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Abstract. This paper is concerned with a diffusive Lotka-Volterra prey-
predator model with finitely many protection zones for the prey species. We
discuss the stability of trivial and semi-trivial steady-state solutions, and we
also study the existence and non-existence of positive steady-state solutions. It
is proved that there exists a certain critical growth rate of the prey for survival.
Moreover, it is shown that when cross-diffusion is present, under certain condi-
tions, the critical value decreases as the number of protection zones increases.
On the other hand, it is also shown that when cross-diffusion is absent, the
critical value does not always decrease even if the number of protection zones
increases.
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§1. Introduction

In the natural world, many endangered species will die out if nothing is done
to save them. Therefore, it is important to make various attempts to prevent
the extinction of endangered species. One of the possible attempts is to set up
one or more zones for protecting endangered species from natural enemies. In
this paper, we study the following Lotka-Volterra prey-predator model with
finitely many protection zones for the prey species:

(P)



ut = ∆[(1 + kρ(x)v)u] + u(λ − u − b(x)v) in Ω × (0,∞),
τvt = ∆v + v(µ + cu − v) in Ω \ Ω0 × (0,∞),
∂nu = 0 on ∂Ω × (0,∞),
∂nv = 0 on ∂(Ω \ Ω0) × (0,∞),
u(x, 0) = u0(x) ≥ 0 in Ω,

v(x, 0) = v0(x) ≥ 0 in Ω \ Ω0.
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Here Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω and
Ω0 is an open subset of Ω with smooth boundary ∂Ω0; n is the outward unit
normal vector on the boundary and ∂n = ∂/∂n; k is a non-negative constant;
λ, τ , µ and c are all positive constants; ρ(x) is a smooth function in Ω with
∂nρ = 0 on ∂Ω and b(x) is a Hölder continuous function in Ω. We assume that
ρ(x) > 0 and b(x) > 0 in Ω \Ω0 and that ρ(x) = b(x) = 0 in Ω0 since v is not
defined in Ω0. In addition, we assume that both ρ(x)/b(x) and b(x)/ρ(x) are
bounded in Ω \ Ω0. Furthermore, we make the following assumption:

(1.1) Ω0 =
ℓ∪

i=1

Oi, Oi ∩ Oj = ∅ when i ̸= j,

where each Oi is a simply connected open set satisfying Oi ⊂ Ω.
In (P), unknown functions u(x, t) and v(x, t) denote the population densi-

ties of prey and predator respectively; λ and µ denote the intrinsic growth rates
of the respective species; b(x) and c denote the coefficients of prey-predator
interaction; the no-flux boundary condition means that no individuals cross
the boundary.

In the first equation of (P), k∆[ρ(x)vu] is usually referred to as a cross-
diffusion term, which was originally proposed by Shigesada et al. [23] to model
the habitat segregation phenomena between two competing species (see also
[11, 12] for cross-diffusion with spatial heterogeneity). We refer to [1, 2, 3,
14, 17, 24] and references therein for studies on the time-global solvability of
cross-diffusion systems. Since ρ(x) > 0 in Ω \ Ω0 and ρ(x) = 0 in Ω0 by
assumption, ∆[(1 + kρ(x)v)u] in (P) means that the movement of the prey
species in Ω \Ω0 is affected by population pressure from the predator species,
whereas the prey species moves randomly in Ω0.

In (P), for each i, the subregion Oi is called a protection zone because
the prey species is protected from predation in Oi. To be more specific, the
predator species cannot enter Ω0, whereas the prey species can enter and leave
Ω0 freely. If ℓ = 1 in (1.1), then it means that Ω0 consists of a single protection
zone. Many researchers have studied the effect of a single protection zone
on various population models in the field of reaction-diffusion systems (see
[5, 7, 8] for prey-predator models without cross-diffusion, [6] for a competition
model without cross-diffusion, [18, 19, 20, 26] for prey-predator models with
cross-diffusion, and [25] for a competition model with cross-diffusion). In
particular, the author studied the steady-state problem of (P) with a single
protection zone in [18, 19]. Moreover, the protection zone problem for a prey-
predator model without cross-diffusion was also studied in [10] by making no
assumptions about the protection zone Ω0 except that Ω0 ⊂ Ω and ∂Ω0 is
smooth.

The purpose of this paper is to study the effect of finitely many protection
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zones on the set of steady-state solutions of (P), that is, we consider the general
case ℓ ≥ 1. The steady-state problem associated with (P) is given by

(SP)


∆[(1 + kρ(x)v)u] + u(λ − u − b(x)v) = 0 in Ω,

∆v + v(µ + cu − v) = 0 in Ω \ Ω0,

∂nu = 0 on ∂Ω,

∂nv = 0 on ∂(Ω \ Ω0).

We call (u, v) a positive solution of (SP) if u > 0 in Ω, v > 0 in Ω \ Ω0 and
(u, v) satisfies (SP). From an ecological viewpoint, a positive solution of (SP)
means a coexistence state of prey and predator.

For q ∈ L∞(Ω), we denote by λN
1 (q, Ω) the first eigenvalue of −∆ + q over

Ω with the homogeneous Neumann boundary condition. We will often omit Ω
in the notation. As is well known, the following properties (1.2)–(1.4) hold:

(1.2) The mapping q 7→ λN
1 (q, Ω) : L∞(Ω) → R is continuous.

