# F-geometric mean labeling of graphs obtained by duplicating any edge of some graphs 

A. Durai Baskar and S. Arockiaraj

(Received April 20, 2017; Revised November 22, 2017)


#### Abstract

A function $f$ is called an $F$-geometric mean labeling of a graph $G=(V, E)$ with $p$ vertices and $q$ edges if $f: V \rightarrow\{1,2,3, \ldots, q+1\}$ is injective and the induced function $f^{*}: E \rightarrow\{1,2,3, \ldots, q\}$ defined as $$
f^{*}(u v)=\lfloor\sqrt{f(u) f(v)}\rfloor, \text { for all } u v \in E
$$ is bijective. A graph that admits an F-geometric mean labeling is called an F-geometric mean graph. In this paper we discuss the F-geometric meanness of graphs obtained by duplicating any edge of some graphs.


AMS 2010 Mathematics Subject Classification. 05C78
Key words and phrases. Labeling, F-geometric mean labeling, F-geometric mean graph.

## §1. Introduction

Throughout this paper, by a graph we mean a finite, undirected simple graph. Let $G=(V, E)$ be a graph with $p$ vertices and $q$ edges. For notations and terminology, we follow [4] and for a detailed survey on graph labeling, we refer [5].

Path on $n$ vertices is denoted by $P_{n}$ and a cycle on $n$ vertics is denoted by $C_{n}$. The graph $G \circ K_{1}$ is obtained from the graph $G$ by attaching a new pendant vertex at each vertex of $G$. A ladder $L_{n}, n \geq 2$, is the graph $P_{2} \times P_{n}$. Duplicating of an edge $e=u v$ of a graph $G$ produces a new graph $G^{\prime}$ by adding an edge $e^{\prime}=u^{\prime} v^{\prime}$ such that $N\left(u^{\prime}\right)=\left(N(u) \cup\left\{v^{\prime}\right\}\right)-\{v\}$ and $N\left(v^{\prime}\right)=\left(N(u) \cup\left\{u^{\prime}\right\}\right)-\{u\}$ [6].

The concept of F-geometric mean labeling was first introduced by Durai Baskar et al. [1] and they studied the F-geometric mean labeling of some standard graphs $[2,3]$.

A function $f$ is called an F-geometric mean labeling of a graph $G=(V, E)$ with $p$ vertices and $q$ edges if $f: V \rightarrow\{1,2,3, \ldots, q+1\}$ is injective and induced function $f^{*}: E \rightarrow\{1,2,3, \ldots, q\}$ defined as $f^{*}(u v)=\lfloor\sqrt{f(u) f(v)}\rfloor$, for all $u v \in E$, is bijective. A graph that admits an F-geometric mean labeling is called an F-geometric mean graph. In this paper we discuss the F-geometric meanness of graphs obtained by duplicating any edge of some graphs.

## §2. Main Results

Theorem 1. Let $G$ be a graph obtained by duplicating an edge $e$ of a path $P_{n}, n \geq 3$. Then $G$ is an F-geometric mean graph.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path $P_{n}$. Let $e^{\prime}=v_{i}^{\prime} v_{i+1}^{\prime}$ be the duplicating edge of $e=v_{i} v_{i+1}$ for some $i, 1 \leq i \leq n-1$.
Case 1. $\quad i=1$ or $i=n-1$.
Since the graph $G$ is isomorphic when $i=1$ or $i=n-1$, we may take $i=1$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, n+2\}$ as follows:
$f\left(v_{j}\right)=\left\{\begin{array}{ll}2 j-1, & 1 \leq j \leq 3 \\ j+2, & 4 \leq j \leq n\end{array}\right.$ and $f\left(v_{j}^{\prime}\right)=2 j$, for $1 \leq j \leq 2$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(v_{j} v_{j+1}\right)=\left\{\begin{array}{ll}2 j-1, & 1 \leq j \leq 3 \\ j+2, & 4 \leq j \leq n-1,\end{array} \quad f^{*}\left(v_{1}^{\prime} v_{2}^{\prime}\right)=2\right.$ and $f^{*}\left(v_{2}^{\prime} v_{3}\right)=4$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Case 2. $i=2$ and $n \geq 4$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, n+3\}$ as follows:
$f\left(v_{j}\right)=\left\{\begin{array}{ll}2 j-1, & 1 \leq j \leq 4 \\ j+3, & 5 \leq j \leq n\end{array}\right.$ and $f\left(v_{j}^{\prime}\right)=2 j$, for $2 \leq j \leq 3$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(v_{j} v_{j+1}\right)= \begin{cases}2 j-1, & 1 \leq j \leq 4 \\ j+3, & 5 \leq j \leq n-1,\end{cases}$
$f^{*}\left(v_{1} v_{2}^{\prime}\right)=2, f^{*}\left(v_{2}^{\prime} v_{3}^{\prime}\right)=4$ and $f^{*}\left(v_{3}^{\prime} v_{4}\right)=6$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Case 3. $3 \leq i \leq n-2$ and $n \geq 5$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, n+3\}$ as follows:
$f\left(v_{j}\right)=\left\{\begin{array}{ll}j, & 1 \leq j \leq i-1 \\ i+2, & j=i \\ j+3, & i+1 \leq j \leq n,\end{array} f\left(v_{i}^{\prime}\right)=i+1\right.$ and $f\left(v_{i+1}^{\prime}\right)=i+3$.

