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Abstract. A function f is called an F -geometric mean labeling of a graph
G = (V,E) with p vertices and q edges if f : V → {1, 2, 3, . . . , q+1} is injective
and the induced function f∗ : E → {1, 2, 3, . . . , q} defined as

f
∗(uv) =

⌊

√

f(u)f(v)
⌋

, for all uv ∈ E,

is bijective. A graph that admits an F-geometric mean labeling is called an
F-geometric mean graph. In this paper we discuss the F-geometric meanness of
graphs obtained by duplicating any edge of some graphs.
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§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected simple graph.
Let G = (V,E) be a graph with p vertices and q edges. For notations and
terminology, we follow [4] and for a detailed survey on graph labeling, we refer
[5].

Path on n vertices is denoted by Pn and a cycle on n vertics is denoted by
Cn. The graph G◦K1 is obtained from the graph G by attaching a new pendant
vertex at each vertex ofG. A ladder Ln, n ≥ 2, is the graph P2×Pn. Duplicating
of an edge e = uv of a graph G produces a new graph G′ by adding an edge
e′ = u′v′ such thatN(u′) = (N(u)∪{v′})−{v} andN(v′) = (N(u)∪{u′})−{u}
[6].

The concept of F-geometric mean labeling was first introduced by Durai
Baskar et al. [1] and they studied the F-geometric mean labeling of some
standard graphs [2, 3].
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A function f is called an F-geometric mean labeling of a graph G = (V,E)
with p vertices and q edges if f : V → {1, 2, 3, . . . , q + 1} is injective and

induced function f∗ : E → {1, 2, 3, . . . , q} defined as f∗(uv) =
⌊

√

f(u)f(v)
⌋

,

for all uv ∈ E, is bijective. A graph that admits an F-geometric mean labeling
is called an F-geometric mean graph. In this paper we discuss the F-geometric
meanness of graphs obtained by duplicating any edge of some graphs.

§2. Main Results

Theorem 1. Let G be a graph obtained by duplicating an edge e of a path

Pn, n ≥ 3. Then G is an F-geometric mean graph.

Proof. Let v1, v2, . . . , vn be the vertices of the path Pn. Let e
′ = v′iv

′

i+1
be the

duplicating edge of e = vivi+1 for some i, 1 ≤ i ≤ n− 1.
Case 1. i = 1 or i = n− 1.

Since the graph G is isomorphic when i = 1 or i = n − 1, we may take
i = 1.
Define f : V (G) → {1, 2, 3, . . . , n+ 2} as follows:

f(vj) =

{

2j − 1, 1 ≤ j ≤ 3
j + 2, 4 ≤ j ≤ n

and f(v′j) = 2j, for 1 ≤ j ≤ 2.

Then the induced edge labeling is obtained as follows:

f∗(vjvj+1) =

{

2j − 1, 1 ≤ j ≤ 3
j + 2, 4 ≤ j ≤ n− 1,

f∗(v′1v
′

2) = 2 and f∗(v′2v3) = 4.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Case 2. i = 2 and n ≥ 4.
Define f : V (G) → {1, 2, 3, . . . , n+ 3} as follows:

f(vj) =

{

2j − 1, 1 ≤ j ≤ 4
j + 3, 5 ≤ j ≤ n

and f(v′j) = 2j, for 2 ≤ j ≤ 3.

Then the induced edge labeling is obtained as follows:

f∗(vjvj+1) =

{

2j − 1, 1 ≤ j ≤ 4
j + 3, 5 ≤ j ≤ n− 1,

f∗(v1v
′

2) = 2, f∗(v′2v
′

3) = 4 and f∗(v′3v4) = 6.
Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Case 3. 3 ≤ i ≤ n− 2 and n ≥ 5.
Define f : V (G) → {1, 2, 3, . . . , n+ 3} as follows:

f(vj) =







j, 1 ≤ j ≤ i− 1
i+ 2, j = i

j + 3, i+ 1 ≤ j ≤ n,

f(v′i) = i+ 1 and f(v′i+1
) = i+ 3.
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Then the induced edge labeling is obtained as follows:

f∗(vjvj+1) =















j, 1 ≤ j ≤ i− 2
i, j = i− 1
i+ 2, j = i

j + 3, i+ 1 ≤ j ≤ n− 1
f∗(vi−1v

′

i) = i− 1, f∗(v′iv
′

i+1) = i+ 1 and f∗(v′i+1vi+2) = i+ 3.
Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

The F-geometric mean labeling of G in the above cases are shown in
Figure 1.
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Figure 1.

