F-geometric mean labeling of graphs obtained by duplicating any edge of some graphs

A. Durai Baskar and S. Arockiaraj

(Received April 20, 2017; Revised November 22, 2017)

Abstract. A function f is called an F-geometric mean labeling of a graph G = (V, E) with p vertices and q edges if $f : V \to \{1, 2, 3, \ldots, q+1\}$ is injective and the induced function $f^* : E \to \{1, 2, 3, \ldots, q\}$ defined as

$$f^*(uv) = \left\lfloor \sqrt{f(u)f(v)} \right\rfloor$$
, for all $uv \in E$,

is bijective. A graph that admits an F-geometric mean labeling is called an F-geometric mean graph. In this paper we discuss the F-geometric meanness of graphs obtained by duplicating any edge of some graphs.

AMS 2010 Mathematics Subject Classification. 05C78

Key words and phrases. Labeling, F-geometric mean labeling, F-geometric mean graph.

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected simple graph. Let G = (V, E) be a graph with p vertices and q edges. For notations and terminology, we follow [4] and for a detailed survey on graph labeling, we refer [5].

Path on n vertices is denoted by P_n and a cycle on n vertics is denoted by C_n . The graph $G \circ K_1$ is obtained from the graph G by attaching a new pendant vertex at each vertex of G. A ladder $L_n, n \ge 2$, is the graph $P_2 \times P_n$. Duplicating of an edge e = uv of a graph G produces a new graph G' by adding an edge e' = u'v' such that $N(u') = (N(u) \cup \{v'\}) - \{v\}$ and $N(v') = (N(u) \cup \{u'\}) - \{u\}$ [6].

The concept of F-geometric mean labeling was first introduced by Durai Baskar et al. [1] and they studied the F-geometric mean labeling of some standard graphs [2, 3].

A function f is called an F-geometric mean labeling of a graph G = (V, E)with p vertices and q edges if $f: V \to \{1, 2, 3, \dots, q+1\}$ is injective and induced function $f^*: E \to \{1, 2, 3, \dots, q\}$ defined as $f^*(uv) = \left|\sqrt{f(u)f(v)}\right|$, for all $uv \in E$, is bijective. A graph that admits an F-geometric mean labeling is called an F-geometric mean graph. In this paper we discuss the F-geometric meanness of graphs obtained by duplicating any edge of some graphs.

§2. Main Results

Theorem 1. Let G be a graph obtained by duplicating an edge e of a path $P_n, n \geq 3$. Then G is an F-geometric mean graph.

Proof. Let v_1, v_2, \ldots, v_n be the vertices of the path P_n . Let $e' = v'_i v'_{i+1}$ be the duplicating edge of $e = v_i v_{i+1}$ for some $i, 1 \le i \le n-1$. **Case 1.** i = 1 or i = n - 1.

Since the graph G is isomorphic when i = 1 or i = n - 1, we may take i = 1.

Define $f: V(G) \to \{1, 2, 3, \dots, n+2\}$ as follows:

 $f(v_j) = \begin{cases} 2j-1, & 1 \le j \le 3\\ j+2, & 4 \le j \le n \end{cases} \text{ and } f(v'_j) = 2j, \text{ for } 1 \le j \le 2.$ Then the induced edge labeling is obtained as follows:

$$f^*(v_j v_{j+1}) = \begin{cases} 2j-1, & 1 \le j \le 3\\ j+2, & 4 \le j \le n-1, \end{cases} f^*(v_1' v_2') = 2 \text{ and } f^*(v_2' v_3) = 4.$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

Case 2. i = 2 and $n \ge 4$.

Define $f: V(G) \to \{1, 2, 3, \dots, n+3\}$ as follows: $f(v_j) = \begin{cases} 2j-1, & 1 \le j \le 4\\ j+3, & 5 \le j \le n \end{cases} \text{ and } f(v'_j) = 2j, \text{ for } 2 \le j \le 3.$ Then the induced edge labeling is obtained as follows: $f^*(v_j v_{j+1}) = \begin{cases} 2j-1, & 1 \le j \le 4\\ j+3, & 5 \le j \le n-1, \end{cases}$ $f^*(v_1v_2') = 2, f^*(v_2'v_3') = 4$ and $f^*(v_3'v_4) = 6.$ Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph. Case 3. $3 \le i \le n-2$ and $n \ge 5$. Define $f: V(G) \to \{1, 2, 3, \dots, n+3\}$ as follows: $(j, 1 \le j \le i-1)$

$$f(v_j) = \begin{cases} j' = j = i \\ i+2, \quad j=i \\ j+3, \quad i+1 \le j \le n, \end{cases} \quad f(v'_i) = i+1 \text{ and } f(v'_{i+1}) = i+3.$$

Then the induced edge labeling is obtained as follows:

$$f^{*}(v_{j}v_{j+1}) = \begin{cases} j, & 1 \leq j \leq i-2 \\ i, & j=i-1 \\ i+2, & j=i \\ j+3, & i+1 \leq j \leq n-1 \end{cases}$$

$$f^{*}(v_{i-1}v'_{i}) = i-1, f^{*}(v'_{i}v'_{i+1}) = i+1 \text{ and } f^{*}(v'_{i+1}v_{i+2}) = i+3.$$

Hence, f is an F-geometric mean labeling of G . Thus the graph G is an F-geometric mean graph.