(1.3) λN
1 (0,Ω) = 0.

(1.4) If q1 ≥ q2 and q1 ̸≡ q2, then λN
1 (q1, Ω) > λN

1 (q2, Ω).

Moreover, we denote by λD
1 (O) the first eigenvalue of −∆ over O with the

homogeneous Dirichlet boundary condition. Furthermore, we define

(1.5) λ∗
∞(k,Ω0) =


inf
φ∈S

∫
Ω
|∇φ|2dx +

1
k

∫
Ω\Ω0

b(x)
ρ(x)

φ2dx∫
Ω0

φ2dx

if k > 0,

min
i=1,2,··· ,ℓ

λD
1 (Oi) if k = 0,

where S = {φ ∈ H1(Ω) :
∫
Ω0

φ2dx > 0}.
We now state the main results of this paper. It is obvious that the steady-

state problem (SP) has three non-negative constant solutions, namely, the
trivial solution (0, 0) and two semi-trivial solutions (λ, 0) and (0, µ). Then we
have the following theorem on the stability of these solutions.

Theorem 1.1. The following results hold true:

(i) Suppose that 0 < λ < λ∗
∞(k,Ω0). Then there exists a positive number

µ∗ such that (0, µ) is unstable if 0 < µ < µ∗, and asymptotically stable
if µ > µ∗. Here µ∗ is the unique positive solution of

(1.6) λN
1

(
b(x)µ∗ − λ

1 + kρ(x)µ∗ , Ω
)

= 0.



22 K. OEDA

(ii) Suppose that λ ≥ λ∗
∞(k,Ω0). Then (0, µ) is unstable for any µ > 0.

(iii) Both (0, 0) and (λ, 0) are unstable for any λ > 0 and any µ > 0.

We are also interested in the existence and non-existence of positive solu-
tions of (SP). Then we have the following theorem.

Theorem 1.2. The following results hold true:

(i) Suppose that 0 < λ < λ∗
∞(k,Ω0) and let µ∗ be the positive number defined

by (1.6). Then (SP) has at least one positive solution if 0 < µ < µ∗, and
no positive solution if µ ≥ µ∗.

(ii) Suppose that λ ≥ λ∗
∞(k,Ω0). Then (SP) has at least one positive solution

for any µ > 0.

Theorems 1.1 and 1.2 state that when 0 < λ < λ∗
∞(k,Ω0), the prey species

cannot survive if µ > µ∗. On the other hand, Theorems 1.1 and 1.2 also
imply that when λ ≥ λ∗

∞(k,Ω0), there is always the chance of survival of the
prey no matter how large µ is. Thus it can be said that λ∗

∞(k,Ω0) is the
critical growth rate of the prey for survival. Moreover, it follows from (1.1)
and (1.5) that when k > 0 and b(x)/ρ(x) ≡ β outside the protection zones for
some positive constant β, λ∗

∞(k,Ω0) decreases as ℓ increases (see Section 5 for
details), whereas λ∗

∞(0,Ω0) does not necessarily decrease even if ℓ increases.
Therefore, we can say that not all of the protection zones are fully utilized
when k = 0 (i.e. when the prey species moves around randomly).

This paper is organized as follows. In Section 2, we will show some pre-
liminary results which will be used to prove our main results. In Section 3,
we will prove Theorem 1.1 by analyzing the spectrum of the linearized oper-
ator around each non-negative constant solution. In Section 4, we will prove
Theorem 1.2 by using the bifurcation theory. In Section 5, we will show that
if k > 0 and b(x)/ρ(x) ≡ β > 0 outside the protection zones, then λ∗

∞(k,Ω0)
decreases as ℓ increases.

§2. Preliminaries

In this section, we will prove some preliminary results which will play key roles
in the proof of our main results. First we prove the following lemma.

Lemma 2.1. Define Σ by

Σ =
{

(λ, µ) ∈ [0,∞) × [0,∞) : λN
1

(
b(x)µ − λ

1 + kρ(x)µ
, Ω

)
= 0

}
.
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Then the set Σ forms an unbounded curve and can be expressed as

(2.1) Σ = {(λ∗(µ), µ) : µ ≥ 0},

where λ∗(µ) is continuous and strictly increasing with respect to µ ≥ 0 and
satisfies λ∗(0) = 0 and limµ→∞ λ∗(µ) = λ∗

∞(k,Ω0).

Remark. Lemma 2.1 was obtained in Lemma 2.1 and Theorem 2.3 of [18] for
the special case ℓ = 1 (see also Theorem 2.1 of [8] for the special case ℓ = 1
and k = 0).

Proof of Lemma 2.1. We define

h(λ, µ) = λN
1

(
b(x)µ − λ

1 + kρ(x)µ

)
.

Then we see from (1.2) and (1.4) that h(λ, µ) is continuous and strictly de-
creasing in λ ≥ 0. Moreover, it holds that h(0, 0) = 0 and h(µmaxΩ b(x), µ) <
0 < h(0, µ) for any µ > 0 because of (1.3) and (1.4). It follows from the inter-
mediate value theorem that for any µ ≥ 0, there exists a unique λ∗(µ) such
that h(λ∗(µ), µ) = 0. Furthermore, we find from (1.2) and (1.4) that h(λ, µ)
is continuous and strictly increasing in µ ≥ 0. Therefore, we see from (1.2)–
(1.4) that λ∗(µ) is continuous and strictly increasing in µ ≥ 0 and satisfies
λ∗(0) = 0.