Theorem 2. Let G be a graph obtained by duplicating an edge e of a graph

Pn ◦K1, n ≥ 2. Then G is an F-geometric mean graph.

Proof. Let u1, u2, . . . , un be the vertices of the path Pn and vi be a pendant
vertex attached at ui, for 1 ≤ i ≤ n. When n = 2, an F-geometric mean
labeling of G is shown in Figures 2 and 3 (Figure 2 is the case e = u1v1 and
Figure 3 is the case e = u1u2). So we assume n ≥ 3.
Case 1. e = uivi, for 1 ≤ i ≤ n

Let its duplication be e′ = u′iv
′

i.

Subcase (i). i = 1 or i = n.

Since the graph G is isomorphic when i = 1 or i = n, we may take i = 1.
Define f : V (G) → {1, 2, 3, . . . , 2n + 2} as follows:

f(uj) =

{

j + 3, 1 ≤ j ≤ 2
2j + 2, 3 ≤ j ≤ n,

f(vj) =

{

4j − 2, 1 ≤ j ≤ 2
2j + 1, 3 ≤ j ≤ n,

f(u′1) = 3 and f(v′1) = 1.
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Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) = 2j +2, for 1 ≤ j ≤ n− 1, f∗(ujvj) =

{

2, j = 1
2j + 1, 2 ≤ j ≤ n,

f∗(u′1v
′

1) = 1 and f∗(u′1u2) = 3.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Subcase (ii). i = 2.

Define f : V (G) → {1, 2, 3, . . . , 2n + 3} as follows:

f(uj) =







3, j = 1
4j − 4, 2 ≤ j ≤ 3
2j + 3, 4 ≤ j ≤ n,

f(vj) =







1, j = 1
7j − 12, 2 ≤ j ≤ 3
2j + 2, 4 ≤ j ≤ n

f(u′2) = 7 and f(v′2) = 6.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =

{

2j + 1, 1 ≤ j ≤ 2
2j + 3, 3 ≤ j ≤ n− 1,

f∗(ujvj) =

{

j, 1 ≤ j ≤ 2
2j + 2, 3 ≤ j ≤ n,

f∗(u1u
′

2) = 4, f∗(u′2u3) = 7 and f∗(u′2v
′

2) = 6.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Subcase (iii). 3 ≤ i ≤ n− 1 and n ≥ 4.

Define f : V (G) → {1, 2, 3, . . . , 2n + 3} as follows.

f(uj) =







2j, 1 ≤ j ≤ i

2i+ 4, j = i+ 1
2j + 3, i+ 2 ≤ j ≤ n

f(vj) =







2j − 1, 1 ≤ j ≤ i

2i+ 5, j = i+ 1
2j + 2, i+ 2 ≤ j ≤ n,

f(u′i) = 2i+ 3 and f(v′i) = 2i+ 2.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =







2j, 1 ≤ j ≤ i− 1
2i+ 1, j = i

2j + 3, i+ 1 ≤ j ≤ n− 1,

f∗(ujvj) =

{

2j − 1, 1 ≤ j ≤ i

2j + 2, i+ 1 ≤ j ≤ n,

f∗(ui−1u
′

i) = 2i, f∗(u′iui+1) = 2i+ 3 and f∗(u′iv
′

i) = 2i+ 2.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.
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Figure 2

Case 2. e = uiui+1, for 1 ≤ i ≤ n− 1

Let its duplication be e′ = u′iu
′

i+1

Subcase (i). i = 1 or i = n− 1.

Since the graph G is isomorphic when i = 1 or i = n − 1, we may take
i = 1.

Define f : V (G) → {1, 2, 3, . . . , 2n + 4} as follows:

f(uj) =

{

1, j = 1
2j + 4, 2 ≤ j ≤ n,

f(vj) =

{

3j, 1 ≤ j ≤ 3
2j + 3, 4 ≤ j ≤ n,

f(u′1) = 4 and f(u′2) = 5.