The F-geometric mean labeling of G in the above cases are shown in Figure 1.

Figure 1.

Theorem 2. Let G be a graph obtained by duplicating an edge e of a graph $P_n \circ K_1, n \ge 2$. Then G is an F-geometric mean graph.

Proof. Let u_1, u_2, \ldots, u_n be the vertices of the path P_n and v_i be a pendant vertex attached at u_i , for $1 \le i \le n$. When n = 2, an F-geometric mean labeling of G is shown in Figures 2 and 3 (Figure 2 is the case $e = u_1v_1$ and Figure 3 is the case $e = u_1u_2$). So we assume $n \ge 3$.

Case 1. $e = u_i v_i$, for $1 \le i \le n$

Let its duplication be $e' = u'_i v'_i$.

Subcase (i). i = 1 or i = n.

Since the graph G is isomorphic when i = 1 or i = n, we may take i = 1. Define $f: V(G) \to \{1, 2, 3, \dots, 2n+2\}$ as follows: $f(u_j) = \begin{cases} j+3, & 1 \le j \le 2\\ 2j+2, & 3 \le j \le n, \end{cases} f(v_j) = \begin{cases} 4j-2, & 1 \le j \le 2\\ 2j+1, & 3 \le j \le n, \end{cases}$ $f(u'_1) = 3 \text{ and } f(v'_1) = 1.$ Then the induced edge labeling is obtained as follows:

$$f^*(u_j u_{j+1}) = 2j+2, \text{ for } 1 \le j \le n-1, \ f^*(u_j v_j) = \begin{cases} 2, & j=1\\ 2j+1, & 2 \le j \le n, \end{cases}$$
$$f^*(u_1' v_1') = 1 \text{ and } f^*(u_1' u_2) = 3.$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

Subcase (ii). i = 2.

Define $f: V(G) \rightarrow \{1, 2, 3, \dots, 2n+3\}$ as follows:

$$f(u_j) = \begin{cases} 3, & j = 1\\ 4j - 4, & 2 \le j \le 3\\ 2j + 3, & 4 \le j \le n, \end{cases} f(v_j) = \begin{cases} 1, & j = 1\\ 7j - 12, & 2 \le j \le 3\\ 2j + 2, & 4 \le j \le n \end{cases}$$
$$f(u'_2) = 7 \text{ and } f(v'_2) = 6.$$

Then the induced edge labeling is obtained as follows:

$$f^*(u_j u_{j+1}) = \begin{cases} 2j+1, & 1 \le j \le 2\\ 2j+3, & 3 \le j \le n-1, \end{cases}$$
$$f^*(u_j v_j) = \begin{cases} j, & 1 \le j \le 2\\ 2j+2, & 3 \le j \le n, \end{cases}$$
$$f^*(u_1 u_2') = 4, f^*(u_2' u_3) = 7 \text{ and } f^*(u_2' v_2') = 6. \end{cases}$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

Subcase (iii). $3 \le i \le n-1$ and $n \ge 4$.

Define $f: V(G) \to \{1, 2, 3, ..., 2n + 3\}$ as follows.

$$f(u_j) = \begin{cases} 2j, & 1 \le j \le i \\ 2i+4, & j=i+1 \\ 2j+3, & i+2 \le j \le n \end{cases} \quad f(v_j) = \begin{cases} 2j-1, & 1 \le j \le i \\ 2i+5, & j=i+1 \\ 2j+2, & i+2 \le j \le n, \end{cases}$$
$$f(u'_i) = 2i+3 \text{ and } f(v'_i) = 2i+2.$$

Then the induced edge labeling is obtained as follows:

$$f^*(u_j u_{j+1}) = \begin{cases} 2j, & 1 \le j \le i-1\\ 2i+1, & j=i\\ 2j+3, & i+1 \le j \le n-1, \end{cases}$$

$$f^*(u_j v_j) = \begin{cases} 2j-1, & 1 \le j \le i\\ 2j+2, & i+1 \le j \le n, \end{cases}$$

$$f^*(u_{i-1}u'_i) = 2i, f^*(u'_i u_{i+1}) = 2i+3 \text{ and } f^*(u'_i v'_i) = 2i+2.$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

110

Case 2. $e = u_i u_{i+1}$, for $1 \le i \le n - 1$

Let its duplication be $e' = u'_i u'_{i+1}$ Subcase (i). i = 1 or i = n - 1.

