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 Several models had been proposed for dynamic systems, and different criteria 

had been analyzed for such models such as, Hamiltonian, synchronization, 

Lyapunov expansion, and stability. The geometry criteria play a significant 

part in analyzing dynamic systems and some study articles analyze the 

geometry of such topics. The synchronization and the complex-network 

control with specified topology, meanwhile, the exact topology may be 

unknown. In the present paper, and by making use of the adaptive control 

method, a proposed control method is developed to determine the actual 

topology. The basic idea in the proposed method is to receive evolution of the 
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1. Introduction 

Since the 1950s and 1960s, new sciences have begun to emerge and capture the curiosity and interest of scientists. 

Among them are Systems Theory, Chaos Theory, Cybernetics and Artificial Intelligence. Systems theory was founded by 

the German biologist Ludwig von Bertalanffy, the English economist Kenneth Boulding and others between 1940 and 

1970, and is based on the principles of physics, biology and applied engineering. This science then continued its growth 

and intertwined with many other sciences including: philosophy, sociology, organizational theory, management, 

economics and other sciences. Systems theory seeks not only to present the world as systems and knowledge of how 

these systems work and the common links between all existing systems in the world. Are all theoretical, applied and 

human sciences. Therefore, knowledge and understanding of the principles of systems theory can gain one 

comprehensive understanding of science and then the whole world that science seeks to read and discover [1]. The whole 

world is mobile systems or living machines that exist and continue in a certain medium and interact with other systems 

(machines) and have decay factors inside them and decay factors outside them remain resistant until the collapse of 

resistance in the end, decomposing its elements to join other systems still work. It applies to everything from galaxies, 

stars, planets and not to humans and other living things. Systems in the world can be divided into open systems, closed 

systems (or) simple systems, complex systems (or) fixed systems and mobile systems [2]. 

 

1.1  Open System 

A system that is defined by a basic connection between it and its surroundings. A closed system is a system that 

tends to be confined to itself and avoids interaction with environmental data, needs, expectations and aspirations. A 

closed system tends to ignore external considerations. Closed systems are defined by being caught within boundaries that 

restrict their autonomy and communication with the setting as the structures very nature does not allow it to separate 

from that system factors from the surroundings.  
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1.2 Simple system 

It is a system of few elements and few relations between the elements and for this facilitates the study of simple 

systems on complex systems, and therefore the researcher in any scientific subject to dismantle the complex system into 

simple systems in order to facilitate the study and understanding of simple systems separately Then study the 

relationships between these simple systems to know and understand the overall picture of the whole complex system [3]. 

Complex system: is a system of many elements of many relationships are characterized by complexity, but the difficulty 

of defining complexity makes the description of complex systems apply to many physical systems such as natural 

networks or abstract or artificial. The study of these complex systems falls within the so-called (Complexity Sciences), 

which are interdisciplinary academic disciplines. Examples of complex systems include the social system of ants, the 

social system of humans, the economy, the nervous system, living cells and the whole organism. Recently, new energy or 

telecommunications infrastructure has been added, and what is shaped by the modern telecommunications revolution 

such as the network community. The most important characteristic of these systems is that they share networks in one 

way or another, their interconnection is complex or not easy to represent [4]. They may contain different and reciprocal 

components. But each complex system has its own characteristics and even its organized relations between its 

components. The common property is the difficulty or limited mathematical modeling of these systems. Fixed system: is 

the system that does not happen to any change over time, its elements are unchanged and relationship between its 

elements is unchanged. This system cannot exist in nature because all natural systems are dynamic, but a fixed system is 

a theoretical idea that has been invented to understand and assimilate natural dynamic systems by theoretically breaking 

them into fixed systems (such as still images we take for ourselves). Find the most stable elements and relationships in 

natural systems [5]. Examples of fixed systems are: geometric shapes, natural numbers, and mathematical equations 

describing fixed sentences. Dynamic system: A system that defines sentences regulated by linear differential equations, 

partial linear differential equations, non-linear differential equations, partial nonlinear differential equations, or algebraic 

differential equations. Examples of kinetic sentences are all mathematical models describing the movement of a simple 

pendulum or the flow of water in a pipe and others. For each kinetics states, these states are also the coordinates of the 

geometrical or state space. Each kinematics rule of evolution is a rule (mathematical function) that describes the 

correlation of the state of the sentence with time or place and thus determines the future states of the sentence depending 

on its current state. The rule of evolution of these sentences can be inevitable: for a given period of time, the current state 

will evolve into another single, pre-determined state of the sentence's evolution function. It can also be a possibility [6]. 

