTk−1sk−1
,

then the method has Property 1.

Proof. By (2.1) and (2.2), we obtain

∥yk−1∥ ≤ L∥sk−1∥ ≤ L(∥xk∥+ ∥xk−1∥) ≤ 2Lâ.

If (3.7) holds, then it follows from (1.7), (2.2), (2.6) and (2.9) that

sTk−1yk−1

sTk−1sk−1
≤

yTk−1yk−1

sTk−1yk−1
≤ 2L2â∥sk−1∥

αk−1c(1− σ)ε2
=

2L2â

c(1− σ)ε2
∥dk−1∥.

Therefore, the methods have Property 1.

We note that the proposed method with (2.20) has Property 1. Also, the
method with (3.1) has Property 1. We emphasize that the proposed method
can choose the parameter (3.1), which is a good choice in the previous research
[16].

The following lemma corresponds to [16, Lemma 3.3]. Since the proof is
almost same as that of [16, Lemma 3.3], we omit it. Note that the lemma
imposes a different condition from that of [16, Lemma 3.3] on θk−1.

Lemma 3.3. Consider the method (1.1) and (3.3) with (3.5), where the step
size αk satisfies the Wolfe conditions (2.4)–(2.5). Suppose that Assumption 1
is satisfied and there exists a positive constant ε such that (3.7) holds. If the
method has Property 1, then there exist constants b > 1 and ξ > 0 such that
for all k

(3.10) βNNY
k ≤ b

and

(3.11) ∥sk−1∥ ≤ ξ =⇒ βNNY
k ≤ 1

2b
.

The next lemma corresponds to [7, Lemma 3.4] and [9, Lemma 4.1].

Lemma 3.4. If all assumptions of Lemma 3.3 are satisfied, then dk ̸= 0 and

∞∑
k=0

∥uk − uk−1∥2 < ∞

holds, where uk = dk/∥dk∥.
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Proof. Since dk ̸= 0 follows from (1.7) and (3.7), the vector uk is well-defined.
By defining

vk = − 1

∥dk∥
(gk − ζnewk yk−1) and ηk = βNNY

k

∥dk−1∥
∥dk∥

,

equation (3.3) is written as

uk = vk + ηkuk−1.

Then we get from the fact ∥uk∥ = ∥uk−1∥ = 1

(3.12) ∥vk∥ = ∥uk − ηkuk−1∥ = ∥ηkuk − uk−1∥.

From the relations βNNY
k ≥ 0 and (3.12), we obtain

∥uk − uk−1∥ ≤ (1 + ηk)∥uk − uk−1∥
= ∥uk − ηkuk−1 + ηkuk − uk−1∥
≤ ∥uk − ηkuk−1∥+ ∥ηkuk − uk−1∥
= 2∥vk∥.(3.13)

Since the search direction satisfies the descent condition, it follows from
(2.6) that

gTk dk−1 ≥ σgTk−1dk−1 ≥
−σ

1− σ
dTk−1yk−1

and

dTk−1yk−1 = gTk dk−1 − gTk−1dk−1 ≥ gTk dk−1.

Hence we obtain

(3.14)

∣∣∣∣∣ gTk dk−1

dTk−1yk−1

∣∣∣∣∣ ≤ max

{
σ

1− σ
, 1

}
.

Using νk−1 < 1, 0 ≤ θk−1 < 4, (3.4) and (3.14), we get

∥ζnewk yk−1∥ ≤ νk−1

(∥∥∥∥∥θk−1
gTk dk−1

dTk−1yk−1
yk−1

∥∥∥∥∥+ |1− θk−1|
∥yk−1∥∥gk∥
∥yk−1∥2

∥yk−1∥

)

< 4max

{
σ

1− σ
, 1

}
∥yk−1∥+ 3∥gk∥.(3.15)
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By (2.1), (2.2), (2.3), (3.13) and (3.15), for any positive integer m, we have

m∑
k=0

∥uk − uk−1∥2 ≤ 4

m∑
k=0

∥vk∥2

≤ 4

m∑
k=0

(
4∥gk∥+ 4max

{
σ

1− σ
, 1

}
∥yk−1∥

)2 1

∥dk∥2

≤ 64

(
Γ + 2Lâmax

{
σ

1− σ
, 1

})2 m∑
k=0

1

∥dk∥2
.

Since the search direction satisfies the sufficient descent condition, we ob-
tain

∑∞
k=0

1
∥dk∥2

< ∞ by (3.7) (see [23, Lemma 3.1]). Therefore, we have∑∞
k=0 ∥uk − uk−1∥2 < ∞.

Let N denote the set of all positive integers. For λ > 0 and a positive
integer ∆, we define

Kλ
k,∆ := {i ∈ N | ∥si−1∥ > λ, k ≤ i ≤ k +∆− 1}.

Let |Kλ
k,∆| denote the number of elements in Kλ

k,∆. The following lemma shows
that if the magnitude of the gradient is bounded away from zero and (3.10)–
(3.11) hold, then a certain fraction of the steps cannot be too small. This
lemma corresponds to [1, Lemma 3] and [9, Lemma 4.2]. Since the proof is
almost same as in that of [1, Lemma 3] and [9, Lemma 4.2], we omit it.