Since the graph G is isomorphic when i = 1 or i = n - 1, we may take i = 1.

Define $f: V(G) \to \{1, 2, 3, \dots, 2n+4\}$ as follows: $f(u_j) = \begin{cases} 1, & j=1\\ 2j+4, & 2 \le j \le n, \end{cases}$ $f(v_j) = \begin{cases} 3j, & 1 \le j \le 3\\ 2j+3, & 4 \le j \le n, \end{cases}$

$$\begin{cases} 2j+4, & 2 \le j \le n, \\ f(u'_1) = 4 \text{ and } f(u'_2) = 5. \end{cases}$$

Then the induced edge labeling obtained as follows:

$$f^*(u_j u_{j+1}) = \begin{cases} 2, & j = 1\\ 2j + 4, & 2 \le j \le n - 1, \end{cases}$$

$$f^*(u_j v_j) = \begin{cases} 5j - 4, & 1 \le j \le 2\\ 2j + 3, & 3 \le j \le n, \end{cases}$$

$$f^*(u'_1 v_1) = 3, f^*(u'_1 u'_2) = 4, f^*(u'_2 v_2) = 5 \text{ and } f^*(u'_2 u_3) = 7.$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

Subcase (ii). i = 2 and $n \ge 4$.

Define
$$f: V(G) \to \{1, 2, 3, \dots, 2n+5\}$$
 as follows:

$$f(u_j) = \begin{cases} 5j-3, & 1 \le j \le 2\\ 4j-4, & 3 \le j \le 4\\ 2j+5, & 5 \le j \le n, \end{cases} f(v_j) = \begin{cases} 5j-4, & 1 \le j \le 2\\ 3j+1, & 3 \le j \le 4\\ 2j+4, & 5 \le j \le n, \end{cases}$$

$$f(u'_2) = 3 \text{ and } f(u'_3) = 11.$$

Then the induced edge labeling is obtained as follows:

$$f^*(u_j u_{j+1}) = \begin{cases} 3, & j = 1\\ 2j+3, & 2 \le j \le 3\\ 2j+5, & 4 \le j \le n-1, \end{cases}$$

$$f^*(u_j v_j) = \begin{cases} 1, & j = 1\\ 2j+2, & 2 \le j \le 3\\ 2j+4, & 4 \le j \le n, \end{cases}$$

$$f^*(u_1 u'_2) = 2, f^*(u'_2 u'_3) = 5, f^*(u'_3 u_4) = 11, f^*(u'_2 v_2) = 4 \text{ and } f^*(u'_3 v_3) = 10.$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

 $\begin{aligned} \textbf{Subcase (iii).} \quad & 3 \leq i \leq n-2 \text{ and } n \geq 5. \\ \text{Define } f: V(G) \to \{1, 2, 3, \dots, 2n+5\} \text{ as follows:} \\ & f(u_j) = \begin{cases} 2j, & 1 \leq j \leq i-1 \\ 2i+3, & j=i \\ 2i+4, & j=i+1 \\ 2i+8, & j=i+2 \\ 2j+5, & i+3 \leq j \leq n, \end{cases} \begin{cases} 2j-1, & 1 \leq j \leq i-1 \\ 2i, & j=i \\ 2i+6, & j=i+1 \\ 2i+9, & j=i+2 \\ 2j+4, & i+3 \leq j \leq n, \end{cases} \\ f(u'_i) = 2i-1 \text{ and } f(u'_{i+1}) = 2i+7. \end{aligned}$

Then the induced edge labeling is obtained as follows:

$$f^{*}(u_{j}u_{j+1}) = \begin{cases} 2j, & 1 \leq j \leq i-2\\ 2i, & j=i-1\\ 2i+3, & j=i\\ 2i+5, & j=i+1\\ 2j+5, & i+2 \leq j \leq n-1, \end{cases}$$

$$f^{*}(u_{j}v_{j}) = \begin{cases} 2j-1, & 1 \leq j \leq i-1\\ 2i+1, & j=i\\ 2i+4, & j=i+1\\ 2j+4, & i+2 \leq j \leq n, \end{cases}$$

$$f^{*}(u_{i-1}u'_{i}) = 2i-2, f^{*}(u'_{i}u'_{i+1}) = 2i+2, f^{*}(u'_{i}u_{i+2}) = 2i+7, f^{*}(u'_{i}v_{i}) = 2i-1$$
and $f^{*}(u'_{i+1}v_{i+1}) = 2i+6.$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

The F-geometric mean labeling of G in the above cases are shown in Figure 4.

Theorem 3. Let G be a graph obtained by duplicating an edge e of a graph $C_n \circ K_1, n \geq 3$. Then G is an F-geometric mean graph.

