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A generalization and short proof of a theorem of
Hano on affine vector fields
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Abstract. We prove that a bounded affine vector field on a complete Finsler
manifold is a Killing vector field. This generalizes the analogous result of Hano
for Riemannian manifolds [3]. Even though our result is more general, the proof
is significantly simpler.
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§1. Introduction

Yano showed that affine vector fields on a compact orientable Riemannian
manifold are Killing vector fields [7]; the proof was based on integral formulas.
Hano found a generalization: bounded affine vector fields on a complete Rie-
mannian manifold are Killing vector fields. The proof relied on the de Rham
decomposition, and special properties of irreducible Riemannian manifolds. A
similar proof can be found in [4]. We show that Hano’s result is true for the
much more general Finsler manifolds, using only the Euler–Lagrange equation.

§2. Definitions and prerequisites

Throughout, M is a second countable and smooth Hausdorff manifold; the
tangent bundle is τ : TM → M , and we denote by T̊M the tangent manifold
with the zero vectors removed. If φ : M → N is a smooth mapping between
manifolds, φ∗ : TM → TN stands for its derivative.
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We are going to work on the tangent manifold, where we use two kinds of
lifts of vector fields on the base manifold. The vertical lift Xv of a vector field
X ∈ X(M) is the velocity field of the global flow

(t, v) ∈ R× TM 7−→ v + tX(τ(v)) ∈ TM

on TM . If φX : DX ⊂ R ×M → M is the maximal local flow of X ∈ X(M)
and

D̃X := {(t, v) ∈ R× TM | (t, τ(v)) ∈ DX},

then
(t, v) ∈ D̃X 7−→ (φX

t )∗(v) ∈ TM

is a local flow on TM , whose velocity field is called the complete lift of X,
denoted by Xc. The Liouville vector field C on TM is the velocity field of the
flow of positive dilations:

(t, v) ∈ R× TM 7−→ etv ∈ TM.

It is clear that a smooth function f on T̊M is k+-homogeneous (k ∈ Z) if and
only if Cf = kf .

A continuous function F on TM is a Finsler function for M if it is smooth
on T̊M , 1+-homogeneous, F ↾ T̊M > 0, and for any p ∈ M and u ∈ T̊pM ,
the symmetric bilinear form (E ↾ TpM)′′(u) is non-degenerate (hence positive
definite), where E := 1

2F
2. A Finsler manifold is a manifold together with a

Finsler function.
If (M,F ) is a Finsler manifold, then there exists a unique second-order

vector field S ∈ X(T̊M) such that a curve γ in M is a geodesic of (M,F ) if
and only if S ◦ γ̇ = γ̈. This vector field S is usually called the canonical spray
or geodesic spray of (M,F ). Another characterization of S is that

(2.1) S(XvE)−XcE = 0 for all X ∈ X(M).

This form of the Euler–Lagrange equation is due to Crampin (see, e.g., [2,
p. 348] or [5, p. 16]). It can be derived directly from the elementary form(

∂E
∂yi

◦ γ̇
)′

− ∂E
∂xi ◦ γ̇ = 0 using the local formulae for Xv and Xc.

A Finsler manifold is said to be forward complete if the domains of its
maximal geodesics are not bounded from above, and complete if the domain
of its maximal geodesics is R. For many equivalent characterizations of com-
pleteness, see [1, §6.6].

A vector field X on a Finsler manifold (M,F ) is affine if its flow pre-
serves geodesics, and it is a Killing vector field if its flow preserves the Finsler
function, i.e., F ◦ (φX

t )∗ = F for all possible t ∈ R. Both properties can be ex-
pressed in terms of the complete lift of X: X is affine if and only if [Xc, S] = 0,
and X is a Killing vector field if and only if XcE = 0.
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§3. Proof of the result

The key of our argument is the following simple observation. It is in fact a
disguised special case of Exercise 5.4.3 from [1], but we give a short direct
proof.

Lemma 1. If X is an affine vector field on a Finsler manifold (M,F ) and γ
is a geodesic, then for all t and t0 in the domain of γ we have

XvE(γ̇(t)) = XvE(γ̇(t0)) + (t− t0)X
cE(γ̇(t0)).

Proof. Since X is affine, we have [Xc, S] = 0. Geodesics have constant speed,
hence SE = 0. From these we get

0 = [Xc, S]E = Xc(SE)− S(XcE) = −S(XcE).

Since γ is a geodesic, S ◦ γ̇ = γ̈, and we have

(XvE ◦ γ̇)′ = S(XvE) ◦ γ̇ (2.1)
= XcE ◦ γ̇,

(XvE ◦ γ̇)′′ = (XcE ◦ γ̇)′ = S(XcE) ◦ γ̇ = 0.

Therefore XvE ◦ γ̇ is an affine function, and our claim follows.

Theorem 2. Let (M,F ) be a Finsler manifold, X an affine vector field, and
suppose that one of the following conditions holds:

(1) F ◦X is bounded, and (M,F ) is complete;

(2) F ◦X and F ◦ (−X) are bounded, and (M,F ) is forward complete.

Then X is a Killing vector field.

Proof. First we prove that XvE is bounded from above on the set U(TM) :=
F−1({1}) if (1) holds, and it is bounded from above and from below if (2)
holds. For any v ∈ U(TM), setting p := τ(v), we have

XvE(v) = F (v)XvF (v) = XvF (v) = (F ↾ TpM)′(v)(X(p)) ≤ F (X(p)),

where in the last step we used the fundamental inequality (see [1, p. 7] or [6,
Proposition 9.1.37]). In a similar way, we obtain

XvE(v) = (F ↾ TpM)′(v)(X(p)) = −(F ↾ TpM)′(v)(−X(p)) ≥ −F (−X(p)).

Over U(TM) these two inequalities give −F ◦ (−X) ◦ τ ≤ XvE ≤ F ◦X ◦ τ ,
from which it follows that XvE has the desired boundedness property.
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Now we show that XcE = 0, and hence X is a Killing vector field. It
suffices to prove it on U(TM), because XcE is 2+-homogeneous. Indeed, the
flows of Xc and C clearly commute, hence [Xc, C] = 0, and we have

(3.1) C(XcE) = [C,Xc]E +Xc(CE) = 2XcE.

So fix v ∈ U(TM) and let γ be the maximal geodesic with γ̇(0) = v. Then
Lemma 1 gives

XvE(γ̇(t)) = XvE(γ̇(0)) + tXcE(γ̇(0)) = XvE(v) + tXcE(v)

for any real number t in case (1) and for any positive real number t in case
(2). Geodesics have constant speed, hence γ̇ remains inside U(TM), and the
left-hand side of the above formula has to be bounded from above in case (1),
and it has to be bounded from above and below in case (2), which is possible
only if XcE(v) = 0. Thus XcE = 0 on U(TM). This together with (3.1)
implies XcE = 0, that is, X is a Killing vector field.

As a corollary we have

Theorem 3 (Hano). Let (M, g) be a complete Riemannian manifold, and X
an affine vector field on M such that the function g(X,X) is bounded. Then
X is a Killing vector field.

The proof is immediate if we apply Theorem 2 to the Finsler function given
by F (v) :=

√
g(v, v), v ∈ TM . Since compact Finsler manifolds are complete,

we also have

Theorem 4. An affine vector field on a compact Finsler manifold is a Killing
vector field.
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