Next we will prove limµ→∞ λ∗(µ) = λ∗
∞(k,Ω0). By the variational charac-

terization of the first eigenvalue, we obtain

(2.2) 0 = h(λ∗(µ), µ) = inf
φ∈Θ

∫
Ω

(
|∇φ|2 +

b(x)µ − λ∗(µ)
1 + kρ(x)µ

φ2

)
dx,

where Θ = {φ ∈ H1(Ω) :
∫
Ω φ2dx = 1}. Let λD

1 (Oi∗) = mini=1,2,··· ,ℓ λD
1 (Oi).

Let φ∗ satisfy

−∆φ∗ = λD
1 (Oi∗)φ∗ in Oi∗ , φ∗ = 0 on ∂Oi∗ ,

∫
Oi∗

φ2
∗dx = 1

and define φ̃∗ ∈ Θ by φ̃∗ = φ∗ in Oi∗ and φ̃∗ = 0 in Ω \Oi∗ . Setting φ = φ̃∗ in
(2.2), we have

0 ≤
∫

Oi∗

(
|∇φ∗|2 − λ∗(µ)φ2

∗
)
dx = λD

1 (Oi∗) − λ∗(µ),

namely,

(2.3) λ∗(µ) ≤ min
i=1,2,··· ,ℓ

λD
1 (Oi)
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for any µ > 0. Let φµ satisfy

(2.4)


−∆φµ +

b(x)µ − λ∗(µ)
1 + kρ(x)µ

φµ = 0 in Ω,

∂nφµ = 0 on ∂Ω, φµ > 0 in Ω,

∫
Ω

φ2
µdx = 1.

Multiplying the differential equation in (2.4) by φµ and integrating the result-
ing expression over Ω, we see from (2.3) that

(2.5)
∫

Ω
|∇φµ|2dx =

∫
Ω

λ∗(µ) − b(x)µ
1 + kρ(x)µ

φ2
µdx ≤ min

i=1,2,··· ,ℓ
λD

1 (Oi).

Thus {φµ}µ≥0 is bounded in H1(Ω). Hence there exist a sequence {µj}∞j=1

and a non-negative function φ∞ ∈ H1(Ω) satisfying limj→∞ µj = ∞ and

(2.6)
∫

Ω
φ2
∞dx = 1

such that limj→∞ φµj = φ∞ weakly in H1(Ω) and strongly in L2(Ω). Moreover,
(2.4) implies that

(2.7)
∫

Ω

(
∇φµj · ∇ψ +

b(x)µj − λ∗(µj)
1 + kρ(x)µj

φµjψ

)
dx = 0

for any ψ ∈ H1(Ω).
We now discuss the two cases k > 0 and k = 0 separately. When k > 0, by

letting j → ∞ in (2.7), we have∫
Ω
∇φ∞ · ∇ψdx +

1
k

∫
Ω\Ω0

b(x)
ρ(x)

φ∞ψdx − lim
µ→∞

λ∗(µ)
∫

Ω0

φ∞ψdx = 0

for any ψ ∈ H1(Ω), where we have used limj→∞ µj = ∞. Thus φ = φ∞ is a
weak non-negative solution of

(2.8) −∆φ +
b(x)
kρ(x)

χΩ\Ω0
φ = ηχΩ0

φ in Ω, ∂nφ = 0 on ∂Ω

with η = limµ→∞ λ∗(µ). By elliptic regularity theory, φ∞ is a strong non-
negative solution of (2.8) with η = limµ→∞ λ∗(µ). Hence we must have φ∞ > 0
in Ω by (2.6), the strong maximum principle (see Theorem 9.6 in [9]) and the
Hopf boundary lemma (see Lemma 3.4 in [9]). Therefore, η = limµ→∞ λ∗(µ)
is the first eigenvalue of (2.8). Then the variational characterization of the
first eigenvalue yields

lim
µ→∞

λ∗(µ) = inf
φ∈S

∫
Ω
|∇φ|2dx +

1
k

∫
Ω\Ω0

b(x)
ρ(x)

φ2dx∫
Ω0

φ2dx

= λ∗
∞(k,Ω0),
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where S = {φ ∈ H1(Ω) :
∫
Ω0

φ2dx > 0}. Thus the proof for the case k > 0 is
complete.

Finally, we discuss the case k = 0. Setting ψ = φµj in (2.7) with k = 0, we
obtain ∫

Ω

[
|∇φµj |2 + {b(x)µj − λ∗(µj)}φ2

µj

]
dx = 0,

that is, ∫
Ω\Ω0

b(x)φ2
µj

dx =
1
µj

∫
Ω

{
λ∗(µj)φ2

µj
− |∇φµj |2

}
dx.

Letting j → ∞ in the above equation, we find from limj→∞ µj = ∞, (2.3) and
(2.5) that ∫

Ω\Ω0

b(x)φ2
∞dx = 0.