A dynamic system is a moving machine, and in this sense it can be launched as a description of all the elements and 

assets in the world. A single atom of any substance is a kinetic machine, every living organism is a kinetic machine, the 

planet is a kinetic machine, the solar system is a kinetic machine, and all elements of the universe and the world are 

interdependent machines, machines or dynamic systems that work on each other or in parallel, and dynamic systems or 

motor machines are not only in kind, there are other motor machines are implicit indirect systems, such as: political, 

cultural, social, psychological, mental, cognitive and emotional systems that control the lives of human beings, for 

example. In an orderly conception of human life as a large machine that works and moves as a gear in a larger machine 

and so on. Let us start defining its meaning from mathematical point of view, the dynamical system from mathematical 

point of view is that system which has a function that describes the dependency of the time of a point in a geometrical 

space. The dynamic system distribution rule is a feature that defines what potential states are derived from the present 

state. [7]. If one turn to physics, the dynamic system could then be defined as a particle whose condition differs over 

moment and therefore obeys differential equations with time derivatives [8]. The research of dynamic systems is the 

center of the theory of dynamic systems with a broad spectrum of apps. [9]. The dynamic system may or may not be 

linear, the scope of the dynamic system [10]. Nonlinear continuous dynamical systems, have been extensively studied to 

this day. The first trials for such model is the Lu model [11], this type had a significant stake in their phase-space 

behaviour. Chen [12] had presented a simple 3-D auto system, which is not diffeo-morphic with Lorenz attractor. In the 

arrangement of values for a parameter k, Lü [13] proposed another 3-D attractor showing chaotic behavior in distinct 

respects and not diffeo-morphic with Lorenz [14]. In 1963, the first chaotic nonlinear system was suggested by Lorenz 

[15]. The first trial for establishing a chaotic nonlinear system was proposed by Fowler in 1982, in which was as a 

generalization of the Lorenz system. The messy structure of the Lorenz system is utilized to suppose the physics of the 

liquid flows calorific convection [16]. The literature [17] has suggested numerous chaotic and super chaotic complex 

systems with quadratic nonlinear conditions. These systems are combined with quadratic nonlinear conditions in the 

same category as the Lorenz equation. In the proposed model, the variables, x, and y are assumed to be functions for one 

real and three complex parameters, while, the z variable is assumed in terms of only real variable only. After long 

mathematical manipulations, a system of nine equations are obtained which represents the hyper-complex chaotic 

system. The dynamics of the obtained system were analyzed, which include phase spaces, calculations of eigenvalues and 

Lyapunov exponents, and all related analyses. The results due to the proposed system gave an acceptable accuracy 

compared with the corresponding due to 6-D models. A wide range of research papers tried to investigate the 

geometry nature, complex-dynamic network synchronization and regulate with certain topologies.  [18–25]. The 

true topology of a complex-dynamic network is unknown or at least uncertain in most apps. [26-33]. the network 

topology recently took more attention in different disciplines, such as the protein–DNA (deoxyribonucleic-acid) 

interactions in cellular processes. Several models had been proposed for dynamic systems, and different criteria had 
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been analyzed for such models such as, Hamiltonian, synchronization, Lyapunov expansion, and stability. The 

geometry criteria play a significant part in analyzing dynamic systems and some study articles have evaluated such 

subject geometry. The synchronization and the complex-network control with specified topology, meanwhile, the 

exact topology may be unknown. In the present paper, and by making use of the adaptive control method, a 

proposed control method is developed to determine the actual topology. The basic idea in the proposed method is to 

receive evolution of the network-nodes. 

 

2. A nine-DECLM dynamic model 
 

In 2019, a previous paper [33] for the same authors, they suggested and developed a new 9-DECLM 

mathematical dynamical complex model. In that paper, they established a new mathematical model for a chaotic 

dynamical system, which leaded to nine equation. The model was characterized by the three following first order 

ordinary equations: 

 
 xy

dt

tdx
                                                                                         (1) 

 
xzyx

dt

tdy
                                                                                        (2) 

   yxxyz
dt

tdz


2

1
                                                                                    (3) 

Where 

In equations (1-3),  ,, are real parameters and the variables zyx ,, are defined as: 

4321 kujuiuux                                                                                  (4) 

8765 kujuiuuy                                                                                (5) 

9uz                                                                                                     (6) 

The suggested model is achieved by substituting complex variables for real variables of the classical Lu model, 

this can be seen in equations (4) and (5). The system obtained by the suggested model is highly dimensional. There are 

two different methods to construct higher dimensional model, the first one can be occurred by adding new variables to 

the original system. The second one by combining two existing models, this method need a special care to ensure stable 

system. The first method to construct the existing method was chosen in this paper. 

 

3. Hamiltonian Dynamics of the 9-DECLM 
 

The generalized Hamiltonian canonical form takes for the new system [33-36] took the following form: 
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Equation (7) is a new Hamiltonian form for the suggested new model. 