Then the induced edge labeling obtained as follows:

f∗(ujuj+1) =

{

2, j = 1
2j + 4, 2 ≤ j ≤ n− 1,

f∗(ujvj) =

{

5j − 4, 1 ≤ j ≤ 2
2j + 3, 3 ≤ j ≤ n,

f∗(u′1v1) = 3, f∗(u′1u
′

2) = 4, f∗(u′2v2) = 5 and f∗(u′2u3) = 7.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Subcase (ii). i = 2 and n ≥ 4.

Define f : V (G) → {1, 2, 3, . . . , 2n + 5} as follows:

f(uj) =







5j − 3, 1 ≤ j ≤ 2
4j − 4, 3 ≤ j ≤ 4
2j + 5, 5 ≤ j ≤ n,

f(vj) =







5j − 4, 1 ≤ j ≤ 2
3j + 1, 3 ≤ j ≤ 4
2j + 4, 5 ≤ j ≤ n,

f(u′2) = 3 and f(u′3) = 11.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =







3, j = 1
2j + 3, 2 ≤ j ≤ 3
2j + 5, 4 ≤ j ≤ n− 1,

f∗(ujvj) =







1, j = 1
2j + 2, 2 ≤ j ≤ 3
2j + 4, 4 ≤ j ≤ n,

f∗(u1u
′

2) = 2, f∗(u′2u
′

3) = 5, f∗(u′3u4) = 11, f∗(u′2v2) = 4 and

f∗(u′3v3) = 10.
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Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Subcase (iii). 3 ≤ i ≤ n− 2 and n ≥ 5.
Define f : V (G) → {1, 2, 3, . . . , 2n + 5} as follows:

f(uj) =























2j, 1 ≤ j ≤ i− 1
2i+ 3, j = i

2i+ 4, j = i+ 1
2i+ 8, j = i+ 2
2j + 5, i+ 3 ≤ j ≤ n,

f(vj) =























2j − 1, 1 ≤ j ≤ i− 1
2i, j = i

2i+ 6, j = i+ 1
2i+ 9, j = i+ 2
2j + 4, i+ 3 ≤ j ≤ n,

f(u′i) = 2i− 1 and f(u′i+1
) = 2i+ 7.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =























2j, 1 ≤ j ≤ i− 2
2i, j = i− 1
2i+ 3, j = i

2i+ 5, j = i+ 1
2j + 5, i+ 2 ≤ j ≤ n− 1,

f∗(ujvj) =















2j − 1, 1 ≤ j ≤ i− 1
2i+ 1, j = i

2i+ 4, j = i+ 1
2j + 4, i+ 2 ≤ j ≤ n,

f∗(ui−1u
′

i) = 2i−2, f∗(u′iu
′

i+1) = 2i+2, f∗(u′iui+2) = 2i+7, f∗(u′ivi) = 2i−1
and f∗(u′i+1vi+1) = 2i+ 6.
Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.
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Figure 3

The F-geometric mean labeling of G in the above cases are shown in
Figure 4.

b b b

b b b
v1 v2

u2u1

2

4 4 5

5

v′
1

u′

1

1

3

3

b b b

b b b
v3 v4 v5

7 9 11

6 8 8 10 10 12

u3
u4 u5

1 2 6 7 9 11



FGML OF GRAPHS OBTAINED BY DUPLICATING ANY EDGE 113
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Figure 4

Theorem 3. Let G be a graph obtained by duplicating an edge e of a graph

Cn ◦K1, n ≥ 3. Then G is an F-geometric mean graph.

Proof. Let u1, u2, . . . , un be the vertices of the cycle Cn and vi be a pendant
vertex attached at ui, for 1 ≤ i ≤ n. When n = 3, an F-geometric mean
labeling of G is shown in Figures 5 and 6 (Figure 5 is the case e = u1v1 and
Figure 6 is the case e = u1u2). So we assume n ≥ 4.
Case 1. e = uivi, for 1 ≤ i ≤ n.