Proof. Let u_1, u_2, \ldots, u_n be the vertices of the cycle C_n and v_i be a pendant vertex attached at u_i , for $1 \leq i \leq n$. When n = 3, an F-geometric mean labeling of G is shown in Figures 5 and 6 (Figure 5 is the case $e = u_1v_1$ and Figure 6 is the case $e = u_1u_2$). So we assume $n \geq 4$.

Case 1. $e = u_i v_i$, for $1 \le i \le n$.

Let its duplication be $e' = u'_i v'_i$ and choose arbitrarily i = 1. Subcase (i). n is odd

Define $f: V(G) \rightarrow \{1, 2, 3, \dots, 2n+4\}$ as follows:

$$f(u_j) = \begin{cases} 4, & j = 1\\ 4j - 2, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is odd} \\ 4j, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is even} \\ 2n + 4, & j = \left\lfloor \frac{n}{2} \right\rfloor + 2 \\ 4n + 11 - 4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is odd} \\ 4n + 9 - 4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is even}, \end{cases}$$

$$f(v_j) = \begin{cases} 2j + 3, & 1 \le j \le 2 \\ 4j, & 3 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is odd} \\ 4j - 2, & 3 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is odd} \\ 4j - 2, & 3 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is odd} \\ 4j - 2, & 3 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is even} \\ 2n + 3, & j = \left\lfloor \frac{n}{2} \right\rfloor + 2 \\ 4n + 9 - 4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is odd} \\ 4n + 11 - 4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is even}, \end{cases}$$

Then the induced edge labeling is obtained as follows: (5, j = 1

$$f^{*}(u_{j}u_{j+1}) = \begin{cases} 5, & j = 1\\ 4j, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor \\ 2n+1, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ and } j \text{ is odd} \\ 2n+2, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ and } j \text{ is even} \\ 4n+7-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n-1, \end{cases}$$
$$f^{*}(u_{n}u_{1}) = 6, f^{*}(u_{j}v_{j}) = \begin{cases} 3j+1, & 1 \le j \le 2 \\ 4j-2, & 3 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \\ 4n+9-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le j \le n, \end{cases}$$
$$f^{*}(u'_{1}v'_{1}) = 1, f^{*}(u_{n}u'_{1}) = 3 \text{ and } f^{*}(u_{2}u'_{1}) = 2. \end{cases}$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

Figure 5

$$f(u_j) = \begin{cases} 4, & j = 1\\ 4j - 2, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is odd} \\ 4j, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is even} \\ 4n + 9 - 4j, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le j \le n \text{ and } j \text{ is odd} \\ 4n + 11 - 4j, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le j \le n \text{ and } j \text{ is odd} \\ 4n + 11 - 4j, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le j \le n \text{ and } j \text{ is oven}, \end{cases}$$

$$f(v_j) = \begin{cases} 2j + 3, & 1 \le j \le 2 \\ 4j, & 3 \le j \le \left\lfloor \frac{n}{2} \right\rfloor \text{ and } j \text{ is odd} \\ 4j - 2, & 3 \le j \le \left\lfloor \frac{n}{2} \right\rfloor \text{ and } j \text{ is odd} \\ 2n + 1, & j = \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ is odd} \\ 2n + 3, & j = \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ is oven} \\ 2n + 2, & j = \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ is odd} \\ 2n + 4, & j = \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ is odd} \\ 2n + 4, & j = \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is odd} \\ 4n + 9 - 4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is oven}, \end{cases}$$

Then the induced edge labeling is obtained as follows:

$$f^*(u_j u_{j+1}) = \begin{cases} 5, & j = 1\\ 4j, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor\\ 2n+2, & j = \left\lfloor \frac{n}{2} \right\rfloor + 1\\ 4n+7-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le j \le n-1, \end{cases}$$
$$f^*(u_j v_j) = \begin{cases} 3j+1, & 1 \le j \le 2\\ 4j-2, & 3 \le j \le \left\lfloor \frac{n}{2} \right\rfloor\\ 2n+1, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor\\ 2n+3, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ and } j \text{ is odd} \\ 2n+3, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ and } j \text{ is even} \\ 4n+9-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n, \end{cases}$$
$$f^*(u_n u_1) = 6, f^*(u_1' v_1') = 1, f^*(u_n u_1') = 3 \text{ and } f^*(u_2 u_1') = 2.$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

Case 2. $e = u_i u_{i+1}$, for $1 \le i \le n - 1$.

Let its duplication be $e' = u'_i u'_{i+1}$ and choose arbitrarily i = 1.