Then, since b(x) > 0 in Ω \ Ω0 by assumption, we must have φ∞ = 0 almost
everywhere in Ω \ Ω0. This means that φ∞|Oi ∈ H1

0 (Oi) by (1.1) and the
smoothness of ∂Oi for any i ∈ {1, 2, · · · , ℓ}. For any w ∈ H1

0 (Oi), we define
w̃ ∈ H1(Ω) by w̃ = w in Oi and w̃ = 0 in Ω \Oi. Letting j → ∞ in (2.7) with
k = 0 and ψ = w̃, we obtain∫

Oi

∇φ∞ · ∇wdx − lim
µ→∞

λ∗(µ)
∫

Oi

φ∞wdx = 0

for any w ∈ H1
0 (Oi). Thus φ∞|Oi is a weak non-negative solution of

(2.9) −∆φ∞ = lim
µ→∞

λ∗(µ)φ∞ in Oi, φ∞ = 0 on ∂Oi

and hence φ∞|Oi is a classical non-negative solution of (2.9) for any i ∈
{1, 2, · · · , ℓ} by elliptic regularity theory. Moreover, we notice from (2.6) and
the fact φ∞ = 0 in Ω \ Ω0 that

(2.10)
∫

Ω0

φ2
∞dx = 1.

Therefore, we see from (1.1), (2.3), (2.9), (2.10) and the strong maximum
principle that φ∞ > 0 in Oi∗ must hold, where λD

1 (Oi∗) = mini=1,2,··· ,ℓ λD
1 (Oi).

Thus we obtain

lim
µ→∞

λ∗(µ) = min
i=1,2,··· ,ℓ

λD
1 (Oi) = λ∗

∞(0, Ω0).

This completes the proof of Lemma 2.1.

Next we prove the following lemma.
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Lemma 2.2. The following results hold true:

(i) Suppose that 0 < λ < λ∗
∞(k,Ω0). Then there exists a unique µ∗ such

that λN
1

(
b(x)µ∗−λ
1+kρ(x)µ∗ , Ω

)
= 0 and µ∗ > 0. Moreover, λN

1

(
b(x)µ−λ
1+kρ(x)µ , Ω

)
< 0

if 0 < µ < µ∗, and λN
1

(
b(x)µ−λ
1+kρ(x)µ , Ω

)
> 0 if µ > µ∗.

(ii) Suppose that λ ≥ λ∗
∞(k,Ω0). Then λN

1

(
b(x)µ−λ
1+kρ(x)µ , Ω

)
< 0 for any µ > 0.

Proof. First we will prove (i) for any fixed λ ∈ (0, λ∗
∞(k, Ω0)). By virtue of

Lemma 2.1, we can find a unique positive number µ∗ such that λ∗(µ∗) = λ,
namely,

λN
1

(
b(x)µ∗ − λ

1 + kρ(x)µ∗

)
= 0.

Then the conclusion of (i) follows from (1.4). Next we will prove (ii). It follows
from (1.4), Lemma 2.1 and the assumption λ ≥ λ∗

∞(k,Ω0) that

λN
1

(
b(x)µ − λ

1 + kρ(x)µ

)
≤ λN

1

(
b(x)µ − λ∗

∞(k,Ω0)
1 + kρ(x)µ

)
< λN

1

(
b(x)µ − λ∗(µ)
1 + kρ(x)µ

)
= 0.

Thus the proof is complete.

§3. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by combining Lemma 2.2 with the
arguments which appeared in [13, 25, 27] (see also [21], where the linearization
principle for quasilinear evolution equations was developed).

Proof of Theorem 1.1. First we will prove (i) and (ii). By virtue of Lemma
2.2, it is sufficient to show that (0, µ) is unstable if λN

1

(
b(x)µ−λ
1+kρ(x)µ

)
< 0, and

asymptotically stable if λN
1

(
b(x)µ−λ
1+kρ(x)µ

)
> 0. The linearized parabolic system

of (P) at (0, µ) is given by
ut = ∆[(1 + kρ(x)µ)u] + (λ − b(x)µ)u in Ω × (0,∞),
τvt = ∆v + cµu − µv in Ω \ Ω0 × (0,∞),
∂nu = 0 on ∂Ω × (0,∞),
∂nv = 0 on ∂(Ω \ Ω0) × (0,∞).
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Then we see from the linearization principle that the stability of (0, µ) is
determined by the following spectral problem:

(3.1)


−∆[(1 + kρ(x)µ)φ] + (b(x)µ − λ)φ = σφ in Ω,

−∆ψ − cµφ + µψ = στψ in Ω \ Ω0,

∂nφ = 0 on ∂Ω,

∂nψ = 0 on ∂(Ω \ Ω0).

Let σ be any eigenvalue of (3.1) and let (φ, ψ) be any eigenfunction corre-
sponding to σ. If φ = 0, then σ is an eigenvalue of

−∆ψ + µψ = στψ in Ω \ Ω0, ∂nψ = 0 on ∂(Ω \ Ω0)

and thus

(3.2) σ ≥ µ

τ
> 0.

If φ ̸= 0, then it follows from the first equation of (3.1) that σ must be an
eigenvalue of

(3.3) −∆Φ +
b(x)µ − λ

1 + kρ(x)µ
Φ =

σ

1 + kρ(x)µ
Φ in Ω, ∂nΦ = 0 on ∂Ω.