Let its duplication be e′ = u′iv
′

i and choose arbitrarily i = 1.
Subcase (i). n is odd

Define f : V (G) → {1, 2, 3, . . . , 2n + 4} as follows:
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f(uj) =































4, j = 1
4j − 2, 2 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is odd
4j, 2 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is even
2n+ 4, j =

⌊

n
2

⌋

+ 2
4n+ 11− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is odd
4n+ 9− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is even,

f(vj) =































2j + 3, 1 ≤ j ≤ 2
4j, 3 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is odd
4j − 2, 3 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is even
2n+ 3, j =

⌊

n
2

⌋

+ 2
4n+ 9− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is odd
4n+ 11− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is even,
f(u′1) = 1 and f(v′1) = 2.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =























5, j = 1
4j, 2 ≤ j ≤

⌊

n
2

⌋

2n+ 1,
⌊

n
2

⌋

+ 1 ≤ j ≤
⌊

n
2

⌋

+ 2 and j is odd
2n+ 2,

⌊

n
2

⌋

+ 1 ≤ j ≤
⌊

n
2

⌋

+ 2 and j is even
4n+ 7− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n− 1,

f∗(unu1) = 6, f∗(ujvj) =







3j + 1, 1 ≤ j ≤ 2
4j − 2, 3 ≤ j ≤

⌊

n
2

⌋

+ 1
4n+ 9− 4j,

⌊

n
2

⌋

+ 2 ≤ j ≤ n,

f∗(u′1v
′

1) = 1, f∗(unu
′

1) = 3 and f∗(u2u
′

1) = 2.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

b b

b

b

b

b

b
b

v′
1

2

1

1 u′

1

v1

5

4

4

u1

23

5

6

u2

8

8

7
7

v2

10 u3

99

v3

Figure 5

Subcase (ii). n is even.

Define f : V (G) → {1, 2, 3, . . . , 2n + 4} as follows:
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f(uj) =























4, j = 1
4j − 2, 2 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is odd
4j, 2 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is even
4n+ 9− 4j,

⌊

n
2

⌋

+ 2 ≤ j ≤ n and j is odd
4n+ 11− 4j,

⌊

n
2

⌋

+ 2 ≤ j ≤ n and j is even,

f(vj) =























































2j + 3, 1 ≤ j ≤ 2
4j, 3 ≤ j ≤

⌊

n
2

⌋

and j is odd
4j − 2, 3 ≤ j ≤

⌊

n
2

⌋

and j is even
2n+ 1, j =

⌊

n
2

⌋

+ 1 is odd
2n+ 3, j =

⌊

n
2

⌋

+ 1 is even
2n+ 2, j =

⌊

n
2

⌋

+ 2 is odd
2n+ 4, j =

⌊

n
2

⌋

+ 2 is even
4n+ 11− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is odd
4n+ 9− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is even,

f(u′1) = 1 and f(v′1) = 2.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =















5, j = 1
4j, 2 ≤ j ≤

⌊

n
2

⌋

2n+ 2, j =
⌊

n
2

⌋

+ 1
4n+ 7− 4j,

⌊

n
2

⌋

+ 2 ≤ j ≤ n− 1,

f∗(ujvj) =























3j + 1, 1 ≤ j ≤ 2
4j − 2, 3 ≤ j ≤

⌊

n
2

⌋

2n+ 1,
⌊

n
2

⌋

+ 1 ≤ j ≤
⌊

n
2

⌋

+ 2 and j is odd
2n+ 3,

⌊

n
2

⌋

+ 1 ≤ j ≤
⌊

n
2

⌋

+ 2 and j is even
4n+ 9− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n,

f∗(unu1) = 6, f∗(u′1v
′

1) = 1, f∗(unu
′

1) = 3 and f∗(u2u
′

1) = 2.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Case 2. e = uiui+1, for 1 ≤ i ≤ n− 1.

Let its duplication be e′ = u′iu
′

i+1 and choose arbitrarily i = 1.

Subcase (i). n is odd

Define f : V (G) → {1, 2, 3, . . . , 2n + 6} as follows:

f(uj) =































4, j = 1
4j + 2, 2 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is odd
4j, 2 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is even
2n+ 6, j =

⌊

n
2

⌋

+ 2
4n+ 11− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is odd
4n+ 13− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is even,
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f(vj) =































1, j = 1
4j, 2 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is odd
4j + 2, 2 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is even
2n+ 5, j =

⌊

n
2

⌋

+ 2
4n+ 13− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is odd
4n+ 11− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is even,

f(u′1) = 2 and f(u′2) = 6.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =























5, j = 1
4j + 2, 2 ≤ j ≤

⌊

n
2

⌋

2n+ 4,
⌊

n
2

⌋

+ 1 ≤ j ≤
⌊

n
2

⌋

+ 2 and j is odd
2n+ 3,

⌊

n
2

⌋

+ 1 ≤ j ≤
⌊

n
2

⌋

+ 2 and j is even
4n+ 9− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n− 1

f∗(unu1) = 6, f∗(ujvj) =







2, j = 1
4j, 2 ≤ j ≤

⌊

n
2

⌋

+ 1
4n+ 11− 4j,

⌊

n
2

⌋

+ 2 ≤ j ≤ n,

f∗(unu
′

1) = 4, f∗(u′1u
′

2) = 3, f∗(u′2u3) = 9, f∗(u′1v1) = 1 and f∗(u′2v2) = 7.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.
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11
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Figure 6

Subcase (ii). n is even.