Subcase (i). n is odd

Define $f: V(G) \rightarrow \{1, 2, 3, \dots, 2n+6\}$ as follows:

$$f(u_j) = \begin{cases} 4, & j = 1\\ 4j + 2, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is odd} \\ 4j, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is even} \\ 2n + 6, & j = \left\lfloor \frac{n}{2} \right\rfloor + 2 \\ 4n + 11 - 4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is odd} \\ 4n + 13 - 4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is even}, \end{cases}$$

$$f(v_j) = \begin{cases} 1, & j = 1\\ 4j, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is odd} \\ 4j+2, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is even} \\ 2n+5, & j = \left\lfloor \frac{n}{2} \right\rfloor + 2 \\ 4n+13-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is odd} \\ 4n+11-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is even}, \end{cases}$$
$$f(u'_1) = 2 \text{ and } f(u'_2) = 6.$$

Then the induced edge labeling is obtained as follows: (5, j = 1

$$f^{*}(u_{j}u_{j+1}) = \begin{cases} 5, & j = 1\\ 4j+2, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor \\ 2n+4, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ and } j \text{ is odd} \\ 2n+3, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ and } j \text{ is even} \\ 4n+9-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n-1 \end{cases}$$
$$f^{*}(u_{n}u_{1}) = 6, f^{*}(u_{j}v_{j}) = \begin{cases} 2, & j = 1\\ 4j, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1\\ 4n+11-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le j \le n, \end{cases}$$
$$f^{*}(u_{n}u_{1}') = 4, f^{*}(u_{1}'u_{2}') = 3, f^{*}(u_{2}'u_{3}) = 9, f^{*}(u_{1}'v_{1}) = 1 \text{ and } f^{*}(u_{2}'v_{2}) =$$
Hence, f is an F-geometric mean labeling of G . Thus the graph G is F-geometric mean graph.

7. an

Figure 6

Subcase (ii). n is even.

Define $f: V(G) \to \{1, 2, 3, \dots, 2n+6\}$ as follows: $f(u_j) = \begin{cases}
4, & j = 1 \\
4j+2, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is odd} \\
4j, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } j \text{ is even} \\
4n+13-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le j \le n \text{ and } j \text{ is odd} \\
4n+11-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le j \le n \text{ and } j \text{ is even},
\end{cases}$

$$f(v_j) = \begin{cases} 1, & j = 1\\ 4j, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor \text{ and } j \text{ is odd} \\ 4j+2, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor \text{ and } j \text{ is even} \\ 2n+5, & j = \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ is odd} \\ 2n+3, & j = \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ is even} \\ 2n+6, & j = \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ is odd} \\ 2n+4, & j = \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ is even} \\ 4n+11-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is odd} \\ 4n+13-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n \text{ and } j \text{ is even} \end{cases}$$

 $f(u_1) = 2$ and $f(u_2) = 6$.

Then the induced edge labeling is obtained as follows: (5 - i - 1)

$$f^{*}(u_{j}u_{j+1}) = \begin{cases} 5, & j = 1\\ 4j+2, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor - 2\\ 2n-2, & j = \left\lfloor \frac{n}{2} \right\rfloor - 1\\ 2n+2, & j = \left\lfloor \frac{n}{2} \right\rfloor \\ 2n+4, & j = \left\lfloor \frac{n}{2} \right\rfloor + 1\\ 4n+9-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le j \le n-1, \end{cases}$$

$$f^{*}(u_{j}v_{j}) = \begin{cases} 2, & j = 1\\ 4j, & 2 \le j \le \left\lfloor \frac{n}{2} \right\rfloor \\ 2n+5, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ and } j \text{ is odd} \\ 2n+3, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ and } j \text{ is oven} \\ 4n+11-4j, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le j \le n, \end{cases}$$

$$f^{*}(u_{n}u_{1}) = 6, f^{*}(u_{n}u_{1}') = 4, f^{*}(u_{1}'u_{2}') = 3, f^{*}(u_{2}'u_{3}) = 9,$$

$$f^{*}(u_{1}'v_{1}) = 1 \text{ and } f^{*}(u_{2}'v_{2}) = 7.$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

The F-geometric mean labeling of G in the above cases are shown in Figure 7.

Figure 7

Theorem 4. Let G be a graph obtained by duplicating an edge e of a graph $L_n, n \ge 2$, Then G is an F-geometric mean graph.

Proof. Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be the vertices on the path of length n-1 in the ladder L_n . When n=2, an F-geometric mean labeling of G is shown in Figure 8 (Figure 8 is the case $e = u_1v_1$ and $e = u_1u_2$). So we assume $n \ge 3$.

Case 1. $e = u_i v_i$, for $1 \le i \le n$ Let its duplication be $e' = u'_i v'_i$.

Subcase (i). i = 1 or i = n.