From the variational characterization, the least eigenvalue σ∗ of (3.3) is given
by

σ∗ = inf
Φ∈H1(Ω)\{0}

∫
Ω

(
|∇Φ|2 +

b(x)µ − λ

1 + kρ(x)µ
Φ2

)
dx∫

Ω

Φ2

1 + kρ(x)µ
dx

.

On the other hand, the variational characterization of the first eigenvalue also
yields

λN
1

(
b(x)µ − λ

1 + kρ(x)µ

)
= inf

Φ∈H1(Ω)\{0}

∫
Ω

(
|∇Φ|2 +

b(x)µ − λ

1 + kρ(x)µ
Φ2

)
dx∫

Ω
Φ2dx

.

Since
0 <

1∫
Ω

Φ2dx

≤ 1∫
Ω

Φ2

1 + kρ(x)µ
dx

for any Φ ∈ H1(Ω) \ {0}, we find that

(3.4) σ∗ ≤ λN
1

(
b(x)µ − λ

1 + kρ(x)µ

)
< 0 if λN

1

(
b(x)µ − λ

1 + kρ(x)µ

)
< 0
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and that

(3.5) σ∗ ≥ λN
1

(
b(x)µ − λ

1 + kρ(x)µ

)
> 0 if λN

1

(
b(x)µ − λ

1 + kρ(x)µ

)
> 0.

Hence we see from (3.4) that (3.1) has a negative eigenvalue if λN
1

(
b(x)µ−λ
1+kρ(x)µ

)
<

0, and we see from (3.2) and (3.5) that all eigenvalues of (3.1) are positive if
λN

1

(
b(x)µ−λ
1+kρ(x)µ

)
> 0. Therefore, (0, µ) is unstable if λN

1

(
b(x)µ−λ
1+kρ(x)µ

)
< 0, and

asymptotically stable if λN
1

(
b(x)µ−λ
1+kρ(x)µ

)
> 0. Thus the conclusions of (i) and

(ii) follow from Lemma 2.2.
Next we discuss the stability of (0, 0). The stability of (0, 0) is determined

by

(3.6)


−∆φ − λφ = σφ in Ω,

−∆ψ − µψ = στψ in Ω \ Ω0,

∂nφ = 0 on ∂Ω,

∂nψ = 0 on ∂(Ω \ Ω0).

It is clear that (φ, ψ) = (1, 0) satisfies (3.6) with σ = −λ. Thus (3.6) has a
negative eigenvalue for any λ > 0 and any µ > 0. Therefore, (0, 0) is unstable
for any λ > 0 and any µ > 0.

Finally, we analyze the stability of (λ, 0). The stability of (λ, 0) is deter-
mined by

(3.7)


−∆φ − kλ∆[ρ(x)ψ] + λφ + λb(x)ψ = σφ in Ω,

−∆ψ − (µ + cλ)ψ = στψ in Ω \ Ω0,

∂nφ = 0 on ∂Ω,

∂nψ = 0 on ∂(Ω \ Ω0).

We define

φ̂ =
(
−∆ +

(
λ +

µ + cλ

τ

)
I

)−1

Ω

[kλ∆ρ(x) − λb(x)] ,

where I is the identity mapping and (−∆ + (λ + (µ + cλ)/τ) I)−1
Ω is the in-

verse operator of −∆ + (λ + (µ + cλ)/τ) I over Ω subject to the homoge-
neous Neumann boundary condition. Then (φ, ψ) = (φ̂, 1) satisfies (3.7) with
σ = −(µ + cλ)/τ . Hence (3.7) has a negative eigenvalue for any λ > 0 and
any µ > 0. Therefore, (λ, 0) is unstable for any λ > 0 and any µ > 0. Thus
the proof of Theorem 1.1 is complete.
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§4. Proof of Theorem 1.2

We introduce a new unknown function U by

U = (1 + kρ(x)v)u.

Since we are only interested in non-negative solutions, (SP) is rewritten in the
following equivalent form:

(EP)


∆U + f1(λ, U, v) = 0 in Ω,

∆v + f2(U, v) = 0 in Ω \ Ω0,

∂nU = 0 on ∂Ω,

∂nv = 0 on ∂(Ω \ Ω0),

where

(4.1)


f1(λ,U, v) =

U

1 + kρ(x)v

(
λ − U

1 + kρ(x)v
− b(x)v

)
,

f2(U, v) = v

(
µ +

cU

1 + kρ(x)v
− v

)
.

In order to prove Theorem 1.2, we will prove the following proposition by using
the bifurcation theory.

Proposition 4.1. Define λ∗(µ) by (2.1). Then (EP) has at least one positive
solution if and only if λ > λ∗(µ).

4.1. A priori estimates of positive solutions

First we recall the following maximum principle (see Proposition 2.2 in Lou
and Ni [16]).

Lemma 4.2. Suppose that g ∈ C(O × R), where O is a bounded domain in
RN with smooth boundary.

(i) If w ∈ C2(O) ∩ C1(O) satisfies

∆w(x) + g(x,w(x)) ≥ 0 in O, ∂nw ≤ 0 on ∂O,

and w(x0) = maxO w, then g(x0, w(x0)) ≥ 0.