Define f : V (G) → {1, 2, 3, . . . , 2n + 6} as follows:

f(uj) =























4, j = 1
4j + 2, 2 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is odd
4j, 2 ≤ j ≤

⌊

n
2

⌋

+ 1 and j is even
4n+ 13− 4j,

⌊

n
2

⌋

+ 2 ≤ j ≤ n and j is odd
4n+ 11− 4j,

⌊

n
2

⌋

+ 2 ≤ j ≤ n and j is even,
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f(vj) =























































1, j = 1
4j, 2 ≤ j ≤

⌊

n
2

⌋

and j is odd
4j + 2, 2 ≤ j ≤

⌊

n
2

⌋

and j is even
2n+ 5, j =

⌊

n
2

⌋

+ 1 is odd
2n+ 3, j =

⌊

n
2

⌋

+ 1 is even
2n+ 6, j =

⌊

n
2

⌋

+ 2 is odd
2n+ 4, j =

⌊

n
2

⌋

+ 2 is even
4n+ 11− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is odd
4n+ 13− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n and j is even,

f(u′1) = 2 and f(u′2) = 6.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =































5, j = 1
4j + 2, 2 ≤ j ≤

⌊

n
2

⌋

− 2
2n− 2, j =

⌊

n
2

⌋

− 1
2n+ 2, j =

⌊

n
2

⌋

2n+ 4, j =
⌊

n
2

⌋

+ 1
4n+ 9− 4j,

⌊

n
2

⌋

+ 2 ≤ j ≤ n− 1,

f∗(ujvj) =























2, j = 1
4j, 2 ≤ j ≤

⌊

n
2

⌋

2n+ 5,
⌊

n
2

⌋

+ 1 ≤ j ≤
⌊

n
2

⌋

+ 2 and j is odd
2n+ 3,

⌊

n
2

⌋

+ 1 ≤ j ≤
⌊

n
2

⌋

+ 2 and j is even
4n+ 11− 4j,

⌊

n
2

⌋

+ 3 ≤ j ≤ n,

f∗(unu1) = 6, f∗(unu
′

1) = 4, f∗(u′1u
′

2) = 3, f∗(u′2u3) = 9,

f∗(u′1v1) = 1 and f∗(u′2v2) = 7.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

The F-geometric mean labeling of G in the above cases are shown in
Figure 7.
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Theorem 4. Let G be a graph obtained by duplicating an edge e of a graph

Ln, n ≥ 2, Then Gis an F-geometric mean graph.

Proof. Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices on the path of length
n − 1 in the ladder Ln. When n = 2, an F-geometric mean labeling of G is
shown in Figure 8 (Figure 8 is the case e = u1v1 and e = u1u2). So we assume
n ≥ 3.
Case 1. e = uivi, for 1 ≤ i ≤ n

Let its duplication be e′ = u′iv
′

i.

Subcase (i). i = 1 or i = n.

Since the graph G is isomorphic when i = 1 or i = n, we may take i = 1.
Define f : V (G) → {1, 2, 3, . . . , 3n + 2} as follows:

f(uj) =

{

6, j = 1
3j + 1, 2 ≤ j ≤ n,

f(vj) =

{

4, j = 1
3j + 2, 2 ≤ j ≤ n,

f(u′1) = 2 and f(v′1) = 1.
Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =

{

6, j = 1
3j + 2, 2 ≤ j ≤ n− 1,

f∗(ujvj) = 3j + 1, for 1 ≤ j ≤ n, f∗(vjvj+1) =

{

5, j = 1
3j + 3, 2 ≤ j ≤ n− 1,

f∗(u′1v
′

1) = 1, f∗(u′1u2) = 3 and f∗(v′1v2) = 2.
Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Subcase (ii). i = 2.
Define f : V (G) → {1, 2, 3, . . . , 3n + 4} as follows:

f(uj) =







3, j = 1
1, j = 2
3j + 4, 3 ≤ j ≤ n,

f(vj) =







8, j = 1
5, j = 2
3j + 3, 3 ≤ j ≤ n,

f(u′2) = 10 and f(v′2) = 9.
Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =

{

2j − 1, 1 ≤ j ≤ 2
3j + 5, 3 ≤ j ≤ n− 1,

f∗(ujvj) =







4, j = 1
2, j = 2
3j + 3, 3 ≤ j ≤ n,

f∗(vjvj+1) =

{

j + 5, 1 ≤ j ≤ 2
3j + 4, 3 ≤ j ≤ n− 1,

f∗(u1u
′

2) = 5, f∗(u′2u3) = 11, f∗(v1v
′

2) = 8, f∗(v′2v3) = 10 and
f∗(u′2v

′

2) = 9.
Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.
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Subcase (iii). i = 3 and n ≥ 4.

Define f : V (G) → {1, 2, 3, . . . , 3n + 4} as follows:

f(uj) =







3j − 2, 1 ≤ j ≤ 2
14, j = 3
3j + 4, 4 ≤ j ≤ n,

f(vj) =

{

2j + 1, 1 ≤ j ≤ 3
3j + 3, 4 ≤ j ≤ n,

f(u′3) = 10 and f(v′3) = 13.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =

{

5j − 3, 1 ≤ j ≤ 2
3j + 5, 3 ≤ j ≤ n− 1,

f∗(ujvj) =







1, j = 1
5j − 6, 2 ≤ j ≤ 3
3j + 3, 4 ≤ j ≤ n,

f∗(vjvj+1) =







3, j = 1
5j − 5, 2 ≤ j ≤ 3
3j + 4, 4 ≤ j ≤ n− 1,

f∗(u2u
′

3) = 6, f∗(u′3u4) = 12, f∗(v2v
′

3) = 8, f∗(v′3v4) = 13 and

f∗(u′3v
′

3) = 11.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Subcase (iv). 4 ≤ i ≤ n− 1 and n ≥ 5.

Define f : V (G) → {1, 2, 3, . . . , 3n + 4} as follows:

f(uj) =







3j − 2, 1 ≤ j ≤ i− 1
3i+ 3, j = i

3j + 4, i+ 1 ≤ j ≤ n,

f(vj) =















3j − 1, 1 ≤ j ≤ i− 1
3i− 2, j = i and 4 ≤ i ≤ 6
3i− 3, j = i and 7 ≤ i ≤ n− 1
3j + 3, i+ 1 ≤ j ≤ n,

f(u′i) = 3i+ 1 and f(v′i) = 3i+ 5.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =















3j − 1, 1 ≤ j ≤ i− 2
3i− 2, j = i− 1
3i+ 4, j = i

3j + 5, i+ 1 ≤ j ≤ n− 1,

f∗(ujvj) =















3j − 2, 1 ≤ j ≤ i− 1
3i, j = i and 4 ≤ i ≤ 6
3i− 1, j = i and 7 ≤ i ≤ n− 1
3j + 3, i+ 1 ≤ j ≤ n,
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f∗(vjvj+1) =















3j, 1 ≤ j ≤ i− 2
3i− 4, j = i− 1
3i+ 1, j = i

3j + 4, i+ 1 ≤ j ≤ n− 1,
f∗(ui−1u

′

i) = 3i− 3, f∗(u′iui+1) = 3i+ 3, f∗(v′ivi+1) = 3i+ 5,

f∗(u′iv
′

i) = 3i+ 2 and f∗(ui−1v
′

i) =

{

3i− 1, 4 ≤ i ≤ 6
3i, 7 ≤ i ≤ n− 1.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Case 2. e = uiui+1, for 1 ≤ i ≤ n− 1

Let its duplication be e′ = u′iu
′

i+1.

Subcase (i). i = 1 or i = n− 1.

Since the graph G is isomorphic when i = 1 or i = n − 1, we may take
i = 1.