Since the graph G is isomorphic when i = 1 or i = n, we may take i = 1. Define $f: V(G) \to \{1, 2, 3, \dots, 3n + 2\}$ as follows:

$$f(u_j) = \begin{cases} 6, & j = 1\\ 3j + 1, & 2 \le j \le n, \end{cases} \quad f(v_j) = \begin{cases} 4, & j = 1\\ 3j + 2, & 2 \le j \le n, \end{cases}$$
$$f(u'_1) = 2 \text{ and } f(v'_1) = 1.$$

Then the induced edge labeling is obtained as follows:

$$f^*(u_j u_{j+1}) = \begin{cases} 6, & j = 1\\ 3j + 2, & 2 \le j \le n - 1, \end{cases}$$

$$f^*(u_j v_j) = 3j + 1, \text{ for } 1 \le j \le n, f^*(v_j v_{j+1}) = \begin{cases} 5, & j = 1\\ 3j + 3, & 2 \le j \le n - 1, \end{cases}$$

$$f^*(u'_1 v'_1) = 1, f^*(u'_1 u_2) = 3 \text{ and } f^*(v'_1 v_2) = 2.$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

Subcase (ii). i = 2.

Define
$$f: V(G) \to \{1, 2, 3, \dots, 3n + 4\}$$
 as follows:

$$f(u_j) = \begin{cases} 3, & j = 1\\ 1, & j = 2\\ 3j + 4, & 3 \le j \le n, \end{cases} f(v_j) = \begin{cases} 8, & j = 1\\ 5, & j = 2\\ 3j + 3, & 3 \le j \le n, \end{cases}$$

$$f(u'_2) = 10 \text{ and } f(v'_2) = 9.$$

Then the induced edge labeling is obtained as follows:

$$f^{*}(u_{j}u_{j+1}) = \begin{cases} 2j-1, & 1 \le j \le 2\\ 3j+5, & 3 \le j \le n-1, \end{cases}$$

$$f^{*}(u_{j}v_{j}) = \begin{cases} 4, & j=1\\ 2, & j=2\\ 3j+3, & 3 \le j \le n, \end{cases}$$

$$f^{*}(v_{j}v_{j+1}) = \begin{cases} j+5, & 1 \le j \le 2\\ 3j+4, & 3 \le j \le n-1, \end{cases}$$

$$f^{*}(u_{1}u'_{2}) = 5, f^{*}(u'_{2}u_{3}) = 11, f^{*}(v_{1}v'_{2}) = 8, f^{*}(v'_{2}v_{3}) = 10 \text{ and } f^{*}(u'_{2}v'_{2}) = 9. \end{cases}$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

Subcase (iii). i = 3 and $n \ge 4$.

Define $f: V(G) \to \{1, 2, 3, \dots, 3n+4\}$ as follows:

$$f(u_j) = \begin{cases} 3j-2, & 1 \le j \le 2\\ 14, & j = 3\\ 3j+4, & 4 \le j \le n, \end{cases} \quad f(v_j) = \begin{cases} 2j+1, & 1 \le j \le 3\\ 3j+3, & 4 \le j \le n, \end{cases}$$
$$f(u'_3) = 10 \text{ and } f(v'_3) = 13.$$

Then the induced edge labeling is obtained as follows:

$$f^*(u_j u_{j+1}) = \begin{cases} 5j - 3, & 1 \le j \le 2\\ 3j + 5, & 3 \le j \le n - 1, \end{cases}$$

$$f^*(u_j v_j) = \begin{cases} 1, & j = 1\\ 5j - 6, & 2 \le j \le 3\\ 3j + 3, & 4 \le j \le n, \end{cases}$$

$$f^*(v_j v_{j+1}) = \begin{cases} 3, & j = 1\\ 5j - 5, & 2 \le j \le 3\\ 3j + 4, & 4 \le j \le n - 1, \end{cases}$$

$$f^*(u_2 u'_3) = 6, f^*(u'_3 u_4) = 12, f^*(v_2 v'_3) = 8, f^*(v'_3 v_4) = 13 \text{ and } f^*(u'_3 v'_3) = 11.$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

Subcase (iv). $4 \le i \le n-1$ and $n \ge 5$.

Define
$$f: V(G) \to \{1, 2, 3, \dots, 3n + 4\}$$
 as follows:

$$f(u_j) = \begin{cases} 3j - 2, & 1 \le j \le i - 1 \\ 3i + 3, & j = i \\ 3j + 4, & i + 1 \le j \le n, \end{cases}$$

$$f(v_j) = \begin{cases} 3j - 1, & 1 \le j \le i - 1 \\ 3i - 2, & j = i \text{ and } 4 \le i \le 6 \\ 3i - 3, & j = i \text{ and } 7 \le i \le n - 1 \\ 3j + 3, & i + 1 \le j \le n, \end{cases}$$

 $f(u'_i) = 3i + 1$ and $f(v'_i) = 3i + 5$.