Then the induced edge labeling is obtained as follows:
$f^{*}\left(v_{j} v_{j+1}\right)= \begin{cases}j, & 1 \leq j \leq i-2 \\ i, & j=i-1 \\ i+2, & j=i \\ j+3, & i+1 \leq j \leq n-1\end{cases}$
$f^{*}\left(v_{i-1} v_{i}^{\prime}\right)=i-1, f^{*}\left(v_{i}^{\prime} v_{i+1}^{\prime}\right)=i+1$ and $f^{*}\left(v_{i+1}^{\prime} v_{i+2}\right)=i+3$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.

The F-geometric mean labeling of $G$ in the above cases are shown in Figure 1.


Figure 1.
Theorem 2. Let $G$ be a graph obtained by duplicating an edge e of a graph $P_{n} \circ K_{1}, n \geq 2$. Then $G$ is an F-geometric mean graph.

Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path $P_{n}$ and $v_{i}$ be a pendant vertex attached at $u_{i}$, for $1 \leq i \leq n$. When $n=2$, an F-geometric mean labeling of $G$ is shown in Figures 2 and 3 (Figure 2 is the case $e=u_{1} v_{1}$ and Figure 3 is the case $e=u_{1} u_{2}$ ). So we assume $n \geq 3$.
Case 1. $e=u_{i} v_{i}$, for $1 \leq i \leq n$
Let its duplication be $e^{\prime}=u_{i}^{\prime} v_{i}^{\prime}$.
Subcase (i). $\quad i=1$ or $i=n$.
Since the graph $G$ is isomorphic when $i=1$ or $i=n$, we may take $i=1$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+2\}$ as follows:
$f\left(u_{j}\right)=\left\{\begin{array}{ll}j+3, & 1 \leq j \leq 2 \\ 2 j+2, & 3 \leq j \leq n,\end{array} \quad f\left(v_{j}\right)= \begin{cases}4 j-2, & 1 \leq j \leq 2 \\ 2 j+1, & 3 \leq j \leq n,\end{cases}\right.$ $f\left(u_{1}^{\prime}\right)=3$ and $f\left(v_{1}^{\prime}\right)=1$.

Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)=2 j+2$, for $1 \leq j \leq n-1, f^{*}\left(u_{j} v_{j}\right)= \begin{cases}2, & j=1 \\ 2 j+1, & 2 \leq j \leq n,\end{cases}$
$f^{*}\left(u_{1}^{\prime} v_{1}^{\prime}\right)=1$ and $f^{*}\left(u_{1}^{\prime} u_{2}\right)=3$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Subcase (ii). $\quad i=2$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+3\}$ as follows:
$f\left(u_{j}\right)=\left\{\begin{array}{lll}3, & j=1 \\ 4 j-4, & 2 \leq j \leq 3 \\ 2 j+3, & 4 \leq j \leq n,\end{array} \quad f\left(v_{j}\right)= \begin{cases}1, & j=1 \\ 7 j-12, & 2 \leq j \leq 3 \\ 2 j+2, & 4 \leq j \leq n\end{cases}\right.$
$f\left(u_{2}^{\prime}\right)=7$ and $f\left(v_{2}^{\prime}\right)=6$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}2 j+1, & 1 \leq j \leq 2 \\ 2 j+3, & 3 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{j} v_{j}\right)= \begin{cases}j, & 1 \leq j \leq 2 \\ 2 j+2, & 3 \leq j \leq n,\end{cases}$
$f^{*}\left(u_{1} u_{2}^{\prime}\right)=4, f^{*}\left(u_{2}^{\prime} u_{3}\right)=7$ and $f^{*}\left(u_{2}^{\prime} v_{2}^{\prime}\right)=6$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Subcase (iii). $\quad 3 \leq i \leq n-1$ and $n \geq 4$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+3\}$ as follows.
$f\left(u_{j}\right)=\left\{\begin{array}{ll}2 j, & 1 \leq j \leq i \\ 2 i+4, & j=i+1 \\ 2 j+3, & i+2 \leq j \leq n\end{array} \quad f\left(v_{j}\right)= \begin{cases}2 j-1, & 1 \leq j \leq i \\ 2 i+5, & j=i+1 \\ 2 j+2, & i+2 \leq j \leq n,\end{cases}\right.$
$f\left(u_{i}^{\prime}\right)=2 i+3$ and $f\left(v_{i}^{\prime}\right)=2 i+2$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}2 j, & 1 \leq j \leq i-1 \\ 2 i+1, & j=i \\ 2 j+3, & i+1 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{j} v_{j}\right)= \begin{cases}2 j-1, & 1 \leq j \leq i \\ 2 j+2, & i+1 \leq j \leq n,\end{cases}$
$f^{*}\left(u_{i-1} u_{i}^{\prime}\right)=2 i, f^{*}\left(u_{i}^{\prime} u_{i+1}\right)=2 i+3$ and $f^{*}\left(u_{i}^{\prime} v_{i}^{\prime}\right)=2 i+2$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.