Define f : V (G) → {1, 2, 3, . . . , 3n + 3} as follows:

f(uj) =

{

5j, 1 ≤ j ≤ 2
3j + 3, 3 ≤ j ≤ n,

f(vj) =

{

3, j = 1
3j + 2, 2 ≤ j ≤ n,

f(u′1) = 1 and f(u′2) = 4.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) = 3j + 4, for 1 ≤ j ≤ n− 1,

f∗(ujvj) =

{

3, j = 1
3j + 2, 2 ≤ j ≤ n,

f∗(vjvj+1) =

{

4, j = 1
3j + 3, 2 ≤ j ≤ n− 1,

f∗(u′1v1) = 1, f∗(u′1u
′

2) = 2, f∗(u′2u3) = 6 and f∗(u′2v2) = 5.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Subcase (ii). i = 2 and n ≥ 4.

Define f : V (G) → {1, 2, 3, . . . , 3n + 4} as follows:

f(uj) = 3j + 4, for 1 ≤ j ≤ n, f(vj) = 3j + 3, for 1 ≤ j ≤ n,

f(u′2) = 1 and f(u′3) = 2.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) = 3j + 5, for 1 ≤ j ≤ n− 1, f∗(ujvj) = 3j + 3, for 1 ≤ j ≤ n,

f∗(vjvj+1) = 3j + 4, for 1 ≤ j ≤ n− 1,

f∗(u1u
′

2) = 2, f∗(u′2u
′

3) = 1, f∗(u′3u4) = 5, f∗(u′2v2) = 3 and f∗(u′3v3) = 4.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Subcase (iii). i = 3 and n ≥ 5.

Define f : V (G) → {1, 2, 3, . . . , 3n + 4} as follows:

f(uj) =







j + 3, 1 ≤ j ≤ 2
4j − 1, 3 ≤ j ≤ 4
3j + 4, 5 ≤ j ≤ n,

f(vj) =







2j − 1, 1 ≤ j ≤ 2
4j − 3, 3 ≤ j ≤ 4
3j + 3, 5 ≤ j ≤ n,
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f(u′3) = 8 and f(u′4) = 16.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =







3j + 1, 1 ≤ j ≤ 2
4j, 3 ≤ j ≤ 4
3j + 5, 5 ≤ j ≤ n− 1,

f∗(ujvj) =







j + 1, 1 ≤ j ≤ 2
4j − 3, 3 ≤ j ≤ 4
3j + 3, 5 ≤ j ≤ n,

f∗(vjvj+1) =







1, j = 1
5j − 5, 2 ≤ j ≤ 4
3j + 4, 5 ≤ j ≤ n− 1,

f∗(u2u
′

3) = 6, f∗(u′3u
′

4) = 11, f∗(u′4u5) = 17, f∗(u′3v3) = 8 and

f∗(u′4v4) = 14.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.

Subcase (iv). 4 ≤ i ≤ n− 2 and n ≥ 6.

Define f : V (G) → {1, 2, 3, . . . , 3n + 4} as follows:

f(uj) =























3j − 1, 1 ≤ j ≤ i− 2
3i− 3, j = i− 1
3i+ 2, j = i

3i+ 6, j = i+ 1
3j + 4, i+ 2 ≤ j ≤ n,

f(vj) =















3j − 2, 1 ≤ j ≤ i− 1
3i− 1, j = i

3i+ 4, j = i+ 1
3j + 3, i+ 2 ≤ j ≤ n,

f(u′i) = 3i− 2 and f(u′i+1
) = 3i+ 8.

Then the induced edge labeling is obtained as follows:

f∗(ujuj+1) =























3j, 1 ≤ j ≤ i− 2
3i− 1, j = i− 1
3i+ 3, j = i

3i+ 7, j = i+ 1
3j + 5, i+ 2 ≤ j ≤ n− 1

f∗(ujvj) =















3j − 2, 1 ≤ j ≤ i− 1
3i, j = i

3i+ 4, j = i+ 1
3j + 3, i+ 2 ≤ j ≤ n,

f∗(vjvj+1) =















3j − 1, 1 ≤ j ≤ i− 1
3i+ 1, j = i

3i+ 6, j = i+ 1
3j + 4, i+ 2 ≤ j ≤ n− 1,

f∗(ui−1u
′

i) = 3i− 3, f∗(u′iu
′

i+1) = 3i+ 2, f∗(u′iui+2) = 3i+ 8,

f∗(u′ivi) = 3i− 2 and f∗(u′i+1vi+1) = 3i+ 5.

Hence, f is an F-geometric mean labeling of G. Thus the graph G is an
F-geometric mean graph.
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The F-geometric mean labeling of G in the above cases are shown in
Figure 9.
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