Then the induced edge labeling is obtained as follows:

$$f^*(u_j u_{j+1}) = \begin{cases} 3j-1, & 1 \le j \le i-2\\ 3i-2, & j=i-1\\ 3i+4, & j=i\\ 3j+5, & i+1 \le j \le n-1, \end{cases}$$
$$f^*(u_j v_j) = \begin{cases} 3j-2, & 1 \le j \le i-1\\ 3i, & j=i \text{ and } 4 \le i \le 6\\ 3i-1, & j=i \text{ and } 7 \le i \le n-1\\ 3j+3, & i+1 \le j \le n, \end{cases}$$

$$f^*(v_j v_{j+1}) = \begin{cases} 3j, & 1 \le j \le i-2 \\ 3i-4, & j=i-1 \\ 3i+1, & j=i \\ 3j+4, & i+1 \le j \le n-1, \end{cases}$$

$$f^*(u_{i-1}u'_{i}) = 3i + 2 \text{ and } f^*(u_{i-1}v'_{i}) = \begin{cases} 3i-1, & 4 \le i \le 6 \\ 3i, & 7 \le i \le n-1. \end{cases}$$
Hence, f is an F-geometric mean labeling of G . Thus the graph G is an F-geometric mean graph.
Case 2. $e = u_i u_{i+1}, \text{ for } 1 \le i \le n-1$
Let its duplication be $e' = u'_i u'_{i+1}.$
Subcase (i). $i = 1 \text{ or } i = n-1$.
Since the graph G is isomorphic when $i = 1$ or $i = n-1$, we may take $i = 1$.
Define $f: V(G) \to \{1, 2, 3, \dots, 3n+3\}$ as follows:
 $f(u_j) = \begin{cases} 5j, & 1 \le j \le 2 \\ 3j+3, & 3 \le j \le n, \end{cases} f(v_j) = \begin{cases} 3, & j=1 \\ 3j+2, & 2 \le j \le n, \end{cases} f(u'_1) = 1 \text{ and } f(u'_2) = 4.$
Then the induced edge labeling is obtained as follows:
 $f^*(u_j v_j) = \begin{cases} 3, & j=1 \\ 3j+4, & 0 1 \le j \le n-1, \end{cases} f^*(u_j v_j) = \begin{cases} 3, & j=1 \\ 3j+4, & 0 1 \le j \le n-1, \end{cases} f^*(u_j v_j) = \begin{cases} 3, & j=1 \\ 3j+3, & 2 \le j \le n, \end{cases} f^*(u_j v_j) = \begin{cases} 4, & j=1 \\ 3j+3, & 2 \le j \le n-1, \end{cases} f^*(u_j v_j) = \begin{cases} 3, & j=1 \\ 3j+3, & 2 \le j \le n-1, \end{cases} f^*(u_j v_j) = \begin{cases} 3, & j=1 \\ 3j+3, & 2 \le j \le n-1, \end{cases} f^*(u_j v_j) = \begin{cases} 4, & j=1 \\ 3j+3, & 2 \le j \le n-1, \end{cases} f^*(u_j v_j) = \begin{cases} 1 \ 3j+3, & 2 \le j \le n-1, \end{cases} f^*(u_j v_j) = \begin{cases} 3, & j=1 \\ 3j+3, & 2 \le j \le n-1, \end{cases} f^*(u_j v_j) = 1, f^*(u_j v_j) = 2, f^*(u_j v_3) = 6 \text{ and } f^*(u_2' v_2) = 5.$
Hence, f is an F-geometric mean labeling of G . Thus the graph G is an F-geometric mean graph.
Subcase (ii). $i = 2 \text{ and } n \ge 4.$
Define $f: V(G) \to \{1, 2, 3, \dots, 3n+4\}$ as follows:
 $f(u_j) = 3j + 4, \text{ for } 1 \le j < n, f(v_j) = 3j + 3, \text{ for } 1 \le j \le n, f(u_2'_2) = 1 \text{ and } f(u_3'_3) = 2.$
Then the induced edge labeling is obtained as follows:
 $f^*(u_j u_{j+1}) = 3j + 4, \text{ for } 1 \le j < n-1, f^*(u_j v_{u_j}) = 3j + 3, \text{ for } 1 \le j \le n, f^*(u_j v_{u_j}) = 1, f^*(u_j u_{u_j}) = 5, f^*(u_2'_{u_j}) = 3, f^*(u_j v_{u_j}) = 4.$
Hence, f is an F-geometric mean labeling of G . Thus the graph G is an F-geometric mean graph.
Subcase (iii). $i = 3 \text{ and } n \ge 5.$
Define $f: V(G) \to \{1, 2, 3, \dots, 3n + 4\}$ as follows:

 $f(u_j) = \begin{cases} j+3, & 1 \le j \le 2\\ 4j-1, & 3 \le j \le 4\\ 3j+4, & 5 \le j \le n, \end{cases} \quad f(v_j) = \begin{cases} 2j-1, & 1 \le j \le 2\\ 4j-3, & 3 \le j \le 4\\ 3j+3, & 5 \le j \le n, \end{cases}$