(ii) If w ∈ C2(O) ∩ C1(O) satisfies

∆w(x) + g(x,w(x)) ≤ 0 in O, ∂nw ≥ 0 on ∂O,

and w(x0) = minO w, then g(x0, w(x0)) ≤ 0.
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We will derive the following a priori estimates of positive solutions of (EP).

Lemma 4.3. There exist two positive constants C1 and C2 such that any
positive solution (U, v) of (EP) satisfies

∥U∥C1(Ω) ≤ C1 and ∥v∥C1(Ω\Ω0) ≤ C2.

Proof. Let (U, v) be any positive solution of (EP). Applying Lemma 4.2 to the
first equation of (EP), we have

U(x0)
1 + kρ(x0)v(x0)

(
λ − U(x0)

1 + kρ(x0)v(x0)
− b(x0)v(x0)

)
≥ 0,

where U(x0) = maxΩ U with x0 ∈ Ω. Then we find that

max
Ω

U ≤


λ − b(x0)v(x0) ≤ λ if k = 0,

λ if k > 0 and x0 ∈ Ω0,

(1 + kρ(x0)v(x0))(λ − b(x0)v(x0)) if k > 0 and x0 ∈ Ω \ Ω0

because of the assumption ρ(x) = b(x) = 0 in Ω0. Here, it holds that

(1 + kρ(x0)v(x0))(λ − b(x0)v(x0))

= − kρ(x0)b(x0)
(

v(x0) −
kρ(x0)λ − b(x0)
2kρ(x0)b(x0)

)2

+
(kρ(x0)λ + b(x0))2

4kρ(x0)b(x0)

≤(kρ(x0)λ + b(x0))2

4kρ(x0)b(x0)

=
kρ(x0)λ2

4b(x0)
+

λ

2
+

b(x0)
4kρ(x0)

.

Since both ρ(x)/b(x) and b(x)/ρ(x) are bounded in Ω \ Ω0 by assumption,
there exists a positive constant C such that

(4.2) max
Ω

U ≤ C.

Let v(y0) = maxΩ\Ω0
v with y0 ∈ Ω \ Ω0. Applying Lemma 4.2 to the second

equation of (EP), we obtain

(4.3) max
Ω\Ω0

v ≤ µ +
cU(y0)

1 + kρ(y0)v(y0)
≤ µ + cC

because of (4.2). Then we see from (4.2) and (4.3) that for any q > N , there
exist two positive constants C̃1 and C̃2 such that

∥f1(λ, U, v)∥Lq(Ω) + ∥U∥Lq(Ω) ≤ C̃1
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and
∥f2(U, v)∥Lq(Ω\Ω0) + ∥v∥Lq(Ω\Ω0) ≤ C̃2

for any positive solution (U, v) of (EP), where f1 and f2 are functions defined
by (4.1). It follows from elliptic regularity theory that there exist two positive
constants C̃3 and C̃4 such that

∥U∥W 2,q(Ω) ≤ C̃3

(
∥f1(λ,U, v)∥Lq(Ω) + ∥U∥Lq(Ω)

)
≤ C̃3C̃1

and

∥v∥W 2,q(Ω\Ω0) ≤ C̃4

(
∥f2(U, v)∥Lq(Ω\Ω0) + ∥v∥Lq(Ω\Ω0)

)
≤ C̃4C̃2

for any positive solution (U, v) of (EP). Therefore, the conclusion of Lemma
4.3 follows from the Sobolev embedding theorem.

4.2. Local bifurcation of positive solutions

In this subsection, we fix µ > 0 and take λ as a bifurcation parameter in
order to obtain a branch of positive solutions of (EP) which bifurcates from
the semi-trivial solution set

Γv = {(λ,U, v) = (λ, 0, µ) : λ ∈ R}.

For p > N , we define

X1 = W 2,p
n (Ω) × W 2,p

n (Ω \ Ω0) and X2 = Lp(Ω) × Lp(Ω \ Ω0),

where W 2,p
n (O) = {w ∈ W 2,p(O) : ∂nw = 0 on ∂O}. We also define

(4.4) E = C1
n(Ω) × C1

n(Ω \ Ω0),

where C1
n(O) = {w ∈ C1(O) : ∂nw = 0 on ∂O}. Then it holds that X1 ⊂ E

by the Sobolev embedding theorem. Moreover, let φ∗ be a positive solution of

(4.5) −∆φ∗ +
b(x)µ − λ∗(µ)
1 + kρ(x)µ

φ∗ = 0 in Ω, ∂nφ∗ = 0 on ∂Ω

and define

(4.6) ψ∗ = (−∆ + µI)−1
Ω\Ω0

[
cµ

1 + kρ(x)µ
φ∗

]
,

where I is the identity mapping and (−∆ + µI)−1
Ω\Ω0

is the inverse operator

of −∆ + µI over Ω \ Ω0 subject to the homogeneous Neumann boundary
condition. Then we can obtain the following lemma by applying the local
bifurcation theorem of Crandall and Rabinowitz [4] to (EP).
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Lemma 4.4. Positive solutions of (EP) bifurcate from Γv if and only if λ =
λ∗(µ). To be precise, all positive solutions of (EP) near (λ∗(µ), 0, µ) ∈ R×X1

can be expressed as

Γδ = {(λ,U, v) = (λ(s), s(φ∗ + U(s)), µ + s(ψ∗ + v(s))) : s ∈ (0, δ)}

for some δ > 0. Here (λ(s), U(s), v(s)) is a smooth function with respect to s
and satisfies (λ(0), U(0), v(0)) = (λ∗(µ), 0, 0) and

∫
Ω U(s)φ∗dx = 0.