Figure 2
Case 2. $e=u_{i} u_{i+1}$, for $1 \leq i \leq n-1$
Let its duplication be $e^{\prime}=u_{i}^{\prime} u_{i+1}^{\prime}$
Subcase (i). $\quad i=1$ or $i=n-1$.
Since the graph $G$ is isomorphic when $i=1$ or $i=n-1$, we may take $i=1$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+4\}$ as follows:
$f\left(u_{j}\right)=\left\{\begin{array}{ll}1, & j=1 \\ 2 j+4, & 2 \leq j \leq n,\end{array} \quad f\left(v_{j}\right)= \begin{cases}3 j, & 1 \leq j \leq 3 \\ 2 j+3, & 4 \leq j \leq n,\end{cases}\right.$
$f\left(u_{1}^{\prime}\right)=4$ and $f\left(u_{2}^{\prime}\right)=5$.
Then the induced edge labeling obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}2, & j=1 \\ 2 j+4, & 2 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{j} v_{j}\right)= \begin{cases}5 j-4, & 1 \leq j \leq 2 \\ 2 j+3, & 3 \leq j \leq n,\end{cases}$
$f^{*}\left(u_{1}^{\prime} v_{1}\right)=3, f^{*}\left(u_{1}^{\prime} u_{2}^{\prime}\right)=4, f^{*}\left(u_{2}^{\prime} v_{2}\right)=5$ and $f^{*}\left(u_{2}^{\prime} u_{3}\right)=7$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Subcase (ii). $\quad i=2$ and $n \geq 4$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+5\}$ as follows:
$f\left(u_{j}\right)=\left\{\begin{array}{ll}5 j-3, & 1 \leq j \leq 2 \\ 4 j-4, & 3 \leq j \leq 4 \\ 2 j+5, & 5 \leq j \leq n,\end{array} \quad f\left(v_{j}\right)= \begin{cases}5 j-4, & 1 \leq j \leq 2 \\ 3 j+1, & 3 \leq j \leq 4 \\ 2 j+4, & 5 \leq j \leq n,\end{cases}\right.$
$f\left(u_{2}^{\prime}\right)=3$ and $f\left(u_{3}^{\prime}\right)=11$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}3, & j=1 \\ 2 j+3, & 2 \leq j \leq 3 \\ 2 j+5, & 4 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{j} v_{j}\right)= \begin{cases}1, & j=1 \\ 2 j+2, & 2 \leq j \leq 3 \\ 2 j+4, & 4 \leq j \leq n,\end{cases}$
$f^{*}\left(u_{1} u_{2}^{\prime}\right)=2, f^{*}\left(u_{2}^{\prime} u_{3}^{\prime}\right)=5, f^{*}\left(u_{3}^{\prime} u_{4}\right)=11, f^{*}\left(u_{2}^{\prime} v_{2}\right)=4$ and $f^{*}\left(u_{3}^{\prime} v_{3}\right)=10$.

Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Subcase (iii). $3 \leq i \leq n-2$ and $n \geq 5$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+5\}$ as follows:
$f\left(u_{j}\right)=\left\{\begin{array}{ll}2 j, & 1 \leq j \leq i-1 \\ 2 i+3, & j=i \\ 2 i+4, & j=i+1 \\ 2 i+8, & j=i+2 \\ 2 j+5, & i+3 \leq j \leq n,\end{array} \quad f\left(v_{j}\right)= \begin{cases}2 j-1, & 1 \leq j \leq i-1 \\ 2 i, & j=i \\ 2 i+6, & j=i+1 \\ 2 i+9, & j=i+2 \\ 2 j+4, & i+3 \leq j \leq n,\end{cases}\right.$
$f\left(u_{i}^{\prime}\right)=2 i-1$ and $f\left(u_{i+1}^{\prime}\right)=2 i+7$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}2 j, & 1 \leq j \leq i-2 \\ 2 i, & j=i-1 \\ 2 i+3, & j=i \\ 2 i+5, & j=i+1 \\ 2 j+5, & i+2 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{j} v_{j}\right)= \begin{cases}2 j-1, & 1 \leq j \leq i-1 \\ 2 i+1, & j=i \\ 2 i+4, & j=i+1 \\ 2 j+4, & i+2 \leq j \leq n,\end{cases}$
$f^{*}\left(u_{i-1} u_{i}^{\prime}\right)=2 i-2, f^{*}\left(u_{i}^{\prime} u_{i+1}^{\prime}\right)=2 i+2, f^{*}\left(u_{i}^{\prime} u_{i+2}\right)=2 i+7, f^{*}\left(u_{i}^{\prime} v_{i}\right)=2 i-1$ and $f^{*}\left(u_{i+1}^{\prime} v_{i+1}\right)=2 i+6$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.


Figure 3
The F-geometric mean labeling of $G$ in the above cases are shown in Figure 4.



Figure 4
Theorem 3. Let $G$ be a graph obtained by duplicating an edge e of a graph $C_{n} \circ K_{1}, n \geq 3$. Then $G$ is an $F$-geometric mean graph.

Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the cycle $C_{n}$ and $v_{i}$ be a pendant vertex attached at $u_{i}$, for $1 \leq i \leq n$. When $n=3$, an F-geometric mean labeling of $G$ is shown in Figures 5 and 6 (Figure 5 is the case $e=u_{1} v_{1}$ and Figure 6 is the case $e=u_{1} u_{2}$ ). So we assume $n \geq 4$.
Case 1. $e=u_{i} v_{i}$, for $1 \leq i \leq n$.
Let its duplication be $e^{\prime}=u_{i}^{\prime} v_{i}^{\prime}$ and choose arbitrarily $i=1$.
Subcase (i). $n$ is odd
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+4\}$ as follows:

$$
\begin{aligned}
& f\left(u_{j}\right)= \begin{cases}4, & j=1 \\
4 j-2, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is odd } \\
4 j, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is even } \\
2 n+4, & j=\left\lfloor\frac{n}{2}\right\rfloor+2 \\
4 n+11-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is odd } \\
4 n+9-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is even, }\end{cases} \\
& f\left(v_{j}\right)= \begin{cases}2 j+3, & 1 \leq j \leq 2 \\
4 j & 3 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is odd } \\
4 j-2, & 3 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is even } \\
2 n+3, & j=\left\lfloor\frac{n}{2}\right\rfloor+2 \\
4 n+9-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is odd } \\
4 n+11-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is even, }\end{cases} \\
& f\left(u_{1}^{\prime}\right)=1 \text { and } f\left(v_{1}^{\prime}\right)=2 .
\end{aligned}
$$

Then the induced edge labeling is obtained as follows:

$$
\begin{aligned}
& f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}5, & j=1 \\
4 j, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor \\
2 n+1, & \left\lfloor\frac{n}{2}\right\rfloor+1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+2 \text { and } j \text { is odd } \\
2 n+2, & \left\lfloor\frac{n}{2}\right\rfloor+1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+2 \text { and } j \text { is even } \\
4 n+7-4 j, & \left.\frac{n}{2}\right\rfloor+3 \leq j \leq n-1,\end{cases} \\
& f^{*}\left(u_{n} u_{1}\right)=6, f^{*}\left(u_{j} v_{j}\right)= \begin{cases}3 j+1, & 1 \leq j \leq 2 \\
4 j-2, & 3 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \\
4 n+9-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+2 \leq j \leq n,\end{cases} \\
& f^{*}\left(u_{1}^{\prime} v_{1}^{\prime}\right)=1, f^{*}\left(u_{n} u_{1}^{\prime}\right)=3 \text { and } f^{*}\left(u_{2} u_{1}^{\prime}\right)=2 .
\end{aligned}
$$

Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.


Figure 5
Subcase (ii). $n$ is even.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+4\}$ as follows:

$$
\begin{aligned}
& f\left(u_{j}\right)= \begin{cases}4, & j=1 \\
4 j-2, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is odd } \\
4 j, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is even } \\
4 n+9-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+2 \leq j \leq n \text { and } j \text { is odd } \\
4 n+11-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+2 \leq j \leq n \text { and } j \text { is even, }\end{cases} \\
& f\left(v_{j}\right)= \begin{cases}2 j+3, & 1 \leq j \leq 2 \\
4 j, & 3 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor \text { and } j \text { is odd } \\
4 j-2, & 3 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor \text { and } j \text { is even } \\
2 n+1, & j=\left\lfloor\frac{n}{2}\right\rfloor+1 \text { is odd } \\
2 n+3, & j=\left\lfloor\frac{n}{2}\right\rfloor+1 \text { is even } \\
2 n+2, & j=\left\lfloor\frac{n}{2}\right\rfloor+2 \text { is odd } \\
2 n+4, & j=\left\lfloor\frac{n}{2}\right\rfloor+2 \text { is even } \\
4 n+11-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is odd } \\
4 n+9-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is even, }\end{cases} \\
& f\left(u_{1}^{\prime}\right)=1 \text { and } f\left(v_{1}^{\prime}\right)=2 .
\end{aligned}
$$

Then the induced edge labeling is obtained as follows:

$$
\begin{aligned}
& f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}5, & j=1 \\
4 j, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor \\
2 n+2, & j=\left\lfloor\frac{n}{2}\right\rfloor+1 \\
4 n+7-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+2 \leq j \leq n-1,\end{cases} \\
& f^{*}\left(u_{j} v_{j}\right)= \begin{cases}3 j+1, & 1 \leq j \leq 2 \\
4 j-2, & 3 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor \\
2 n+1, & \left\lfloor\frac{n}{2}\right\rfloor+1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+2 \text { and } j \text { is odd } \\
2 n+3, & \left.\frac{n}{n}\right\rfloor+1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+2 \text { and } j \text { is even } \\
4 n+9-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n,\end{cases} \\
& f^{*}\left(u_{n} u_{1}\right)=6, f^{*}\left(u_{1}^{\prime} v_{1}^{\prime}\right)=1, f^{*}\left(u_{n} u_{1}^{\prime}\right)=3 \text { and } f^{*}\left(u_{2} u_{1}^{\prime}\right)=2 .
\end{aligned}
$$

Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Case 2. $e=u_{i} u_{i+1}$, for $1 \leq i \leq n-1$.
Let its duplication be $e^{\prime}=u_{i}^{\prime} u_{i+1}^{\prime}$ and choose arbitrarily $i=1$.
Subcase (i). $n$ is odd
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+6\}$ as follows:

$$
f\left(u_{j}\right)= \begin{cases}4, & j=1 \\ 4 j+2, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is odd } \\ 4 j, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is even } \\ 2 n+6, & j=\left\lfloor\frac{n}{2}\right\rfloor+2 \\ 4 n+11-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is odd } \\ 4 n+13-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is even, }\end{cases}
$$

$f\left(v_{j}\right)= \begin{cases}1, & j=1 \\ 4 j, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is odd } \\ 4 j+2, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is even } \\ 2 n+5, & j=\left\lfloor\frac{n}{2}\right\rfloor+2 \\ 4 n+13-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is odd } \\ 4 n+11-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is even, }\end{cases}$
$f\left(u_{1}^{\prime}\right)=2$ and $f\left(u_{2}^{\prime}\right)=6$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}5, & j=1 \\ 4 j+2, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor \\ 2 n+4, & \left\lfloor\frac{n}{2}\right\rfloor+1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+2 \text { and } j \text { is odd } \\ 2 n+3, & {\left[\frac{n}{2}\right\rfloor+1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+2 \text { and } j \text { is even }} \\ 4 n+9-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n-1\end{cases}$
$f^{*}\left(u_{n} u_{1}\right)=6, f^{*}\left(u_{j} v_{j}\right)= \begin{cases}2, & j=1 \\ 4 j, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \\ 4 n+11-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+2 \leq j \leq n,\end{cases}$
$f^{*}\left(u_{n} u_{1}^{\prime}\right)=4, f^{*}\left(u_{1}^{\prime} u_{2}^{\prime}\right)=3, f^{*}\left(u_{2}^{\prime} u_{3}\right)=9, f^{*}\left(u_{1}^{\prime} v_{1}\right)=1$ and $f^{*}\left(u_{2}^{\prime} v_{2}\right)=7$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.


Figure 6
Subcase (ii). $n$ is even.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+6\}$ as follows:
$f\left(u_{j}\right)= \begin{cases}4, & j=1 \\ 4 j+2, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is odd } \\ 4 j, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \text { and } j \text { is even } \\ 4 n+13-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+2 \leq j \leq n \text { and } j \text { is odd } \\ 4 n+11-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+2 \leq j \leq n \text { and } j \text { is even, }\end{cases}$
$f\left(v_{j}\right)= \begin{cases}1, & j=1 \\ 4 j, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor \text { and } j \text { is odd } \\ 4 j+2, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor \text { and } j \text { is even } \\ 2 n+5, & j=\left\lfloor\frac{n}{2}\right\rfloor+1 \text { is odd } \\ 2 n+3, & j=\left\lfloor\frac{n}{2}\right\rfloor+1 \text { is even } \\ 2 n+6, & j=\left\lfloor\frac{n}{2}\right\rfloor+2 \text { is odd } \\ 2 n+4, & j=\left\lfloor\frac{n}{2}\right\rfloor+2 \text { is even } \\ 4 n+11-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is odd } \\ 4 n+13-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+3 \leq j \leq n \text { and } j \text { is even, }\end{cases}$
$f\left(u_{1}^{\prime}\right)=2$ and $f\left(u_{2}^{\prime}\right)=6$.
$f\left(u_{1}^{\prime}\right)=2$ and $f\left(u_{2}^{\prime}\right)=6$.
Then the induced edge labeling is obtained as follows:

$$
\begin{aligned}
& f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}5, & j=1 \\
4 j+2, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor-2 \\
2 n-2, & j=\left\lfloor\frac{n}{2}\right\rfloor-1 \\
2 n+2, & j=\left\lfloor\frac{n}{2}\right\rfloor \\
2 n+4, & j=\left\lfloor\frac{n}{2}\right\rfloor+1 \\
4 n+9-4 j, & \left\lfloor\frac{n}{2}\right\rfloor+2 \leq j \leq n-1,\end{cases} \\
& f^{*}\left(u_{j} v_{j}\right)= \begin{cases}2, & j=1 \\
4 j, & 2 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor \\
2 n+5, & \left\lfloor\frac{n}{2}\right\rfloor+1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+2 \text { and } j \text { is odd } \\
2 n+3, & \left\lfloor\frac{n}{2}\right\rfloor+1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor+2 \text { and } j \text { is even } \\
4 n+11-4 j, & \left.\frac{n}{2}\right\rfloor+3 \leq j \leq n,\end{cases} \\
& f^{*}\left(u_{n} u_{1}\right)=6, f^{*}\left(u_{n} u_{1}^{\prime}\right)=4, f^{*}\left(u_{1}^{\prime} u_{2}^{\prime}\right)=3, f^{*}\left(u_{2}^{\prime} u_{3}\right)=9, \\
& f^{*}\left(u_{1}^{\prime} v_{1}\right)=1 \text { and } f^{*}\left(u_{2}^{\prime} v_{2}\right)=7 .
\end{aligned}
$$

Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
The F-geometric mean labeling of $G$ in the above cases are shown in Figure 7.