 $f(u'_3) = 8$ and $f(u'_4) = 16$. Then the induced edge labeling is obtained as follows:

$$f^*(u_j u_{j+1}) = \begin{cases} 3j+1, & 1 \le j \le 2\\ 4j, & 3 \le j \le 4\\ 3j+5, & 5 \le j \le n-1, \end{cases}$$

$$f^*(u_j v_j) = \begin{cases} j+1, & 1 \le j \le 2\\ 4j-3, & 3 \le j \le 4\\ 3j+3, & 5 \le j \le n, \end{cases}$$

$$f^*(v_j v_{j+1}) = \begin{cases} 1, & j=1\\ 5j-5, & 2 \le j \le 4\\ 3j+4, & 5 \le j \le n-1, \end{cases}$$

$$f^*(u_2 u'_3) = 6, f^*(u'_3 u'_4) = 11, f^*(u'_4 u_5) = 17, f^*(u'_3 v_3) = 8 \text{ and } f^*(u'_4 v_4) = 14.$$

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

Subcase (iv). $4 \le i \le n-2$ and $n \ge 6$.

Define $f: V(G) \rightarrow \{1, 2, 3, \dots, 3n+4\}$ as follows:

$$f(u_j) = \begin{cases} 3j-1, & 1 \le j \le i-2\\ 3i-3, & j=i-1\\ 3i+2, & j=i\\ 3i+6, & j=i+1\\ 3j+4, & i+2 \le j \le n, \end{cases} f(v_j) = \begin{cases} 3j-2, & 1 \le j \le i-1\\ 3i-1, & j=i\\ 3i+4, & j=i+1\\ 3j+3, & i+2 \le j \le n, \end{cases}$$

 $f(u'_i) = 3i - 2$ and $f(u'_{i+1}) = 3i + 8$.

Then the induced edge labeling is obtained as follows:

$$f^{*}(u_{j}u_{j+1}) = \begin{cases} 3j, & 1 \leq j \leq i-2\\ 3i-1, & j=i-1\\ 3i+3, & j=i\\ 3i+3, & j=i\\ 3j+5, & i+2 \leq j \leq n-1 \end{cases}$$

$$f^{*}(u_{j}v_{j}) = \begin{cases} 3j-2, & 1 \leq j \leq i-1\\ 3i, & j=i\\ 3i+4, & j=i+1\\ 3j+3, & i+2 \leq j \leq n, \end{cases}$$

$$f^{*}(v_{j}v_{j+1}) = \begin{cases} 3j-1, & 1 \leq j \leq i-1\\ 3i+1, & j=i\\ 3i+6, & j=i+1\\ 3j+4, & i+2 \leq j \leq n-1, \end{cases}$$

$$f^{*}(u_{i-1}u'_{i}) = 3i-3, f^{*}(u'_{i}u'_{i+1}) = 3i+2, f^{*}(u'_{i}u_{i+2}) = 3i+8,$$

$$f^{*}(u'_{i}v_{i}) = 3i-2 \text{ and } f^{*}(u'_{i+1}v_{i+1}) = 3i+5.$$
Hence, f is an E-geometric mean labeling of G. Thus the graph of the second s

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an F-geometric mean graph.

123

Figure 8

The F-geometric mean labeling of G in the above cases are shown in Figure 9.

Acknowledgments

The authors would like to thank the editor and anonymous reviewers for helpful suggestions which improved the presentation of the paper.

References

- A. Durai Baskar, S. Arockiaraj and B. Rajendran, Geometric Mean Labeling of Graphs Obtained from Some Graph Operations, *International J.Math. Combin.*, 1 (2013), 85–98.
- [2] A. Durai Baskar, S. Arockiaraj and B. Rajendran, F-Geometric mean labeling of some chain graphs and thorn graphs, *Kragujevac J. Math.*, 37(1) (2013), 163– 186.
- [3] A. Durai Baskar, S. Arockiaraj and B. Rajendran, Geometric meanness of graphs obtained from paths, *Util. Math.*, **101** (2016), 45-68.
- [4] F. Buckley and F. Harary, Distance in graphs, Addison-Wesley, Reading, 1990.
- [5] J. A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.*, (2016), #DS6.

[6] S. K. Vaidya and C. M. Barasara, Harmonic mean labeling in the contextof duplication of graph elements, *Elixir Dist. Math.*, 48 (2012), 9482–9485.

A. Durai Baskar Department of Mathematics Mepco Schlenk Engineering College Mepco Engineering College (PO) Sivakasi - 626 005 Tamilnadu India. *E-mail*: a.duraibaskr@gmail.com

S. Arockiaraj Department of Mathematics Government Arts & Science College Sivakasi - 626 124 Tamilnadu India. *E-mail*: psarockiaraj@gmail.com