Proof. Let V := v − µ in (EP) and define a mapping F : R × X1 → X2 by

F (λ,U, V ) =
(

∆U + f1(λ,U, V + µ)
∆V + f2(U, V + µ)

)
,

where f1 and f2 are functions defined by (4.1). Then F (λ, 0, 0) = 0 for any λ.
Moreover, F (λ,U, V ) = 0 holds if and only if (U, V + µ) is a solution of (EP).
By elementary calculations, the Fréchet derivative of F at (U, V ) = (0, 0) is
given by

(4.7) F(U,V )(λ, 0, 0)[φ, ψ] =

 ∆φ +
λ − b(x)µ
1 + kρ(x)µ

φ

∆ψ − µψ +
cµ

1 + kρ(x)µ
φ

 .

By Lemma 2.1 and the Krein-Rutman theorem, F(U,V )(λ, 0, 0)[φ, ψ] = (0, 0)
has a solution with φ > 0 if and only if λ = λ∗(µ). This means that λ∗(µ) is
the only possible bifurcation point where positive solutions of (EP) bifurcate
from Γv. From (4.5)–(4.7), the kernel of F(U,V )(λ∗(µ), 0, 0) is given by

(4.8) KerF(U,V )(λ
∗(µ), 0, 0) = span{(φ∗, ψ∗)},

and thus dimKerF(U,V )(λ∗(µ), 0, 0) = 1. Moreover, the Fredholm alternative
theorem implies that the range of F(U,V )(λ∗(µ), 0, 0) is given by

(4.9) RangeF(U,V )(λ
∗(µ), 0, 0) =

{
(φ, ψ) ∈ X2 :

∫
Ω

φφ∗dx = 0
}

,

and hence codimRange F(U,V )(λ∗(µ), 0, 0) = 1. Furthermore, since φ∗ > 0, we
see from (4.9) that

Fλ(U,V )(λ
∗(µ), 0, 0)[φ∗, ψ∗] =

 φ∗

1 + kρ(x)µ
0

 ̸∈ Range F(U,V )(λ
∗(µ), 0, 0).

Therefore, we can apply the local bifurcation theorem [4] to F at (λ∗(µ), 0, 0).
Thus we have completed the proof of Lemma 4.4.
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4.3. Completion of the proof of Proposition 4.1

First we prove the following lemma.

Lemma 4.5. If λ ≤ λ∗(µ), then (EP) has no positive solution.

Proof. Let (U, v) be any positive solution of (EP). Then U is a positive solution
of

−∆U +
−λ + U/(1 + kρ(x)v) + b(x)v

1 + kρ(x)v
U = 0 in Ω, ∂nU = 0 on ∂Ω

and this means that

(4.10) λN
1

(
−λ + U/(1 + kρ(x)v) + b(x)v

1 + kρ(x)v

)
= 0.

Moreover, by applying Lemma 4.2 to the second equation of (EP), we obtain

(4.11) min
Ω\Ω0

v ≥ µ +
cU(x0)

1 + kρ(x0)v(x0)
> µ,

where v(x0) = minΩ\Ω0
v with x0 ∈ Ω \ Ω0. It follows from (1.4), (4.10) and

(4.11) that

0 = λN
1

(
−λ + U/(1 + kρ(x)v) + b(x)v

1 + kρ(x)v

)
> λN

1

(
b(x)v − λ

1 + kρ(x)v

)
> λN

1

(
b(x)µ − λ

1 + kρ(x)µ

)
.

On the other hand, we notice from Lemma 2.1 that

λN
1

(
b(x)µ − λ

1 + kρ(x)µ

)
≥ 0

for any λ ≤ λ∗(µ). Therefore, (EP) has no positive solution if λ ≤ λ∗(µ).

We are now in a position to prove Proposition 4.1.

Proof of Proposition 4.1. Define the Banach space E by (4.4). In order to
apply the global bifurcation theorem, we define a mapping G : R×E → E by

G(λ,U, v) =
(

U
v − µ

)
−

(
(−∆ + I)−1

Ω [U + f1(λ,U, v)]
(−∆ + I)−1

Ω\Ω0
[v − µ + f2(U, v)]

)
,

where f1 and f2 are functions defined by (4.1). Then elliptic regularity theory
and the Sobolev embedding theorem imply that the second term of G is a
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compact operator for any fixed λ. Moreover, (EP) is equivalent to G(λ,U, v) =
0. For the local bifurcation branch Γδ obtained in Lemma 4.4, let Γ ⊂ R×E
denote the maximal connected set satisfying

(4.12) Γδ ⊂ Γ ⊂ {(λ,U, v) ∈ (R × E) \ {(λ∗(µ), 0, µ)} : G(λ,U, v) = 0}.