Lemma 3.5. Suppose that all assumptions of Lemma 3.3 hold. Then there
exists λ > 0 such that, for any ∆ ∈ N and any index k0, there is an index
k̂ ≥ k0 such that

|Kλ
k̂,∆

| > ∆

2
.

Using Lemmas 3.4 and 3.5, we obtain the following global convergence
theorem of our method. Since the proof of the theorem is exactly same as [7,
Theorem 3.6], we omit it.

Theorem 3.6. Suppose that Assumption 1 is satisfied. Consider the method
(1.1) and (3.3) with (3.5)–(3.6). Assume that the method has Property 1 and
the step size αk satisfies the Wolfe conditions (2.4)–(2.5). Then the method
converges in the sense that

(3.16) lim inf
k→∞

∥gk∥ = 0

holds.
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Closing this section, we briefly consider a suitable choice of parameters.
Nakayama et al. [16] showed that parameters

θk−1 = 1 +
|gTk dk−1|

∥gk−1∥∥dk−1∥
and θk−1 = 1 +

∣∣∣∣∣ gTk dk−1

gTk−1dk−1

∣∣∣∣∣
were better choices than θk−1 = 1 in their numerical experiments. These
results mean that the preconvex class is efficient, and hence we consider the
following parameter:

(3.17) θk−1 = 1 + tk|gTk dk−1|,

where tk is a scalar parameter. Then, if we use the exact line search, the
parameter θk−1 becomes 1, and hence the search direction (3.2) with (3.17)
is identical to the search direction of the CG method with HS formula (1.6).
Therefore, we regard the proposed method with (3.17) as a hybrid method of
the three-term CG method and the memoryless quasi-Newton method.

Now we give concrete choices of θk−1 and νk−1 that satisfy conditions (3.5)–
(3.6). Let c̄1 = 1.99. If 1 < θk−1 ≤ 1.2, then

c̄1√
θk−1

− 1 ≥ 1.99√
1.2

− 1 ≈ 0.8166

holds. Using the above inequality and (3.17), we propose the following param-
eters:

(3.18) θk−1 = 1 +min

{∣∣∣∣∣ dTk−1gk

gTk−1dk−1

∣∣∣∣∣ , 0.2

}
and νk−1 = 0.8.

Note that (3.18) satisfies conditions (3.5)–(3.6).

§4. Numerical experiments

In this section, we report numerical experiments of the proposed method of
the form (1.1) and (3.3). We tested 138 problems from the CUTEr library
[3, 10]. The problems were used in [16], and their names and dimensions n
are given in Table 1. All codes were written in C by modifying the software
package CG-DESCENT Version 5.3 [11, 12, 13]. They were run on a PC with
3.5GHz Intel Core i5, 32.0 GB RAM memory and Linux OS Ubuntu 16. We
stopped the algorithm if

∥gk∥∞ ≤ 10−6
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held. The line search procedure was the default procedure of CG-DESCENT,
which implies that we used the parameter values of σ = 0.9 and δ = 0.1 in the
Wolfe conditions (2.4)–(2.5).

To compare numerical performance among the tested methods, we adopt
the performance profiles based on the CPU time by Dolan and Moré [8]. For ns

solvers and np problems, the performance profiles P : R → [0, 1] is defined as
follows: Let P and S be the set of problems and the set of solvers, respectively.
For each problem p ∈ P and for each solver s ∈ S, we define tp,s = CPU
time required to solve problem p by solver s. The performance ratio is given
by rp,s = tp,s/mins tp,s.Then, the performance profile is defined by P (τ) =
1
np
|{p ∈ P|rp,s ≤ τ}|, for all τ ≥ 1. Note that P (τ) is the probability for solver

s ∈ S such that a performance ratio rp,s is within a factor τ ≥ 1 of the best
result. The left side of the figure of performance profiles gives the percentage
of the test problems for which a method is the best result. The top curve is the
method that solves the most problems in a result that is within a factor τ of
the best result. In order to prevent a measurement error, we set the minimum
of the 0.1 seconds.

Table 2 presents the choices of parameters θk−1, γ̂k−1 and νk−1 for the
tested methods. ML1–3, KD and NEW are the method of the form (1.1) and
(3.3). Note that ML1–3 correspond to memoryless quasi-Newton methods by
Nakayama et al. [16], and KD corresponds to the method by Kou and Dai [14].
In our numerical experiments, for ML1–3 and KD, we chose the parameters
recommended in their numerical experiments. NEW is the proposed method
with (3.18). For NEW, we chose the parameters which performed better in
our preliminary numerical experiments ([14, 16]). CGD is the well-known
benchmark method based on the CG method by Hager and Zhang [12, 13],
namely CG DESCENT 5.3.