Figure 7

Theorem 4. Let $G$ be a graph obtained by duplicating an edge e of a graph $L_{n}, n \geq 2$, Then Gis an F-geometric mean graph.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices on the path of length $n-1$ in the ladder $L_{n}$. When $n=2$, an F-geometric mean labeling of $G$ is shown in Figure 8 (Figure 8 is the case $e=u_{1} v_{1}$ and $e=u_{1} u_{2}$ ). So we assume $n \geq 3$.
Case 1. $e=u_{i} v_{i}$, for $1 \leq i \leq n$
Let its duplication be $e^{\prime}=u_{i}^{\prime} v_{i}^{\prime}$.
Subcase (i). $\quad i=1$ or $i=n$.
Since the graph $G$ is isomorphic when $i=1$ or $i=n$, we may take $i=1$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 3 n+2\}$ as follows:
$f\left(u_{j}\right)=\left\{\begin{array}{ll}6, & j=1 \\ 3 j+1, & 2 \leq j \leq n,\end{array} \quad f\left(v_{j}\right)= \begin{cases}4, & j=1 \\ 3 j+2, & 2 \leq j \leq n,\end{cases}\right.$
$f\left(u_{1}^{\prime}\right)=2$ and $f\left(v_{1}^{\prime}\right)=1$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}6, & j=1 \\ 3 j+2, & 2 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{j} v_{j}\right)=3 j+1$, for $1 \leq j \leq n, f^{*}\left(v_{j} v_{j+1}\right)= \begin{cases}5, & j=1 \\ 3 j+3, & 2 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{1}^{\prime} v_{1}^{\prime}\right)=1, f^{*}\left(u_{1}^{\prime} u_{2}\right)=3$ and $f^{*}\left(v_{1}^{\prime} v_{2}\right)=2$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Subcase (ii). $\quad i=2$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 3 n+4\}$ as follows:
$f\left(u_{j}\right)=\left\{\begin{array}{lll}3, & j=1 \\ 1, & j=2 \\ 3 j+4, & 3 \leq j \leq n,\end{array} \quad f\left(v_{j}\right)= \begin{cases}8, & j=1 \\ 5, & j=2 \\ 3 j+3, & 3 \leq j \leq n,\end{cases}\right.$
$f\left(u_{2}^{\prime}\right)=10$ and $f\left(v_{2}^{\prime}\right)=9$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}2 j-1, & 1 \leq j \leq 2 \\ 3 j+5, & 3 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{j} v_{j}\right)= \begin{cases}4, & j=1 \\ 2, & j=2 \\ 3 j+3, & 3 \leq j \leq n,\end{cases}$
$f^{*}\left(v_{j} v_{j+1}\right)= \begin{cases}j+5, & 1 \leq j \leq 2 \\ 3 j+4, & 3 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{1} u_{2}^{\prime}\right)=5, f^{*}\left(u_{2}^{\prime} u_{3}\right)=11, f^{*}\left(v_{1} v_{2}^{\prime}\right)=8, f^{*}\left(v_{2}^{\prime} v_{3}\right)=10$ and
$f^{*}\left(u_{2}^{\prime} v_{2}^{\prime}\right)=9$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.

Subcase (iii). $\quad i=3$ and $n \geq 4$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 3 n+4\}$ as follows:
$f\left(u_{j}\right)=\left\{\begin{array}{ll}3 j-2, & 1 \leq j \leq 2 \\ 14, & j=3 \\ 3 j+4, & 4 \leq j \leq n,\end{array} \quad f\left(v_{j}\right)= \begin{cases}2 j+1, & 1 \leq j \leq 3 \\ 3 j+3, & 4 \leq j \leq n,\end{cases}\right.$
$f\left(u_{3}^{\prime}\right)=10$ and $f\left(v_{3}^{\prime}\right)=13$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}5 j-3, & 1 \leq j \leq 2 \\ 3 j+5, & 3 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{j} v_{j}\right)= \begin{cases}1, & j=1 \\ 5 j-6, & 2 \leq j \leq 3 \\ 3 j+3, & 4 \leq j \leq n,\end{cases}$
$f^{*}\left(v_{j} v_{j+1}\right)= \begin{cases}3, & j=1 \\ 5 j-5, & 2 \leq j \leq 3 \\ 3 j+4, & 4 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{2} u_{3}^{\prime}\right)=6, f^{*}\left(u_{3}^{\prime} u_{4}\right)=12, f^{*}\left(v_{2} v_{3}^{\prime}\right)=8, f^{*}\left(v_{3}^{\prime} v_{4}\right)=13$ and
$f^{*}\left(u_{3}^{\prime} v_{3}^{\prime}\right)=11$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Subcase (iv). $\quad 4 \leq i \leq n-1$ and $n \geq 5$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 3 n+4\}$ as follows:
$f\left(u_{j}\right)= \begin{cases}3 j-2, & 1 \leq j \leq i-1 \\ 3 i+3, & j=i \\ 3 j+4, & i+1 \leq j \leq n,\end{cases}$
$f\left(v_{j}\right)= \begin{cases}3 j-1, & 1 \leq j \leq i-1 \\ 3 i-2, & j=i \text { and } 4 \leq i \leq 6 \\ 3 i-3, & j=i \text { and } 7 \leq i \leq n-1 \\ 3 j+3, & i+1 \leq j \leq n,\end{cases}$
$f\left(u_{i}^{\prime}\right)=3 i+1$ and $f\left(v_{i}^{\prime}\right)=3 i+5$.
Then the induced edge labeling is obtained as follows:

$$
\begin{aligned}
& f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}3 j-1, & 1 \leq j \leq i-2 \\
3 i-2, & j=i-1 \\
3 i+4, & j=i \\
3 j+5, & i+1 \leq j \leq n-1,\end{cases} \\
& f^{*}\left(u_{j} v_{j}\right)= \begin{cases}3 j-2, & 1 \leq j \leq i-1 \\
3 i, & j=i \text { and } 4 \leq i \leq 6 \\
3 i-1, & j=i \text { and } 7 \leq i \leq n-1 \\
3 j+3, & i+1 \leq j \leq n,\end{cases}
\end{aligned}
$$

$f^{*}\left(v_{j} v_{j+1}\right)= \begin{cases}3 j, & 1 \leq j \leq i-2 \\ 3 i-4, & j=i-1 \\ 3 i+1, & j=i \\ 3 j+4, & i+1 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{i-1} u_{i}^{\prime}\right)=3 i-3, f^{*}\left(u_{i}^{\prime} u_{i+1}\right)=3 i+3, f^{*}\left(v_{i}^{\prime} v_{i+1}\right)=3 i+5$,
$f^{*}\left(u_{i}^{\prime} v_{i}^{\prime}\right)=3 i+2$ and $f^{*}\left(u_{i-1} v_{i}^{\prime}\right)= \begin{cases}3 i-1, & 4 \leq i \leq 6 \\ 3 i, & 7 \leq i \leq n-1 .\end{cases}$
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Case 2. $e=u_{i} u_{i+1}$, for $1 \leq i \leq n-1$
Let its duplication be $e^{\prime}=u_{i}^{\prime} u_{i+1}^{\prime}$.
Subcase (i). $\quad i=1$ or $i=n-1$.
Since the graph $G$ is isomorphic when $i=1$ or $i=n-1$, we may take $i=1$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 3 n+3\}$ as follows:
$f\left(u_{j}\right)=\left\{\begin{array}{ll}5 j, & 1 \leq j \leq 2 \\ 3 j+3, & 3 \leq j \leq n,\end{array} \quad f\left(v_{j}\right)= \begin{cases}3, & j=1 \\ 3 j+2, & 2 \leq j \leq n,\end{cases}\right.$
$f\left(u_{1}^{\prime}\right)=1$ and $f\left(u_{2}^{\prime}\right)=4$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)=3 j+4$, for $1 \leq j \leq n-1$,
$f^{*}\left(u_{j} v_{j}\right)= \begin{cases}3, & j=1 \\ 3 j+2, & 2 \leq j \leq n,\end{cases}$
$f^{*}\left(v_{j} v_{j+1}\right)= \begin{cases}4, & j=1 \\ 3 j+3, & 2 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{1}^{\prime} v_{1}\right)=1, f^{*}\left(u_{1}^{\prime} u_{2}^{\prime}\right)=2, f^{*}\left(u_{2}^{\prime} u_{3}\right)=6$ and $f^{*}\left(u_{2}^{\prime} v_{2}\right)=5$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Subcase (ii). $\quad i=2$ and $n \geq 4$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 3 n+4\}$ as follows:
$f\left(u_{j}\right)=3 j+4$, for $1 \leq j \leq n, f\left(v_{j}\right)=3 j+3$, for $1 \leq j \leq n$,
$f\left(u_{2}^{\prime}\right)=1$ and $f\left(u_{3}^{\prime}\right)=2$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)=3 j+5$, for $1 \leq j \leq n-1, f^{*}\left(u_{j} v_{j}\right)=3 j+3$, for $1 \leq j \leq n$, $f^{*}\left(v_{j} v_{j+1}\right)=3 j+4$, for $1 \leq j \leq n-1$,
$f^{*}\left(u_{1} u_{2}^{\prime}\right)=2, f^{*}\left(u_{2}^{\prime} u_{3}^{\prime}\right)=1, f^{*}\left(u_{3}^{\prime} u_{4}\right)=5, f^{*}\left(u_{2}^{\prime} v_{2}\right)=3$ and $f^{*}\left(u_{3}^{\prime} v_{3}\right)=4$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an
F-geometric mean graph.
Subcase (iii). $\quad i=3$ and $n \geq 5$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 3 n+4\}$ as follows:
$f\left(u_{j}\right)=\left\{\begin{array}{ll}j+3, & 1 \leq j \leq 2 \\ 4 j-1, & 3 \leq j \leq 4 \\ 3 j+4, & 5 \leq j \leq n,\end{array} \quad f\left(v_{j}\right)= \begin{cases}2 j-1, & 1 \leq j \leq 2 \\ 4 j-3, & 3 \leq j \leq 4 \\ 3 j+3, & 5 \leq j \leq n,\end{cases}\right.$
$f\left(u_{3}^{\prime}\right)=8$ and $f\left(u_{4}^{\prime}\right)=16$.
Then the induced edge labeling is obtained as follows:
$f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}3 j+1, & 1 \leq j \leq 2 \\ 4 j, & 3 \leq j \leq 4 \\ 3 j+5, & 5 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{j} v_{j}\right)= \begin{cases}j+1, & 1 \leq j \leq 2 \\ 4 j-3, & 3 \leq j \leq 4 \\ 3 j+3, & 5 \leq j \leq n,\end{cases}$
$f^{*}\left(v_{j} v_{j+1}\right)= \begin{cases}1, & j=1 \\ 5 j-5, & 2 \leq j \leq 4 \\ 3 j+4, & 5 \leq j \leq n-1,\end{cases}$
$f^{*}\left(u_{2} u_{3}^{\prime}\right)=6, f^{*}\left(u_{3}^{\prime} u_{4}^{\prime}\right)=11, f^{*}\left(u_{4}^{\prime} u_{5}\right)=17, f^{*}\left(u_{3}^{\prime} v_{3}\right)=8$ and
$f^{*}\left(u_{4}^{\prime} v_{4}\right)=14$.
Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.
Subcase (iv). $4 \leq i \leq n-2$ and $n \geq 6$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots, 3 n+4\}$ as follows:
$f\left(u_{j}\right)=\left\{\begin{array}{ll}3 j-1, & 1 \leq j \leq i-2 \\ 3 i-3, & j=i-1 \\ 3 i+2, & j=i \\ 3 i+6, & j=i+1 \\ 3 j+4, & i+2 \leq j \leq n,\end{array} \quad f\left(v_{j}\right)= \begin{cases}3 j-2, & 1 \leq j \leq i-1 \\ 3 i-1, & j=i \\ 3 i+4, & j=i+1 \\ 3 j+3, & i+2 \leq j \leq n,\end{cases}\right.$
$f\left(u_{i}^{\prime}\right)=3 i-2$ and $f\left(u_{i+1}^{\prime}\right)=3 i+8$.
Then the induced edge labeling is obtained as follows:

$$
\begin{aligned}
& f^{*}\left(u_{j} u_{j+1}\right)= \begin{cases}3 j, & 1 \leq j \leq i-2 \\
3 i-1, & j=i-1 \\
3 i+3, & j=i \\
3 i+7, & j=i+1 \\
3 j+5, & i+2 \leq j \leq n-1\end{cases} \\
& f^{*}\left(u_{j} v_{j}\right)= \begin{cases}3 j-2, & 1 \leq j \leq i-1 \\
3 i, & j=i \\
3 i+4, & j=i+1 \\
3 j+3, & i+2 \leq j \leq n,\end{cases} \\
& f^{*}\left(v_{j} v_{j+1}\right)= \begin{cases}3 j-1, & 1 \leq j \leq i-1 \\
3 i+1, & j=i \\
3 i+6, & j=i+1 \\
3 j+4, & i+2 \leq j \leq n-1,\end{cases} \\
& f^{*}\left(u_{i-1} u_{i}^{\prime}\right)=3 i-3, f^{*}\left(u^{\prime} u_{i+1}^{\prime}\right)=3 i+2, f^{*}\left(u_{i}^{\prime} u_{i+2}\right)=3 i+8, \\
& f^{*}\left(u_{i}^{\prime} v_{i}\right)=3 i-2 \text { and } f^{*}\left(u_{i+1}^{\prime} v_{i+1}\right)=3 i+5 .
\end{aligned}
$$

Hence, $f$ is an F-geometric mean labeling of $G$. Thus the graph $G$ is an F-geometric mean graph.


Figure 8

The F-geometric mean labeling of $G$ in the above cases are shown in Figure 9.



Figure 9

## Acknowledgments

The authors would like to thank the editor and anonymous reviewers for helpful suggestions which improved the presentation of the paper.

## References

[1] A. Durai Baskar, S. Arockiaraj and B. Rajendran, Geometric Mean Labeling of Graphs Obtained from Some Graph Operations, International J.Math. Combin., 1 (2013), 85-98.
[2] A. Durai Baskar, S. Arockiaraj and B. Rajendran, F-Geometric mean labeling of some chain graphs and thorn graphs, Kragujevac J. Math., 37(1) (2013), 163186.
[3] A. Durai Baskar, S. Arockiaraj and B. Rajendran, Geometric meanness of graphs obtained from paths, Util. Math., 101 (2016), 45-68.
[4] F. Buckley and F. Harary, Distance in graphs, Addison-Wesley, Reading, 1990.
[5] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., (2016), \#DS6.
[6] S. K. Vaidya and C. M. Barasara, Harmonic mean labeling in the contextof duplication of graph elements, Elixir Dist. Math., 48 (2012), 9482-9485.

A. Durai Baskar<br>Department of Mathematics<br>Mepco Schlenk Engineering College<br>Mepco Engineering College (PO)<br>Sivakasi - 626005<br>Tamilnadu<br>India.<br>E-mail: a.duraibaskr@gmail.com<br>S. Arockiaraj<br>Department of Mathematics<br>Government Arts \& Science College<br>Sivakasi - 626124<br>Tamilnadu<br>India.<br>E-mail: psarockiaraj@gmail.com