Define PO = {w ∈ C1
n(O) : w > 0 in O}. First we will prove

(4.13) Γ ⊂ R × PΩ × PΩ\Ω0

by contradiction. Suppose that Γ ̸⊂ R × PΩ × PΩ\Ω0
. Then there exist a

sequence {(λi, Ui, vi)}∞i=1 ⊂ Γ ∩ (R × PΩ × PΩ\Ω0
) and

(4.14) (λ∞, U∞, v∞) ∈ Γ ∩ (R × ∂(PΩ × PΩ\Ω0
))

such that
lim
i→∞

(λi, Ui, vi) = (λ∞, U∞, v∞) in R × E.

In addition, (U∞, v∞) is a strong non-negative solution of (EP) with λ = λ∞.
It follows from the strong maximum principle and the Hopf boundary lemma
that one of the following (a)–(c) must occur:

(a) U∞ ≡ 0 in Ω, v∞ ≡ 0 in Ω \ Ω0.

(b) U∞ > 0 in Ω, v∞ ≡ 0 in Ω \ Ω0.

(c) U∞ ≡ 0 in Ω, v∞ > 0 in Ω \ Ω0.

Integrating the second equation of (EP) with (U, v) = (Ui, vi) over Ω \Ω0, we
have

(4.15)
∫

Ω\Ω0

vi

(
µ +

cUi

1 + kρ(x)vi
− vi

)
dx = 0

for any i ∈ N. If (a) or (b) holds, then

µ +
cUi

1 + kρ(x)vi
− vi > 0 in Ω \ Ω0

for sufficiently large i ∈ N because of µ > 0. Hence the integrand in (4.15) is
positive for sufficiently large i ∈ N since vi > 0 in Ω \ Ω0 for any i ∈ N. This
contradicts (4.15). If (c) holds, then{

∆v∞ + v∞(µ − v∞) = 0 in Ω \ Ω0,

∂nv∞ = 0 on ∂(Ω \ Ω0), v∞ > 0 in Ω \ Ω0
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and thus v∞ = µ in Ω \ Ω0. Then Lemma 4.4 implies that (λ∞, U∞, v∞) =
(λ∗(µ), 0, µ). This contradicts (4.12) and (4.14). Therefore, the assertion
(4.13) holds true. We define

(4.16) Y =
{

(φ, ψ) ∈ E :
∫

Ω
φφ∗dx = 0

}
,

that is, Y is the supplement of span {(φ∗, ψ∗)} (which appeared in (4.8)) in
E. According to the global bifurcation theory of Rabinowitz [22], one of the
following non-excluding properties holds (see Rabinowitz [22] and Theorem
6.4.3 in López-Gómez [15]):

(1) Γ is unbounded in R × E.

(2) There exists a constant λ̄ ̸= λ∗(µ) such that (λ̄, 0, µ) ∈ Γ.

(3) There exists (λ̃, φ̃, ψ̃) ∈ R × (Y \ {(0, µ)}) such that (λ̃, φ̃, ψ̃) ∈ Γ.

Due to (4.13), case (2) cannot occur. Case (3) is also impossible because of
(4.13), (4.16) and φ∗ > 0. Therefore, case (1) must hold. It follows from (4.13)
and Lemmas 4.3 and 4.5 that (EP) has at least one positive solution if and
only if λ > λ∗(µ). Thus we have proved Proposition 4.1.

4.4. Completion of the proof of Theorem 1.2

Proof of Theorem 1.2. Since

λN
1

(
b(x)µ − λ∗(µ)
1 + kρ(x)µ

)
= 0

by Lemma 2.1, we see from (1.4) that λ > λ∗(µ) holds if and only if

(4.17) λN
1

(
b(x)µ − λ

1 + kρ(x)µ

)
< 0

holds. It thus follows from Proposition 4.1 that (SP) has at least one positive
solution if and only if (4.17) holds. Therefore, the conclusion of Theorem 1.2
follows from Lemma 2.2.

§5. Appendix

In this section, we assume that k > 0 and b(x)/ρ(x) ≡ β outside the protection
zones for some positive constant β. We will show that λ∗

∞(k,Ω0) decreases as ℓ
increases. More precisely, we will prove λ∗

∞(k,Ω0) > λ∗
∞(k,Ω0 ∪Oℓ+1), where
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Oℓ+1 is a simply connected open set with smooth boundary ∂Oℓ+1 satisfying
Oℓ+1 ⊂ Ω and Oi ∩ Oℓ+1 = ∅ for any i ∈ {1, 2, · · · , ℓ}.

Let φ̂ be a positive solution of

−∆φ̂ +
β

k
χΩ\Ω0

φ̂ = λ∗
∞(k,Ω0)χΩ0

φ̂ in Ω, ∂nφ̂ = 0 on ∂Ω.

Then

λ∗
∞(k,Ω0) =

∫
Ω
|∇φ̂|2dx +

β

k

∫
Ω\Ω0

φ̂2dx∫
Ω0

φ̂2dx

>

∫
Ω
|∇φ̂|2dx +

β

k

∫
Ω\Ω0∪Oℓ+1

φ̂2dx∫
Ω0∪Oℓ+1

φ̂2dx

≥ λ∗
∞(k,Ω0 ∪ Oℓ+1),

where we have used φ̂ > 0 in Ω. Thus the proof is complete.
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