Figure 1 shows the performance profiles of the methods in Table 2. As
mentioned at the beginning of Section 3, we see that ML3 performed better
than ML2 did. This implies that the scaling parameter (3.1) is more efficient
than (2.20). Since ML3 and NEW performed better than ML1 and KD did,
respectively, we see that the preconvex class is significant for the Broyden
family. We see that KD and NEW were superior to CGD and performed
slightly better than ML3 did. Note that ML3 does not guarantee the global
convergence. On the other hand, KD and NEW guarantee the global conver-
gence. Thus, the proposed method is theoretically superior to the memoryless
quasi-Newton method by Nakayama et al. [16].
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Table 1: Test problems (names and dimensions) by CUTEr library
name n name n name n name n

AKIVA 2 DIXMAANC 3000 HEART8LS 8 PENALTY1 1000
ALLINITU 4 DIXMAAND 3000 HELIX 3 PENALTY2 200
ARGLINA 200 DIXMAANE 3000 HIELOW 3 PENALTY3 200
ARGLINB 200 DIXMAANF 3000 HILBERTA 2 POWELLSG 5000
ARWHEAD 5000 DIXMAANG 3000 HILBERTB 10 POWER 10000
BARD 3 DIXMAANH 3000 HIMMELBB 2 QUARTC 5000
BDQRTIC 5000 DIXMAANI 3000 HIMMELBF 4 ROSENBR 2
BEALE 2 DIXMAANJ 3000 HIMMELBG 2 S308 2
BIGGS6 6 DIXMAANK 3000 HIMMELBH 2 SCHMVETT 5000
BOX3 3 DIXMAANL 3000 HUMPS 2 SENSORS 100
BOX 10000 DIXON3DQ 10000 JENSMP 2 SINEVAL 2
BRKMCC 2 DJTL 2 KOWOSB 4 SINQUAD 5000
BROWNAL 200 DQDRTIC 5000 LIARWHD 5000 SISSER 2
BROWNBS 2 DQRTIC 5000 LOGHAIRY 2 SNAIL 2
BROWNDEN 4 EDENSCH 2000 MANCINO 100 SPARSINE 5000
BROYDN7D 5000 EG2 1000 MARATOSB 2 SPARSQUR 10000
BRYBND 5000 ENGVAL1 5000 MEXHAT 2 SPMSRTLS 4999
CHAINWOO 4000 ENGVAL2 3 MOREBV 5000 SROSENBR 5000
CHNROSNB 50 ERRINROS 50 MSQRTALS 1024 STRATEC 10
CLIFF 2 EXPFIT 2 MSQRTBLS 1024 TESTQUAD 5000
COSINE 10000 EXTROSNB 1000 NONCVXU2 5000 TOINTGOR 50
CRAGGLVY 5000 FLETCBV2 5000 NONDIA 5000 TOINTGSS 5000
CUBE 2 FLETCHCR 1000 NONDQUAR 5000 TOINTPSP 50
CURLY10 10000 FMINSRF2 5625 OSBORNEA 5 TOINTQOR 50
CURLY20 10000 FMINSURF 5625 OSBORNEB 11 TQUARTIC 5000
CURLY30 10000 FREUROTH 5000 OSCIPATH 10 TRIDIA 5000
DECONVU 63 GENHUMPS 5000 PALMER1C 8 VARDIM 200
DENSCHNA 2 GENROSE 500 PALMER1D 7 VAREIGVL 50
DENSCHNB 2 GROWTHLS 3 PALMER2C 8 VIBRBEAM 8
DENSCHNC 2 GULF 3 PALMER3C 8 WATSON 12
DENSCHND 3 HAIRY 2 PALMER4C 8 WOODS 4000
DENSCHNE 3 HATFLDD 3 PALMER5C 6 YFITU 3
DENSCHNF 2 HATFLDE 3 PALMER6C 8 ZANGWIL2 2
DIXMAANA 3000 HATFLDFL 3 PALMER7C 8
DIXMAANB 3000 HEART6LS 6 PALMER8C 8

Table 2: Tested methods

Method name θk−1 γ̂k−1 νk−1

ML1(BFGS) 1 (3.1) 1

ML2 1 +min

{
|gTk dk−1|

∥gk∥∥dk−1∥
, 0.9

}
(2.20) 1

ML3 1 +min

{
|gTk dk−1|

∥gk∥∥dk−1∥
, 0.9

}
(3.1) 1

KD 1 (3.9) 0.8

NEW 1 +min

{∣∣∣∣∣ gTk dk−1

gTk−1dk−1

∣∣∣∣∣ , 0.2

}
(3.9) 0.8

CGD CG DESCENT Ver5.3
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Figure 1: performance profiles based on CPU time

§5. Conclusions

In this paper, we have modified the memoryless quasi-Newton method based
on the spectral-scaling secant condition [16] and proposed a new method. Fur-
thermore, we have shown that the method always satisfies the sufficient descent
condition and converges globally. In numerical experiments, we have shown
that the proposed method performs better than existing memoryless quasi-
Newton methods do, and we have found suitable parameters for the proposed
method. A further study is to find more suitable choices for parameters θk−1,
γ̂k−1 and νk−1.
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