Invariance and symmetry 

The invariance means that both: 

987654321 ,,,,,,,, uuuuuuuuu                                               (8) 

And 

987654321 ,,,,,,,, uuuuuuuuu                                                  (9) 

Two solutions for the system, and this can be clearly approved by introducing the following substitution: 
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3.1 Dissipation of the system 

 

The Dissipation of the system will be examined through the divergence condition as follows: 












n

1i

0v
i

i

u

u                                                                       (11) 

Equation (25) in some details can be written as: 
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By computing the partial derivatives that appeared in equation (26), and simplifying, leads to the Dissipation condition as 

follows: 

033                                                                    (13) 

This condition is the basis of the chaotic behavior occurrence. 

 

3.2 Equilibria 

 

To study the equilibria, let us find the homogenous solution for the system given by: 
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From 5
th

 row in equation (14) till the 8
th

 row, one can obtain the only possible solution that is: 

19  u  

While the all remaining variables will equal zero solution, i.e. 

087654321  uuuuuuuu  

 

3.3 Stability 

 

To study the stability for the proposed system, let us refer back to the Jacobin given by equation (14), and let us 

find the characteristic equation as follows: 
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                                              (15)  

In a next upcoming paper, the proposed system will be analyzed in some more details with its application to the 

secure communication system and numerical examples. 

 

4. Weighted-Complex network model 
 

In the present paper, a weighted-complex dynamic model suggested by [xxx] will be applied for the present 

dynamic model developed by the authors. The model suggested the following: 
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5. The adaptive-control method 
 

In this section, the topology-identification is controlled through the following: 



 PEN Vol. 7, No. 3, September 2019, pp.1345- 1353 

1349 

n

im

^

i3

^

i2

^

i1

^

j

^

j

^

1

^

j

^
j

^

Ry.....,y,y,yy

&

1

yCyg
t

y





























T

i

M

j

ij

Mi


                                                    (17) 

By making use of the following assumption, 
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Then the error system formula will take the following form: 
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6. Numerical results and discussion 

 

6.1 Test example (1) 

In the present paper, the proposed system will be analyzed for the following numerical data: 

 

3,5.14,36    

 

The analysis herein, will contain the analysis of the Equilibrium, by solving eq. (28), and the corresponding 

results are shown in table (1). 

 

Table 1.  Equilibrium of the new system obtained by equation (11) 

 
1u  2u  3u  

4u  5u  6u  7u  8u  9u  

1e  0 0 0 0 0 0 0 0 13.5 

2e  -6.6 -6.6 14.5 -6.6 -6.6 -6.6 14.5 -6.6 13.6 

3e  6.6 6.6 14.6 6.6 6.6 6.6 14.6 6.6 13.6 

 

 

 
Figure 1.  Equilibrium of the new system 
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Following up the numerical analysis, by computing the eigenvalues for the obtained new system under the prescribed 

numerical parameters and the initial condition. The results are shown in table (2). The Fourth order Runge-Kutta method 

is used in the computation and by making use of the pre-last equation in the system given by equation (28), the values of 

the 9u are obtained. 

Table 2. Eigenvalues of the new system obtained by equation (11) 

 
1  2  

3  4  
5  6  7  8  9  

1e  36 14.5 -2.99 -35.99 14.5 -2.99 0 0 0 

2e  -5.19 -5.19 0.09 0.09 -42.75 6.09 0 0 0 

3e  -25 -25 0.319 0.319 0.319 0.319 0 0 0 

 

 

 
Figure 2. Eigenvalues of the new system 

 

 

6.2 Test example (2) 

A simple example is just to clarify the suitability of the adaptive controlling model when applied to the dynamic 

model developed by the authors. It is well known that the Lorenz chaotic system is known as: 
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Putting 

28,5.1,10    

By considering the complex dynamic network consists of four nodes as shown in figure (3). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 3. Topology model 
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6.3 Estimation of the topology model 

 

In this section, we solved a simple example, to study the effectiveness adaptive control method on the system 

developed. The numerical results are shown both in figure (4) and table (3). The results gave a good approximation and 

well representation. 

.  

Figure 4.  The estimation of the topology model 

 

Table 3. Numerical Estimation of the topology model 

Time C12 C13 C14 C23 C24 C32 

0 0 0 0 3.3 2.7 2.4 

100 2.7 -0.9 0 3.19 2.75 2.8 

200 2.8 -0.8 0 3.17 2.6 2.26 

300 2.9 -0.7 0 3.15 2.62 2.19 

400 3 0.5 0 3.12 2.3 2.55 

500 3.4 0.9 0 3.11 2.75 2.79 

1000 3.9 1.8 0 3.09 2.9 2.88 

1500 3.96 1.83 0 3.08 2.95 2.9 

2000 3.97 1.85 0 3.07 2.97 2.94 

2500 3.98 1.9 0 3.03 2.99 2.96 

3000 4 2 0 3 3 3 

 

7. Conclusions 
 

The present paper studied the geometry which plays an important role in the analysis of dynamic systems. 

The paper used a new dynamic model developed by the author in a previous paper. The adaptive control method is 

applied herein, and the results gave a good approximation and presentation for the proposed dynamic system. 
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